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Parameter ldentification in Differential Equations:
Some Examples
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—V(aVu)+cu=bin Q, %=Oon89,

from boundary or (restricted) interior observations of u.
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Parameter ldentification in Differential Equations:
Some Examples

e Identify spatially varying coefficients/source a, b, ¢ in linear
elliptic boundary value problem on Q CRY, d € {1,2,3}

—V(aVu)+cu=bin Q, %:Oonaﬂ,

from boundary or (restricted) interior observations of u.

@ ldentify source term g in nonlinear elliptic bvp

—Au+¢&(u)=qin Q, %:Oonaﬁ,

from boundary or (restricted) interior observations of wu.
o Identify parameter ¥ in initial value problem for ODE / PDE

i(t) = £t u(t),0) t€ (0, T),  u(0) = uo
from discrete of continuous observations of u.

yi = gi(u(ti)), i €{1,...,m}ory(t) = g(t, (1)), t € (0, T)

DA



Abstract Formulation
Identify parameter g in (PDE or ODE) model

A(q,u) =0
from observations of the state u
Clu) =y,

where g€ X, ue V,y e Y, X, V,Y... Hilbert (Banach) spaces
A: X x V — W*. . differential operator
C :V — Y...observation operator
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Abstract Formulation
Identify parameter g in (PDE or ODE) model
A(q,u) =0
from observations of the state u
Clu) =y,
where g€ X, ue V,y e Y, X, V,Y... Hilbert (Banach) spaces

A: X x V — W*. . differential operator
C :V — Y...observation operator

(a) reduced approach: operator equation for g

Fa) =y,
F=CoSwithS: X — V, g — u parameter-to-state map

(b) all-at once approach: observations and model as system for (q, u)

A(g,u) = 0in W* B
C(U) = vy in Y And F(qa U) =Yy
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The Parameter-to-State Map S in some Examples

o Identify spatially varying coefficients/source a, b, ¢ in
du

—V(aVu)+cu=binQ, %=Oon89,

S : (a, b, c) — u solving the linear elliptic bvp

@ ldentify source term q in

ou_

—Au+¢&(u)=qin Q, o 0 on 092,

S : g — u solving the nonlinear elliptic bvp

o Identify parameter ¥ in
u(t) = f(t,u(t),9) te(0,T), u(0)=uo
S : ¥+ u solving the ivp for an ODE / PDE

e generally for model  A(q,u) =0:

S : g usolving A(q,S5(q)) =0




Motivation for All-at-once Formulation

@ well-definedness of parameter-to-state map often requires
restrictions on . ..
...parameters (e.g., a>a>0,c>0in —V(aVu)+ cu=b)
... models (e.g., monotonicity of £ in —Au+ £(u) = q)
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Motivation for All-at-once Formulation

@ well-definedness of parameter-to-state map often requires
restrictions on ...
...parameters (e.g., a>a>0,c>0in —V(aVu)+ cu=b)
... models (e.g., monotonicity of £ in —Au+ £(u) = q)

@ singular PDEs: parameter-to space map may exist only on a
very restricted set, e.g. MEMS equation

b(t)a(x) _

Utt+CUt+dU+pA2U—T]AU+(1+u)2 =

@ it can make a difference in implementation and in the analysis
(convergence conditions)

@ for other all-at-once type approaches see, e.g.,
[Kupfer & Sachs '92, Shenoy & Heinkenschloss & Cliff '98,
Haber & Ascher '01, Burger & Miihlhuber '02,...]
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Abstract Formulation
Identify parameter g in (PDE or ODE) model
A(q,u) =0
from observations of the state u
Clu) =y,
where g€ X, ue V,y e Y, X, V,Y... Hilbert (Banach) spaces

A: X x V — W*. . differential operator
C :V — Y...observation operator

(a) reduced approach: operator equation for g

F(q) =y,
F=CoS withS: X — V, g~ u parameter-to-state map

(b) all-at once approach: observations and model as system for (g, u)

A(q,u) = 0in W* B
C(u) — yiny A F(q,u)—y
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Tikhonov Regularization: reduced

min ||F(q) - YOI + aR(q)

with F = Co S, S parameter-to-state map, A(q,S(q)) =0,
equivalent to

min || C(u) — YIP+aR(q) st A(g,u) =0

[Seidman&Vogel '89, Engl&Kunisch&Neubauer '89,...] in Hilbert space
[Burger& Osher'04, Resmerita & Scherzer'06, Scherzer et al. '08,
Hofmann&Pdschl&BK&Scherzer '07, Poschl '09, Flemming '11, Werner
12,...] in Banach space
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Tikhonov Regularization: all-at-once

min || C(u) — Y[+ IA(g, u)|? + aR(q)

or
min || C(u) ~ Y|P + pllAq, u)]| + aR(q) +aR(u)

i.e., (exact penalization) with p sufficiently large

min [|C(u) = ¥ [* + aR(q) st. A(q,u) =0

i.e., reduced Tikhonov.
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Regularized Gauss-Newton Method: reduced

g* fixed, one Gauss-Newton step:
min [|F(¢") + F'(a)(a — 4) = ¥ I” + ewRi()

with F = Co S, S parameter-to-state map, A(q,S(q)) =0,
equivalent to

min ||C(&) + C'(@)(u — @) — y°|I* + axRu(q)

q,U7U
s.t. A(qX, 0) + AL (q", 0)(u— 1) + A,(g¥, @) (g — g*) = 0
and A(gX, 1) =0

[Bakushinskii '92, Hohage '97, BK&Neubauer&Scherzer '97,...] in
Hilbert space

e.g., [Bakushinskii&Kokurin'04, BK&Schopfer& Schuster '08, Jin '12,
Hohage&Werner '13,...] in Banach space




Regularized Gauss-Newton Method: all-at-once

(g%, u¥) fixed, one Gauss-Newton step:
min IC(u") + C'(uF)(u = u*) = y°|? + axR(q)

+ | A(q", u*) + A, (g5, uF)(u — u¥) + AL(q", u¥) (g — ¢¥)I1?

or




Regularized Gauss-Newton Method: all-at-once

(g*, uk) fixed, one Gauss-Newton step:
min 1) + C'(dF)(u = u¥) = y°I? + axR(q)
+ | A(g", 1) + AL (q", uF) (b — u¥) + AY(a, b ) (g — ¢)IIP
or (g*, u¥) fixed, one Gauss-Newton step:
min | C(u¥) + C'(u)(u = u*) = y°II? + axRi(q) + iR (v)
+ Pl A(gk, 1) + AL (g%, u¥)(u — u®) + Ag(d, u*) (g — ¢9)]
i.e. (exact penalization) with p sufficiently large

min [|C(6¥) + €'Y (w — 1) = ¥ + auRu(a)

s.t. A(GN, u¥) + AL (g%, u)(u— u¥) + AL(d¥, u¥) (g — ¢¥) =0




Comparison of optimality conditions for reduced and
all-at-once Newton

reduced:
A(gk, i) =0 (nonlinear decoupled state equation)
AL(q* B)(u — @) = —A(qX, &) — Ag(q*,@)(q — g*) (linear state eq.)
A;(qk, U)*p+adR(q) =0 (gradient equation)
Al (g%, i) p = —C'(7)*(C() + C'()(u — &) — y°) (adjoint equation)

N (u—uk) = —A(gk, uk) — A’C,(qk, u) (g —g*) (linear state eq.)
KY*p + adR(q) =0 (gradient equation)
AL(g k) p = = C'(uk) " (C(u*) + C'(ur)(u = ux) = y°)~0R(u) (adjeq.)




Gradient Methods: reduced

gradient steps for
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~ Landweber iteration (steepest descent, mimimal error)
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Gradient Methods: reduced

gradient steps for
min [|F(q) = ¥°|
~ Landweber iteration (steepest descent, mimimal error)
gt =¢" — pfF(d") (F(q") - y°)
with F = C o S, S parameter-to-state map, A(q, S(q)) = 0, equiv. to
gt =q" - u"F’(qk)*<F(qk) —y‘s)
= g" — 1K(C'(8(d")S (a7 (C(S(a") - ¥*)
= q" + p*AL (g 1)*p

where

{ A(gk, ) =0
K

[Hanke&Neubauer&Scherzer '95,...] in Hilbert space
[BK&Schopfer&Schuster '08,...] in Banach space | .




Gradient Methods: all-at-once

k kY & e .
(g, u®) fixed, one Landweber step for F (u) - ( C(u) )
k+1 K A\ -
q q q /
<Uk+1> — <Uk) - ,ukF/ <Uk> <F <uk>
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Gradient Methods: all-at-once

ko kY £ e .
(g", u*) fixed, one Landweber step for F (u) - ( C(u) )

k+1 k K\ * k
q q q q
() = (28) = (32) (<

(8) (¥ ) (25

g Tt = Ay(q", uk)*A(gk, ub)
UL = O (C(4) — %) + Ay(a¥, v ) Al , o)

completely explicit, no model to solve!
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Convergence Analysis

o

o

Existence of minimizers, stability, convergence, rates under
(variational, approximate) source conditions follow as
corollaries of existing results for Tikhonov, IRGNM,
Landweber, when regularizing with respect to g and u

Case of regularization aR(q) of g only:

Recover bounds on v via solvability condition ||A,(q, u) || < Ca
Case of additional regularization 3R(u) of u:

solvability condition ||A,(qg, u)~t|| < Ca not needed!

Getting rid of solvability condition allows to skip constraints

on parameters (e.g. a > a > 0 in a-problem —V(aVu) = b)!
Rates for Tikhonov and IRGNM so far only in case of
regularization of both g and u

Conditions on nonlinearity of F, A, C, e.g., tangential cone or
Scherzer condition: often weaker in all-at-once setting
(additional freedom in choosing the model equation space W*)
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Numerical Tests

nonlinear inverse source problem:

~Au+C¢u*=qin Q=(0,1) & homogeneous Dirichlet BC

Identify q from distributed measurements of u in 2




Comparison of reduced and all-at-once Landweber

b —b||x |16 —bT[lx
¢ itaao itred CPUaao | CPUred : k*(6|)|yl31?|(|)x . k*(é\ﬁgfﬁx
0.5 | 5178 2697 | 2.97 18.07 | 0.0724 0.1047
5 >2.10° | 48510 | 1293.60 | 482.19 | 0.7837 0.1633
10 >2-10° | > 10% | 1257.50 | 639.87 | 0.9621 0.1632
-0.5 | 10895 2016 | 8.85 14.55 | 0.1406 0.2295
-1 18954 - 11.42 - 0.2313 -

(1% Gaussian noise)




Comparison of reduced and all-at-once IRGNM

s —_pt b? —bT
¢ itaao itred CPULa0 | CPUred ||bk*(6|)|,2$|C|>X Gl H k*(5|)|’[§$|c|ix "
0 34 32 0.14 0.10 0.0149 0.0151
10 43 43 0.20 0.55 0.0996 0.1505
100 55 56 0.28 0.82 0.0721 0.0770
1000 | 68 68 0.42 1.07 0.0543 0.0588
-0.5 33 32 0.13 0.35 0.1174 0.2165
-1 35 - 0.23 - 0.2023 -

-10 44 - 0.23 - 0.0768 -
-100 77 - 0.59 - 0.2246 -
-1000 | 70 - 0.49 - 0.0321 -

(1% Gaussian noise)




Numerical Tests in 2-d with Adaptive Discretization

nonlinear inverse source problem:
—Au+ P =qin Q=(0,1)2 & homogeneous Dirichlet BC
Identify q from distributed measurements of u at 10 x 10 points in Q

- sie (3 (25" (252)))

with ¢ =10, p =0.5, 0 = 0.1, and s = 2.

@ goal-oriented, dual weighted residual estimators

@ computations with Gascoigne and RoDoBo
@ joint work with Alana Kirchner and Boris Vexler (TU Munich)




© Q

left: exact source g,
middle: reconstruction by reduced Tikhonov (RT),

right: reconstruction by all-at-once Gauss-Newton (AGN),
with ¢ = 100, 1% noise




left: exact state uf,
middle: reconstruction by reduced Tikhonov (RT),

right: reconstruction by all-at-once Gauss-Newton (AGN),
with ¢ = 100, 1% noise




adaptively refined meshes,
left: by reduced Tikhonov (RT),

right: by all-at-once Gauss-Newton (AGN),
with ¢ = 100, 1% noise




Table : all-at-once Gauss-Newton (AGN) versus reduced Tikhonov (RT)
for different choices of ¢ with 1% noise.
ctr: Computation time reduction using (AGN) in comparison to (RT)

¢ RT AGN ctr
error B # nodes error B # nodes
1 0418 2985 2499 0.412 4600 3873 -65%
10 0.417 3194 2473 0.411 4918 3965 -59%
100 0.408 5014 6653 0.417 6773 9813  39%
500 0.418 9421 11851 0.404 13756 821  97%
1000 0.439 11486 44391 0.426 16355 793 99%




minimization based formulations
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where x. . .searched for parameter, y...observed data,
F: X — Y... forward operator
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Abstract formulation of inverse problems

@ reduced
F(x) =y
where x. . .searched for parameter, y...observed data,
F: X — Y... forward operator
F = CoS with A(x,5(x)) =0
S: X — V... parameter-to-state map
o all-at-once
A(x, u) = 0 model
C(u) = y observations
A: X xV = W... model operator,
C:V — Y...observation operator
@ minimization based

min J(x, u; y) s:t. (x,u) € Mag(y)




Abstract formulation of inverse problems

@ reduced
F(x) =y
where x. . .searched for parameter, y...observed data,
F: X — Y... forward operator
F = CoS with A(x,5(x)) =0
S: X — V... parameter-to-state map
o all-at-once

A(x, u) = 0 model
C(u) = y observations
A: X xV = W... model operator,

C:V — Y...observation operator
@ minimization based

min J(x, u; y) s:t. (x,u) € Mag(y)

o [Kindermann '17] (reduced type formulation),
[BK '17] (avoid parameter-to-state map)



Reduced as special case of minimization based formulation

@ reduced

F(x)=y
where x. . .searched for parameter, y...observed data,
F: X — Y... forward operator
F = CoS with A(x,S5(x)) =0
S: X — V... parameter-to-state map




Reduced as special case of minimization based formulation

@ reduced
F(x)=y
where x. . .searched for parameter, y...observed data,
F: X — Y... forward operator
F = CoS with A(x,S5(x)) =0
S: X — V... parameter-to-state map
@ equivalent to

(X7ur)réi)rgXVS(C(u),y) +Zioy (A(x, 1)) st (x,u) € X XV,

J(;,TJ;y) Maq(y)

where S : Y x Y — R is a positive definite functional

Vyi,y2 €Y : S(y,y2) >0  and (yl =y & S(yl,y2)=0)~

0 if M
and Zu(w) = { we ... indicator function

+o00 else




All-at-once as special case of minimization based formulation

@ all-at-once
A(x, u) = 0 model

C(u) = y observations

A: X xV = W... model operator,
C:V — Y...observation operator




All-at-once as special case of minimization based formulation

@ all-at-once
A(x, u) = 0 model

C(u) = y observations

A: X xV = W... model operator,
C:V — Y...observation operator

@ equivalent to

[ A t. X xV
(X,ur)nel)rgXVS(C(u),y)j—rQ( (x,u)) sit. (x,u) e X x V,
J(x,u;y) Mad(y)

where S: Y x Y = R, Q: W — R are positive definite functionals

Vyi,y2 €Y S(n,y2) >0 and (y1 =y & S,y = 0) ,

vweW: Q(w)>0 and (w:O{:}Q(w):O).




Regularized minimization
inverse problem:

(x, u) € argmin{J (x, u; y) : (x,u) € Mag(y)}
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Regularized minimization
inverse problem:
(X7 U) € argmin{J(X7 U;_)/) : (Xa U) € Mad(y)}

y0. .. perturbed measured data
inverse problem is ill-posed:

minimizer does not depend continuiously on y

~> regularized inverse problem:

(x5, ug) € argmin{J (x, u;y°) + - R(x, u) : (x,u) € Mag(y*)}

regularize by
adding penalties (Tikhonov type) and/or by
imposing constraints (lvanov type)




Regularized minimization
inverse problem:

(x,u) € argmin{ T (x,u;y) : (x,u) € Mag(y)}

y0. .. perturbed measured data
inverse problem is ill-posed:
minimizer does not depend continuiously on y

~> regularized inverse problem:
(<2, i) € argmin{ T (x, u; y*) + - R(x,u) : (x,u) € MEy(y")}

regularize by
adding penalties (Tikhonov type) and/or by
imposing constraints (lvanov type)

treat data misfit by
penalty term in cost function (Tikhonov type) or
constraint (Morozov type) .




Regularization with data misfit penalization

inverse problem (IP):

L min | S(C(u).y) + QA v)

stt. (x,u) € May(y) =X x V,

regularization (RdmP):

(X7ur)n€i)rgXVS(C(u),y6) + Q(A(x, u)) + o - R(x, u)

st (x,u) € MS,(y®) ={(x,u) € X x V : R(x,u) < p}.
where S: Y x Y - R, @: W — R are positive definite functionals

VyL,y2 €Y : S(yi,y2) >0 and (ylzyz & 3(y17y2)=0),

YweW: Q(w)>0 and (w:O@Q(w):O).




Regularization with constraint on data misfit
inverse problem (IP):

min  Q(A(x, u))

(x,u)eXxV
sit. (x,u) € Maa(y) ={(x,u) e X x V : C(u) =y},

regularization (RdmC):

i A ‘R
(qur)fg)rngQ( (x,u)) +a-R(x,u)

st (x,u) € M3,(y°) = {(x,u) € X x V : S(C(u),y’) <716
and R(x, u) < p}.
where S: Y x Y - R, Q: W — R are positive definite functionals

VyLy2 €Y : S(y1,y2) >0 and (y1=yz & 5(y17y2)=0),

YweW: Q(w)>0 and (w:O@Q(w):O).




Assumptions

(xf,uf) € X x V... exact solution, y € Y...exact data.

(xT, u") < 0o and R bounded from below.
(xT,uf) <p
a topology 7 on X x V exists such that

R
R

o forall z€ Y, ¢ > 0, the mapping X x V —LW
(x, u) = (S(C(v), 2), Q(A(x, u)), R(x; u), R(x, u))
is 7 coerive and component wise T lower semicontinuous

o the family of mappings (S(z,-) : Y — R),cz is uniformly
continuous on Z = {C(u) : Ix € X : R(x,u) < p} at y, i.e.
“m}A’—W SUPzez |S(Z,j\/) - S(Z, y)| =0.




Well-definedness and Convergence

S(y,y’)<dand ||y’ —y|ly = 0asé — 0,

For each o > 0 a minimizer of the regularized problem with data
misfit penalization (RdmP) or constraint (RdmC) exists.

| \

Theorem

Choose o = a(6 y?) such that
o(0,y%) — 0 and (6 o S ¢ as § — 0 for (RdmP)

a(d,y°) — 0 as d — 0 for (RdmC)
Then, as § — 0, y° — y, the family (xg{(&’y&), ui(&yé))ae(mg] has a

T convergent subsequence and the limit of every T convergent
subsequence solves (IP). If the solution (x', ut) to (IP) is unique

T
then (X a(6,y5) a((gyé)) (XTauT)-




The variational approach to EIT

see, e.g., [Kohn&Vogelius'87, Kohn&McKenny'90, Knowles'98]




The variational approach to EIT

see, e.g., [Kohn&Vogelius'87, Kohn&McKenny'90, Knowles'98]
Identify spatially distributed conductivity o in Q C R?

V-Ji=0, VY E=0, Ji=cE inQ, i=1,...,1,

(with V4t = (=2, 23T 5o that V- = curl)

Oxp )’ Oxq
from observations of boundary currents j; and voltages v;.




The variational approach to EIT

see, e.g., [Kohn&Vogelius'87, Kohn&McKenny'90, Knowles'98]
Identify spatially distributed conductivity o in Q C R?

V-Ji=0, VY E=0, J=cE inQ, i=1,...,1,

(with V4o = (—6%2, 8%1)7— so that V+- = curl)

from observations of boundary currents j; and voltages v;.
Using potentials ¢; and 1; for J; and E;
Ji:_vJ_’wi» Ei:_vd)ia i:]-?"'alv

we can rewrite the problem as

VoV =

\/_
where 7j(x(s)) = — [5 ji(x(r)) dr for Q2 = {x(s) : s € (0, length(9R))}.

vw, inQ, ¢i=n7i,¢i=v ondQ, i=1,...

7I7




The variational approach to EIT

ﬁwf:%v% NQ, Wvi—ni, b= ondQ, i=1...1,




The variational approach to EIT

ﬁwf:%v% NQ, Wvi—ni, b= ondQ, i=1...1,

equivalent to

1 2
%Z /Mw,—Tv il dx

.zp,-:'y,-,qﬁ,-:v,- onGQ, iZl,...,l




The variational approach to EIT

ﬁwf:%v% NQ, Wvi—ni, b= ondQ, i=1...1,

equivalent to |
1
. 1 1.2
min 5 oVo; — —=V—1;|° dx
U’¢7¢§2/Qrf¢ VAR
st. =7, ¢j=v; on0dQ, i=1,...,1
equivalent to (since [ Vi - Ve dx =[5 viji dx)
I
1
- 1 2 1,02
min s colVoil*+ —|V ,-)dx
Wgz/ﬂm B2+ IV

st. Y=, pi=v; ondQ, i=1,.../1




Regularized variational EIT
inverse problem (EIT):

min V,——VL,z
aéwz /!\/_¢ N AR
st. Y=, ¢oi=v; ondQ, i=1,...,1

regularization (RegEIT):

0,0,V

min { VeV - TR o 102 g +

2
161 )}

i=

s.t. agagaonQ,

U?—Téﬁ(ﬁ,‘él)?*FT(S,

¥ =76 <4y <7 76, } on 9, i=1...1I.

~ special case of regularization with constraint on data misfit
(RdmC)

< > < P CE>» A=




Regularized variational EIT: Function space setting
X =0, u=(¢1,...,¢1,01,...,%), y=(v1, s 0,Y15 Y1)
X = L¥(Q)
Y = L°(8Q) x wh(oQ)
V= {(b1,--, 01,01, 1) € HH(Q)? : tda(d1,. ., b1, 01, ... ,01) € Y}
W= 3(Q)

Alxu) = (VOVo1 = T 0n, . VoVer — £VH)
C =1tk

Q(w) = 3wl (qy
I

Rix,u) = R(w) = Y (lleil?,

112
2\ ||¢'”H%*E(Q)2')

R(x,u) =R(x) = o = 5= |ie@), p =57

Sly,y)= i = Uilles i = YillLss
(v, 9) ie{";aXI}H’U Uil o) + 17 — Till L= (00)

,,,,,




Regularized variational EIT: well-definedness, convergence

op = oand == Lin 12(Q),

(D, V) — (O, W) in H23¢/2(Q)%
(D, W,) — (&, W) in H3/2=¢(Q) |
tr(®,, V,) — tr(®, W) in L=(0Q)%

(G0 Py W) L (0,0, W) <

Corollary

For each y° € Y and oo > 0 a minimizer of (RegEIT) exists.

Let S(y,y°) <& and ||y’ —y|ly = 0asd — 0,

ggaTgﬁa.e. in Q

and choose a = (4, y°) such that a(6,y%) — 0 as § — 0.

Then, as § — 0, y° — y, the family

(02(57}/5), CD‘;(M(;), Wi(&yé))(;e(o’g] has a T convergent subsequence

and the limit of every T convergent subsequence solves (EIT).




Conclusions and Outlook

@ reduced versus all-at-once formulations:
o Tikhonov:
reduced ~ all-at-once
o Newton:
reduced: solve nonlinear and linear models in each step
all-at-once: only solve linearized models
o Landweber:

reduced: solve nonlinear and linear models in each step
all-at-once: never solve models!




Conclusions and Outlook

@ reduced versus all-at-once formulations:

o Tikhonov:
reduced ~ all-at-once

o Newton:
reduced: solve nonlinear and linear models in each step
all-at-once: only solve linearized models

o Landweber:
reduced: solve nonlinear and linear models in each step
all-at-once: never solve models!

@ minimization based formulations:

o generalizes reduced and all-at-once formulations
o regularization by penalization and/or constraints
e comprises variational approach to EIT
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Thank you for your attention!
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