All-at-once and minimization based formulations of inverse problems and their regularization

Barbara Kaltenbacher

Alpen-Adria-Universität Klagenfurt

03 November, 2017

New Trends in Parameter Identification for Mathematical Models, IMPA

Outline

- examples of parameter identification problems in PDEs
- reduced versus all-at-once formulations
- minimization based formulations

examples

Parameter Identification in Differential Equations: Some Examples

• Identify spatially varying coefficients/source a, b, c in linear elliptic boundary value problem on $\Omega \subseteq \mathbb{R}^d$, $d \in \{1, 2, 3\}$

$$-\nabla(a\nabla u)+cu=b \text{ in } \Omega, \qquad \frac{\partial u}{\partial n}=0 \text{ on } \partial\Omega,$$

from boundary or (restricted) interior observations of $\it u$.

Parameter Identification in Differential Equations: Some Examples

• Identify spatially varying coefficients/source a, b, c in linear elliptic boundary value problem on $\Omega \subseteq \mathbb{R}^d$, $d \in \{1, 2, 3\}$

$$-\nabla(a\nabla u)+cu=b \text{ in } \Omega, \qquad \frac{\partial u}{\partial n}=0 \text{ on } \partial\Omega,$$

from boundary or (restricted) interior observations of u.

Identify source term q in nonlinear elliptic bvp

$$-\Delta u + \xi(u) = q \text{ in } \Omega, \qquad \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega,$$

from boundary or (restricted) interior observations of u.

Parameter Identification in Differential Equations: Some Examples

• Identify spatially varying coefficients/source a, b, c in linear elliptic boundary value problem on $\Omega \subseteq \mathbb{R}^d$, $d \in \{1, 2, 3\}$

$$-\nabla(a\nabla u) + cu = b \text{ in } \Omega, \qquad \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega,$$

from boundary or (restricted) interior observations of u.

ullet Identify source term q in nonlinear elliptic bvp

$$-\Delta u + \xi(u) = q \text{ in } \Omega, \qquad \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega,$$

from boundary or (restricted) interior observations of u.

ullet Identify parameter artheta in initial value problem for ODE / PDE

$$\dot{u}(t) = f(t, u(t), \vartheta) \ t \in (0, T), \quad u(0) = u_0$$

from discrete of continuous observations of u.

$$y_i=g_i(u(t_i)),\ i\in\{1,\ldots,m\} \ ext{or}\ y(t)=g(t,y(t)),\ t\in(0,T)$$

Identify parameter q in (PDE or ODE) model

$$A(q,u)=0$$

from observations of the state u

$$C(u)=y$$
,

where $q \in X$, $u \in V$, $y \in Y$, X, V, Y... Hilbert (Banach) spaces $A: X \times V \to W^*$... differential operator $C: V \to Y$... observation operator

Identify parameter q in (PDE or ODE) model

$$A(q,u)=0$$

from observations of the state u

$$C(u)=y$$
,

where $q \in X$, $u \in V$, $y \in Y$, X, V, Y... Hilbert (Banach) spaces $A: X \times V \to W^*$... differential operator $C: V \to Y$... observation operator

(a) reduced approach: operator equation for q

$$F(q) = y$$

 $F = C \circ S$ with $S : X \rightarrow V$, $q \mapsto u$ parameter-to-state map

ロトイタトイミトイミト ミーガスで

Identify parameter q in (PDE or ODE) model

$$A(q,u)=0$$

from observations of the state u

$$C(u)=y$$
,

where $q \in X$, $u \in V$, $y \in Y$, X, V, Y... Hilbert (Banach) spaces $A: X \times V \to W^*$... differential operator $C: V \to Y$... observation operator

(a) reduced approach: operator equation for q

$$F(q) = y$$

 $F = C \circ S$ with $S: X \rightarrow V$, $q \mapsto u$ parameter-to-state map

(b) all-at once approach: observations and model as system for (q, u)

$$A(q, u) = 0 \text{ in } W^*$$
 $C(u) = y \text{ in } Y$ \Leftrightarrow $\mathbf{F}(q, u) = \mathbf{y}$

• Identify spatially varying coefficients/source a, b, c in

$$\begin{split} -\nabla (a\nabla u) + cu &= b \text{ in } \Omega\,, \qquad \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega\,, \\ S: (a,b,c) &\mapsto u \text{ solving the linear elliptic byp} \end{split}$$

• Identify spatially varying coefficients/source a, b, c in

$$-\nabla(a\nabla u) + cu = b \text{ in } \Omega, \qquad \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega,$$

$$S: (a, b, c) \mapsto u \text{ solving the linear elliptic byp}$$

• Identify source term q in

$$-\Delta u + \xi(u) = q \text{ in } \Omega$$
, $\frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega$, $S: q \mapsto u \text{ solving the nonlinear elliptic byp}$

• Identify spatially varying coefficients/source a, b, c in

$$\begin{split} -\nabla(a\nabla u) + cu &= b \text{ in } \Omega\,, \qquad \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega\,, \\ S: (a,b,c) &\mapsto u \text{ solving the linear elliptic byp} \end{split}$$

• Identify source term q in

$$-\Delta u + \xi(u) = q \text{ in } \Omega$$
, $\frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega$, $S: q \mapsto u \text{ solving the nonlinear elliptic byp}$

• Identify parameter ϑ in

$$\dot{u}(t) = f(t, u(t), \vartheta) \ t \in (0, T), \quad u(0) = u_0$$

S: $\vartheta \mapsto u$ solving the ivp for an ODE / PDE

• Identify spatially varying coefficients/source a, b, c in

$$\begin{split} -\nabla(a\nabla u) + cu &= b \text{ in } \Omega\,, \qquad \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega\,, \\ S: (a,b,c) &\mapsto u \text{ solving the linear elliptic byp} \end{split}$$

Identify source term q in

$$-\Delta u + \xi(u) = q \text{ in } \Omega$$
, $\frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega$, $S: q \mapsto u \text{ solving the nonlinear elliptic byp}$

• Identify parameter ϑ in

$$\dot{u}(t) = f(t, u(t), \vartheta) \ t \in (0, T), \quad u(0) = u_0$$

 $S: \vartheta \mapsto u \text{ solving the ivp for an ODE / PDE}$

• generally for model A(q, u) = 0:

$$S: q \mapsto u \text{ solving } A(q, S(q)) = 0$$

 well-definedness of parameter-to-state map often requires restrictions on . . .

```
... parameters (e.g., a \ge \underline{a} > 0, c \ge 0 in -\nabla(a\nabla u) + cu = b)
```

 well-definedness of parameter-to-state map often requires restrictions on . . .

... parameters (e.g.,
$$a \ge \underline{a} > 0$$
, $c \ge 0$ in $-\nabla(a\nabla u) + cu = b$) ... models (e.g., monotonicity of ξ in $-\Delta u + \xi(u) = q$)

 singular PDEs: parameter-to space map may exist only on a very restricted set, e.g. MEMS equation

$$u_{tt} + cu_t + du + \rho \Delta^2 u - \eta \Delta u + \frac{b(t)a(x)}{(1+u)^2} = 0$$

 well-definedness of parameter-to-state map often requires restrictions on . . .

... parameters (e.g.,
$$a \ge \underline{a} > 0$$
, $c \ge 0$ in $-\nabla(a\nabla u) + cu = b$) ... models (e.g., monotonicity of ξ in $-\Delta u + \xi(u) = q$)

 singular PDEs: parameter-to space map may exist only on a very restricted set, e.g. MEMS equation

$$u_{tt} + cu_t + du + \rho \Delta^2 u - \eta \Delta u + \frac{b(t)a(x)}{(1+u)^2} = 0$$

 it can make a difference in implementation and in the analysis (convergence conditions)

 well-definedness of parameter-to-state map often requires restrictions on . . .

... parameters (e.g.,
$$a \ge \underline{a} > 0$$
, $c \ge 0$ in $-\nabla (a\nabla u) + cu = b$) ... models (e.g., monotonicity of ξ in $-\Delta u + \xi(u) = q$)

 singular PDEs: parameter-to space map may exist only on a very restricted set, e.g. MEMS equation

$$u_{tt} + cu_t + du + \rho \Delta^2 u - \eta \Delta u + \frac{b(t)a(x)}{(1+u)^2} = 0$$

- it can make a difference in implementation and in the analysis (convergence conditions)
- for other all-at-once type approaches see, e.g.,
 [Kupfer & Sachs '92, Shenoy & Heinkenschloss & Cliff '98,
 Haber & Ascher '01, Burger & Mühlhuber '02,...]

reduced versus all-at-once formulations

Identify parameter q in (PDE or ODE) model

$$A(q,u)=0$$

from observations of the state u

$$C(u)=y$$
,

where $q \in X$, $u \in V$, $y \in Y$, X, V, Y... Hilbert (Banach) spaces $A: X \times V \to W^*$... differential operator $C: V \to Y$... observation operator

(a) reduced approach: operator equation for q

$$F(q) = y$$

 $F = C \circ S$ with $S: X \rightarrow V$, $q \mapsto u$ parameter-to-state map

(b) all-at once approach: observations and model as system for (q, u)

$$A(q, u) = 0 \text{ in } W^*$$
 $C(u) = y \text{ in } Y$ \Leftrightarrow $\mathbf{F}(q, u) = \mathbf{y}$

Tikhonov Regularization: reduced

$$\min_{q} \|F(q) - y^{\delta}\|^2 + \alpha \mathcal{R}(q)$$

Tikhonov Regularization: reduced

$$\min_{q} \|F(q) - y^{\delta}\|^2 + \alpha \mathcal{R}(q)$$

with $F = C \circ S$, S parameter-to-state map, A(q, S(q)) = 0, equivalent to

$$\min_{q,u} \|C(u) - y^{\delta}\|^2 + \alpha \mathcal{R}(q) \quad \text{s.t. } A(q,u) = 0$$

Tikhonov Regularization: reduced

$$\min_{q} \|F(q) - y^{\delta}\|^2 + \alpha \mathcal{R}(q)$$

with $F = C \circ S$, S parameter-to-state map, A(q, S(q)) = 0, equivalent to

$$\min_{q,u} \|C(u) - y^{\delta}\|^2 + \alpha \mathcal{R}(q) \quad \text{s.t. } A(q,u) = 0$$

[Seidman&Vogel '89, Engl&Kunisch&Neubauer '89,...] in Hilbert space [Burger& Osher'04, Resmerita & Scherzer'06, Scherzer et al. '08, Hofmann&Pöschl&BK&Scherzer '07, Pöschl '09, Flemming '11, Werner '12,...] in Banach space

Tikhonov Regularization: all-at-once

$$\min_{q,u} \|C(u) - y^{\delta}\|^2 + \|A(q,u)\|^2 + \alpha \mathcal{R}(q) + \alpha \tilde{\mathcal{R}}(u)$$

or

Tikhonov Regularization: all-at-once

$$\min_{q,u} \|C(u) - y^{\delta}\|^2 + \|A(q,u)\|^2 + \alpha \mathcal{R}(q) + \alpha \tilde{\mathcal{R}}(u)$$

or

$$\min_{q,u} \|C(u) - y^{\delta}\|^{2} + \rho \|A(q,u)\| + \alpha \mathcal{R}(q) + \alpha \tilde{\mathcal{R}}(u)$$

Tikhonov Regularization: all-at-once

$$\min_{q,u} \|C(u) - y^{\delta}\|^2 + \|A(q,u)\|^2 + \alpha \mathcal{R}(q) + \alpha \tilde{\mathcal{R}}(u)$$

or

$$\min_{q,u} \|C(u) - y^{\delta}\|^{2} + \rho \|A(q,u)\| + \alpha \mathcal{R}(q) + \alpha \tilde{\mathcal{R}}(u)$$

i.e., (exact penalization) with ρ sufficiently large

$$\min_{q,u} \|C(u) - y^{\delta}\|^{2} + \alpha \mathcal{R}(q) + \alpha \tilde{\mathcal{R}}(u) \text{ s.t. } A(q,u) = 0$$

i.e., reduced Tikhonov.

(D) (B) (E) (E) E 900

Regularized Gauss-Newton Method: reduced

 q^k fixed, one Gauss-Newton step:

$$\min_{q} \|F(q^k) + F'(q^k)(q - q^k) - y^{\delta}\|^2 + \alpha_k \mathcal{R}_k(q)$$

Regularized Gauss-Newton Method: reduced

 q^k fixed, one Gauss-Newton step:

$$\min_{q} \|F(q^k) + F'(q^k)(q - q^k) - y^{\delta}\|^2 + \alpha_k \mathcal{R}_k(q)$$

with $F = C \circ S$, S parameter-to-state map, A(q, S(q)) = 0, equivalent to

$$\begin{split} \min_{q,u,\tilde{u}} \|C(\tilde{u}) + C'(\tilde{u})(u - \tilde{u}) - y^{\delta}\|^2 + \alpha_k \mathcal{R}_k(q) \\ \text{s.t. } A(q^k, \tilde{u}) + A'_u(q^k, \tilde{u})(u - \tilde{u}) + A'_q(q^k, \tilde{u})(q - q^k) = 0 \\ \text{and } A(q^k, \tilde{u}) = 0 \end{split}$$

Regularized Gauss-Newton Method: reduced

 q^k fixed, one Gauss-Newton step:

$$\min_{q} \|F(q^k) + F'(q^k)(q - q^k) - y^{\delta}\|^2 + \alpha_k \mathcal{R}_k(q)$$

with $F = C \circ S$, S parameter-to-state map, A(q, S(q)) = 0, equivalent to

$$\begin{split} \min_{q,u,\tilde{u}} \|C(\tilde{u}) + C'(\tilde{u})(u - \tilde{u}) - y^{\delta}\|^2 + \alpha_k \mathcal{R}_k(q) \\ \text{s.t. } A(q^k, \tilde{u}) + A'_u(q^k, \tilde{u})(u - \tilde{u}) + A'_q(q^k, \tilde{u})(q - q^k) = 0 \\ \text{and } A(q^k, \tilde{u}) = 0 \end{split}$$

[Bakushinskii '92, Hohage '97, BK&Neubauer&Scherzer '97,...] in Hilbert space

e.g., [Bakushinskii&Kokurin'04, BK&Schöpfer&Schuster '08, Jin '12, Hohage&Werner '13,...] in Banach space

4□▶ 4□▶ 4½▶ 4½▶ ½ 900

Regularized Gauss-Newton Method: all-at-once

 (q^k, u^k) fixed, one Gauss-Newton step:

$$\min_{q,u} \|C(u^k) + C'(u^k)(u - u^k) - y^{\delta}\|^2 + \alpha_k \mathcal{R}(q) + \alpha_k \tilde{\mathcal{R}}(u) \\
+ \|A(q^k, u^k) + A'_u(q^k, u^k)(u - u^k) + A'_q(q^k, u^k)(q - q^k)\|^2$$

or

Regularized Gauss-Newton Method: all-at-once

 (q^k, u^k) fixed, one Gauss-Newton step:

$$\min_{q,u} \|C(u^k) + C'(u^k)(u - u^k) - y^{\delta}\|^2 + \alpha_k \mathcal{R}(q) + \alpha_k \tilde{\mathcal{R}}(u) \\
+ \|A(q^k, u^k) + A'_u(q^k, u^k)(u - u^k) + A'_q(q^k, u^k)(q - q^k)\|^2$$

or (q^k, u^k) fixed, one Gauss-Newton step:

$$\min_{q,u} \|C(u^k) + C'(u^k)(u - u^k) - y^{\delta}\|^2 + \alpha_k \mathcal{R}_k(q) + \alpha_k \tilde{\mathcal{R}}(u) \\
+ \rho \|A(q^k, u^k) + A'_u(q^k, u^k)(u - u^k) + A'_q(q^k, u^k)(q - q^k)\|$$

i.e. (exact penalization) with ho sufficiently large

$$\begin{split} \min_{q,u} \|C(u^k) + C'(u^k)(u - u^k) - y^\delta\|^2 + \alpha_k \mathcal{R}_k(q) + \alpha_k \tilde{\mathcal{R}}(u) \\ \text{s.t. } A(q^k, u^k) + A'_u(q^k, u^k)(u - u^k) + A'_q(q^k, u^k)(q - q^k) = 0 \end{split}$$

→□▶→□▶→≣▶→≣▶ = 少90

Comparison of optimality conditions for reduced and all-at-once Newton

reduced:

$$\begin{cases} A(q^k, \tilde{u}) = 0 & \text{(nonlinear decoupled state equation)} \\ A'_u(q^k, \tilde{u})(u - \tilde{u}) = -A(q^k, \tilde{u}) - A'_q(q^k, \tilde{u})(q - q^k) & \text{(linear state eq.)} \\ A'_q(q^k, \tilde{u})^*p + \alpha \partial \mathcal{R}(q) = 0 & \text{(gradient equation)} \\ A'_u(q^k, \tilde{u})^*p = -C'(\tilde{u})^*(C(\tilde{u}) + C'(\tilde{u})(u - \tilde{u}) - y^\delta) & \text{(adjoint equation)} \end{cases}$$

all-at-once:

$$\begin{cases} A'_u(q^k,u^k)(u-u^k) = -A(q^k,u^k) - A'_q(q^k,u^k)(q-q^k) & \text{(linear state eq.)} \\ A'_q(q^k,u^k)^*p + \alpha \partial \mathcal{R}(q) = 0 & \text{(gradient equation)} \\ A'_u(q^k,u^k)^*p = -C'(u^k)^*(C(u^k) + C'(u_k)(u-u_k) - y^\delta) - \alpha \partial \tilde{\mathcal{R}}(u) & \text{(adj.eq.)} \end{cases}$$

Gradient Methods: reduced

gradient steps for

$$\min_{q} \|F(q) - y^{\delta}\|^2$$

→ Landweber iteration (steepest descent, mimimal error)

$$q^{k+1} = q^k - \mu^k F'(q^k)^* (F(q^k) - y^\delta)$$

Gradient Methods: reduced

gradient steps for

$$\min_{q} \|F(q) - y^{\delta}\|^2$$

→ Landweber iteration (steepest descent, mimimal error)

$$q^{k+1} = q^k - \mu^k F'(q^k)^* (F(q^k) - y^\delta)$$

with $F=C\circ S$, S parameter-to-state map, A(q,S(q))=0, equiv. to

$$q^{k+1} = q^k - \mu^k F'(q^k)^* \Big(F(q^k) - y^{\delta} \Big)$$

$$= q^k - \mu^k (C'(S(q^k))S'(q^k))^* \Big(C(S(q^k)) - y^{\delta} \Big)$$

$$= q^k + \mu^k A'_q(q^k, \tilde{u})^* p$$

where

$$\begin{cases} A(q^k, \tilde{u}) = 0 \\ A'_u(q^k, \tilde{u})^* p = -C'(\tilde{u})^* (C(\tilde{u}) - y^{\delta}) \end{cases}$$

Gradient Methods: reduced

gradient steps for

$$\min_{q} \|F(q) - y^{\delta}\|^2$$

→ Landweber iteration (steepest descent, mimimal error)

$$q^{k+1} = q^k - \mu^k F'(q^k)^* (F(q^k) - y^\delta)$$

with $F=C\circ S$, S parameter-to-state map, A(q,S(q))=0, equiv. to

$$q^{k+1} = q^k - \mu^k F'(q^k)^* \Big(F(q^k) - y^{\delta} \Big)$$

$$= q^k - \mu^k (C'(S(q^k))S'(q^k))^* \Big(C(S(q^k)) - y^{\delta} \Big)$$

$$= q^k + \mu^k A'_q(q^k, \tilde{u})^* p$$

where

$$\begin{cases} A(q^k, \tilde{u}) = 0 \\ A'_u(q^k, \tilde{u})^* p = -C'(\tilde{u})^* (C(\tilde{u}) - y^{\delta}) \end{cases}$$

[Hanke&Neubauer&Scherzer '95,...] in Hilbert space [BK&Schöpfer&Schuster '08,...] in Banach space

Gradient Methods: all-at-once

$$(q^k, u^k)$$
 fixed, one Landweber step for $\mathbf{F} \begin{pmatrix} q \\ u \end{pmatrix} = \begin{pmatrix} A(q, u) \\ C(u) \end{pmatrix}$:

Gradient Methods: all-at-once

 (q^k, u^k) fixed, one Landweber step for $\mathbf{F} \begin{pmatrix} q \\ u \end{pmatrix} = \begin{pmatrix} A(q, u) \\ C(u) \end{pmatrix}$:

i.e.

$$\begin{cases} q^{k+1} = A'_q(q^k, u^k)^* A(q^k, u^k) \\ u^{k+1} = C'(u^k)^* (C(u^k) - y^\delta) + A'_u(q^k, u^k)^* A(q^k, u^k) \end{cases}$$

completely explicit, no model to solve!

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · ∽○○

ロト 4回 ト 4 三 ト 4 三 ・ りへで

 Existence of minimizers, stability, convergence, rates under (variational, approximate) source conditions follow as corollaries of existing results for Tikhonov, IRGNM, Landweber, when regularizing with respect to q and u

- Existence of minimizers, stability, convergence, rates under (variational, approximate) source conditions follow as corollaries of existing results for Tikhonov, IRGNM, Landweber, when regularizing with respect to q and u
- Case of regularization $\alpha \mathcal{R}(q)$ of q only: Recover bounds on u via solvability condition $||A_u(q,u)^{-1}|| \leq C_A$

- Existence of minimizers, stability, convergence, rates under (variational, approximate) source conditions follow as corollaries of existing results for Tikhonov, IRGNM, Landweber, when regularizing with respect to q and u
- Case of regularization $\alpha \mathcal{R}(q)$ of q only: Recover bounds on u via solvability condition $||A_u(q,u)^{-1}|| \leq C_A$
- Case of additional regularization $\beta \tilde{\mathcal{R}}(u)$ of u: solvability condition $||A_u(q,u)^{-1}|| \leq C_A$ not needed!

- Existence of minimizers, stability, convergence, rates under (variational, approximate) source conditions follow as corollaries of existing results for Tikhonov, IRGNM, Landweber, when regularizing with respect to q and u
- Case of regularization $\alpha \mathcal{R}(q)$ of q only: Recover bounds on u via solvability condition $||A_u(q,u)^{-1}|| \leq C_A$
- Case of additional regularization $\beta \tilde{\mathcal{R}}(u)$ of u: solvability condition $||A_u(q,u)^{-1}|| \leq C_A$ not needed!
- Getting rid of solvability condition allows to skip constraints on parameters (e.g. $a \ge \underline{a} > 0$ in a-problem $-\nabla(a\nabla u) = b$)!

- Existence of minimizers, stability, convergence, rates under (variational, approximate) source conditions follow as corollaries of existing results for Tikhonov, IRGNM, Landweber, when regularizing with respect to q and u
- Case of regularization $\alpha \mathcal{R}(q)$ of q only: Recover bounds on u via solvability condition $||A_u(q,u)^{-1}|| \leq C_A$
- Case of additional regularization $\beta \tilde{\mathcal{R}}(u)$ of u: solvability condition $||A_u(q,u)^{-1}|| \leq C_A$ not needed!
- Getting rid of solvability condition allows to skip constraints on parameters (e.g. $a \ge \underline{a} > 0$ in a-problem $-\nabla(a\nabla u) = b$)!
- Rates for Tikhonov and IRGNM so far only in case of regularization of both q and u

- Existence of minimizers, stability, convergence, rates under (variational, approximate) source conditions follow as corollaries of existing results for Tikhonov, IRGNM, Landweber, when regularizing with respect to q and u
- Case of regularization $\alpha \mathcal{R}(q)$ of q only: Recover bounds on u via solvability condition $||A_u(q,u)^{-1}|| \leq C_A$
- Case of additional regularization $\beta \tilde{\mathcal{R}}(u)$ of u: solvability condition $||A_u(q,u)^{-1}|| \leq C_A$ not needed!
- Getting rid of solvability condition allows to skip constraints on parameters (e.g. $a \ge \underline{a} > 0$ in a-problem $-\nabla(a\nabla u) = b$)!
- Rates for Tikhonov and IRGNM so far only in case of regularization of both q and u
- Conditions on nonlinearity of F, A, C, e.g., tangential cone or Scherzer condition: often weaker in all-at-once setting (additional freedom in choosing the model equation space W^*)

numerical results

Numerical Tests

nonlinear inverse source problem:

$$-\Delta u + \zeta u^3 = q$$
 in $\Omega = (0,1)$ & homogeneous Dirichlet BC
Identify q from distributed measurements of u in Ω

Comparison of reduced and all-at-once Landweber

ζ	it _{aao}	it _{red}	cpu _{aao}	cpu _{red}	$\frac{\ b_{k_*(\delta),aao}^{\delta} - b^{\dagger}\ _X}{\ b^{\dagger}\ _X}$	$\frac{\ b_{k_*(\delta),red}^{\delta} - b^{\dagger}\ _X}{\ b^{\dagger}\ _X}$
0.5	5178	2697	2.97	18.07	0.0724	0.1047
5	$> 2 \cdot 10^6$	48510	1293.60	482.19	0.7837	0.1633
10	$> 2 \cdot 10^6$	$> 10^{5}$	1257.50	639.87	0.9621	0.1632
-0.5	10895	2016	8.85	14.55	0.1406	0.2295
-1	18954	_	11.42	_	0.2313	-

(1% Gaussian noise)

Comparison of reduced and all-at-once IRGNM

ζ	it _{aao}	it _{red}	cpu _{aao}	cpu _{red}	$\frac{\ b_{k_*(\delta),aao}^{\delta} - b^{\dagger}\ _X}{\ b^{\dagger}\ _X}$	$\frac{\ b_{k_*(\delta),red}^{\delta} - b^{\dagger}\ _X}{\ b^{\dagger}\ _X}$
0	34	32	0.14	0.10	0.0149	0.0151
10	43	43	0.20	0.55	0.0996	0.1505
100	55	56	0.28	0.82	0.0721	0.0770
1000	68	68	0.42	1.07	0.0543	0.0588
-0.5	33	32	0.13	0.35	0.1174	0.2165
-1.	35	_	0.23	_	0.2023	-
-10	44	_	0.23	_	0.0768	-
-100	77	_	0.59	_	0.2246	-
-1000	70	-	0.49	-	0.0321	-

(1% Gaussian noise)

Numerical Tests in 2-d with Adaptive Discretization

nonlinear inverse source problem:

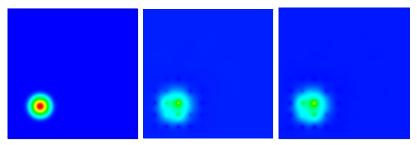
 $-\Delta u + \zeta u^3 = q$ in $\Omega = (0,1)^2$ & homogeneous Dirichlet BC

Identify q from distributed measurements of u at 10 \times 10 points in Ω

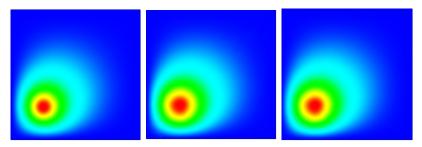
$$q^{\dagger} = \frac{c}{2\pi\sigma^2} \exp\left(-\frac{1}{2}\left(\left(\frac{\mathsf{s}\mathsf{x} - \mu}{\sigma}\right)^2 + \left(\frac{\mathsf{s}\mathsf{y} - \mu}{\sigma}\right)^2\right)\right)$$

with c=10, $\mu=0.5$, $\sigma=0.1$, and s=2.

- goal-oriented, dual weighted residual estimators
- computations with Gascoigne and RoDoBo
- joint work with Alana Kirchner and Boris Vexler (TU Munich)



left: exact source q^{\dagger} , middle: reconstruction by reduced Tikhonov (RT), right: reconstruction by all-at-once Gauss-Newton (AGN), with $\zeta=100$, 1% noise



left: exact state u^{\dagger} , middle: reconstruction by reduced Tikhonov (RT), right: reconstruction by all-at-once Gauss-Newton (AGN), with $\zeta=100$, 1% noise

◄□▶
■▶
■
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

adaptively refined meshes, left: by reduced Tikhonov (RT), right: by all-at-once Gauss-Newt

right: by all-at-once Gauss-Newton (AGN),

with $\zeta=$ 100, 1% noise

Table : all-at-once Gauss-Newton (AGN) versus reduced Tikhonov (RT) for different choices of ζ with 1% noise. ctr: Computation time reduction using (AGN) in comparison to (RT)

ζ		RT			AGN		ctr
	error	β	# nodes	error	β	# nodes	
1	0.418	2985	2499	0.412	4600	3873	-65%
10	0.417	3194	2473	0.411	4918	3965	-59%
100	0.408	5014	6653	0.417	6773	9813	39%
500	0.418	9421	11851	0.404	13756	821	97%
1000	0.439	11486	44391	0.426	16355	793	99%

minimization based formulations

reduced

$$F(x) = y$$

where x... searched for parameter, y... observed data, $F: X \to Y$... forward operator

reduced

$$F(x) = y$$

where x...searched for parameter, y...observed data, $F: X \to Y$...forward operator

all-at-once

$$A(x, u) = 0$$
 model $C(u) = y$ observations

 $A: X \times V \rightarrow W.$ model operator, $C: V \rightarrow Y.$ observation operator

reduced

$$F(x) = y$$

where x... searched for parameter, y... observed data,

 $F: X \rightarrow Y...$ forward operator

 $F = C \circ S$ with A(x, S(x)) = 0

 $S: X \rightarrow V \dots$ parameter-to-state map

all-at-once

$$A(x, u) = 0$$
 model $C(u) = y$ observations

 $A: X \times V \rightarrow W.$ model operator.

 $C: V \rightarrow Y$... observation operator

reduced

$$F(x) = y$$

where x... searched for parameter, y... observed data,

 $F: X \rightarrow Y...$ forward operator

 $F = C \circ S$ with A(x, S(x)) = 0

 $S: X \rightarrow V \dots$ parameter-to-state map

all-at-once

$$A(x, u) = 0$$
 model $C(u) = y$ observations

 $A: X \times V \rightarrow W.$... model operator, $C: V \rightarrow Y.$... observation operator

minimization based

$$\min_{x,u} \mathcal{J}(x,u;y)$$
 s.t. $(x,u) \in M_{ad}(y)$

reduced

$$F(x) = y$$

where x... searched for parameter, y... observed data,

 $F: X \rightarrow Y \dots$ forward operator

$$F = C \circ S$$
 with $A(x, S(x)) = 0$

 $S: X \rightarrow V \dots$ parameter-to-state map

all-at-once

$$A(x, u) = 0$$
 model $C(u) = y$ observations

 $A: X \times V \rightarrow W.$. . model operator, $C: V \rightarrow Y.$. . observation operator

minimization based

$$\min_{x,u} \mathcal{J}(x,u;y)$$
 s.t. $(x,u) \in M_{ad}(y)$

• [Kindermann '17] (reduced type formulation),
[BK '17] (avoid parameter-to-state map)

Reduced as special case of minimization based formulation

reduced

$$F(x) = y$$

where x... searched for parameter, y... observed data,

 $F: X \rightarrow Y \dots$ forward operator

$$F = C \circ S$$
 with $A(x, S(x)) = 0$

 $S: X o V \dots$ parameter-to-state map

Reduced as special case of minimization based formulation

reduced

$$F(x) = y$$

where x... searched for parameter, y... observed data,

 $F: X \rightarrow Y \dots$ forward operator

$$F = C \circ S$$
 with $A(x, S(x)) = 0$

 $S: X \rightarrow V \dots$ parameter-to-state map

equivalent to

$$\min_{(x,u)\in X\times V} \underbrace{\mathcal{S}(\mathcal{C}(u),y) + \mathcal{I}_{\{0\}}(A(x,u))}_{\mathcal{J}(x,u;y)} \text{ s.t. } (x,u) \in \underbrace{X\times V}_{M_{ad}(y)},$$

where $\mathcal{S}:Y\times Y\to\overline{\mathbb{R}}$ is a positive definite functional

$$\forall y_1,y_2 \in Y \ : \quad \mathcal{S}\big(y_1,y_2\big) \geq 0 \quad \text{ and } \quad \Big(y_1 = y_2 \ \Leftrightarrow \ \mathcal{S}\big(y_1,y_2\big) = 0\Big) \,.$$

and
$$\mathcal{I}_M(w) = \begin{cases} 0 \text{ if } w \in M \\ +\infty \text{ else} \end{cases}$$
 ...indicator function

- ◀ □ ▶ ◀圖 ▶ ◀필 ▶ · 필 · ∽ 역(

All-at-once as special case of minimization based formulation

all-at-once

$$A(x, u) = 0$$
 model $C(u) = y$ observations

 $A: X \times V \rightarrow W.$. . model operator, $C: V \rightarrow Y.$. . observation operator

All-at-once as special case of minimization based formulation

all-at-once

$$A(x, u) = 0$$
 model $C(u) = y$ observations

 $A: X \times V \rightarrow W...$ model operator, $C: V \rightarrow Y...$ observation operator

equivalent to

$$\min_{(x,u)\in X\times V}\underbrace{\mathcal{S}(\mathcal{C}(u),y)+\mathcal{Q}(\mathcal{A}(x,u))}_{\mathcal{J}(x,u;y)} \text{ s.t. } (x,u)\in\underbrace{X\times V}_{M_{ad}(y)},$$

where $\mathcal{S}: Y \times Y \to \overline{\mathbb{R}}, \ \mathcal{Q}: W \to \overline{\mathbb{R}}$ are positive definite functionals

$$\forall y_1,y_2 \in Y \ : \quad \mathcal{S}(y_1,y_2) \geq 0 \quad \text{ and } \quad \left(y_1 = y_2 \ \Leftrightarrow \ \mathcal{S}(y_1,y_2) = 0\right),$$

$$\forall w \in W : \mathcal{Q}(w) \geq 0$$
 and $\left(w = 0 \Leftrightarrow \mathcal{Q}(w) = 0\right)$.

←□▶ ←□▶ ← 亘▶ ← 亘 → りへ○

ロト・ロト・ミト・ミト・ミー かくで

Regularized minimization inverse problem:

$$(x, u) \in \operatorname{argmin} \{ \mathcal{J}(x, u; y) : (x, u) \in M_{ad}(y) \}$$

Regularized minimization

inverse problem:

$$(x, u) \in \operatorname{argmin} \{ \mathcal{J}(x, u; y) : (x, u) \in M_{ad}(y) \}$$

 $y^{\delta}\dots$ perturbed measured data inverse problem is ill-posed: minimizer does not depend continuiously on y

Regularized minimization

inverse problem:

$$(x, u) \in \operatorname{argmin} \{ \mathcal{J}(x, u; y) : (x, u) \in M_{ad}(y) \}$$

 y^{δ} ... perturbed measured data inverse problem is ill-posed: minimizer does not depend continuiously on y

→ regularized inverse problem:

$$\big(x_\alpha^\delta,u_\alpha^\delta\big)\in \operatorname{argmin}\{\mathcal{J}\big(x,u;y^\delta\big)+\alpha\cdot\mathcal{R}\big(x,u\big)\,:\,\big(x,u\big)\in M_{\operatorname{ad}}^\delta\big(y^\delta\big)\}$$

regularize by adding penalties (Tikhonov type) and/or by imposing constraints (Ivanov type)

Regularized minimization

inverse problem:

$$(x, u) \in \operatorname{argmin} \{ \mathcal{J}(x, u; y) : (x, u) \in M_{ad}(y) \}$$

 y^{δ} ... perturbed measured data inverse problem is ill-posed: minimizer does not depend continuiously on y

→ regularized inverse problem:

$$(x_\alpha^\delta, u_\alpha^\delta) \in \operatorname{argmin}\{\mathcal{J}(x, u; y^\delta) + \alpha \cdot \mathcal{R}(x, u) \, : \, (x, u) \in \mathit{M}_{\mathit{ad}}^\delta(y^\delta)\}$$

regularize by adding penalties (Tikhonov type) and/or by imposing constraints (Ivanov type)

treat data misfit by penalty term in cost function (Tikhonov type) or constraint (Morozov type)

Regularization with data misfit penalization

inverse problem (IP):

$$\min_{(x,u)\in X\times V} S(C(u),y) + Q(A(x,u))$$
s.t. $(x,u)\in M_{ad}(y)=X\times V$,

regularization (RdmP):

$$\min_{(x,u)\in X\times V} S(C(u), y^{\delta}) + Q(A(x,u)) + \alpha \cdot R(x,u)$$

s.t. $(x,u)\in M_{ad}^{\delta}(y^{\delta}) = \{(x,u)\in X\times V : \widetilde{R}(x,u)\leq \rho\}.$

where $\mathcal{S}:Y imes Y o \overline{\mathbb{R}}$, $\mathcal{Q}:W o \overline{\mathbb{R}}$ are positive definite functionals

$$\forall y_1, y_2 \in Y : \quad \mathcal{S}(y_1, y_2) \geq 0 \quad \text{ and } \quad \left(y_1 = y_2 \iff \mathcal{S}(y_1, y_2) = 0\right),$$

$$\forall w \in W : \mathcal{Q}(w) \geq 0$$
 and $\left(w = 0 \Leftrightarrow \mathcal{Q}(w) = 0\right)$.

4□▶ 4□▶ 4□▶ 4□▶ □ ∽

Regularization with constraint on data misfit inverse problem (IP):

$$\min_{(x,u)\in X\times V} \mathcal{Q}(A(x,u))$$

s.t. $(x,u)\in M_{ad}(y)=\{(x,u)\in X\times V: C(u)=y\}$,

regularization (RdmC):

$$\begin{split} \min_{(x,u) \in X \times V} \mathcal{Q}(A(x,u)) + \alpha \cdot \mathcal{R}(x,u) \\ \text{s.t. } (x,u) \in M_{ad}^{\delta}(y^{\delta}) = \{(x,u) \in X \times V \, : \, \mathcal{S}(C(u),y^{\delta}) \leq \tau \delta \\ \text{and } \widetilde{\mathcal{R}}(x,u) \leq \rho\} \, . \end{split}$$

where $\mathcal{S}:Y\times Y\to\overline{\mathbb{R}},\ \mathcal{Q}:W\to\overline{\mathbb{R}}$ are positive definite functionals

$$\forall y_1, y_2 \in Y : \mathcal{S}(y_1, y_2) \ge 0 \quad \text{and} \quad \left(y_1 = y_2 \iff \mathcal{S}(y_1, y_2) = 0\right),$$

$$\forall w \in W : \mathcal{Q}(w) \geq 0$$
 and $\left(w = 0 \Leftrightarrow \mathcal{Q}(w) = 0\right)$.

Assumptions

 $(x^\dagger, u^\dagger) \in X \times V \dots$ exact solution, $y \in Y \dots$ exact data.

- $\mathcal{R}(x^{\dagger}, u^{\dagger}) < \infty$ and \mathcal{R} bounded from below.
- $\widetilde{\mathcal{R}}(x^{\dagger}, u^{\dagger}) \leq \rho$
- ullet a topology ${\mathcal T}$ on X imes V exists such that
 - for all $z \in Y$, c > 0, the mapping $X \times V \to \overline{\mathbb{R}}^4$, $(x, u) \mapsto (\mathcal{S}(C(u), z), \mathcal{Q}(A(x, u)), \mathcal{R}(x, u), \widetilde{\mathcal{R}}(x, u))$ is \mathcal{T} coerive and component wise \mathcal{T} lower semicontinuous
 - the family of mappings $(S(z,\cdot):Y\to\mathbb{R})_{z\in Z}$ is uniformly continuous on $Z=\{C(u):\exists x\in X:\widetilde{\mathcal{R}}(x,u)\leq \rho\}$ at y, i.e. $\lim_{\hat{y}\to y}\sup_{z\in Z}|S(z,\hat{y})-S(z,y)|=0$.

Well-definedness and Convergence

$$S(y, y^{\delta}) \le \delta$$
 and $||y^{\delta} - y||_{Y} \to 0$ as $\delta \to 0$,

Theorem

For each $\alpha > 0$ a minimizer of the regularized problem with data misfit penalization (RdmP) or constraint (RdmC) exists.

Theorem

$$\begin{array}{l} \textit{Choose } \alpha = \alpha(\delta, y^{\delta}) \textit{ such that} \\ \begin{cases} \alpha(\delta, y^{\delta}) \to 0 \textit{ and } \frac{\delta}{\alpha(\delta, y^{\delta})} \leq \textit{c as } \delta \to 0 \textit{ for (RdmP)} \\ \alpha(\delta, y^{\delta}) \to 0 \end{cases} \qquad \textit{as } \delta \to 0 \textit{ for (RdmC)}$$

Then, as $\delta \to 0$, $y^{\delta} \to y$, the family $(x^{\delta}_{\alpha(\delta,y^{\delta})}, u^{\delta}_{\alpha(\delta,y^{\delta})})_{\delta \in (0,\bar{\delta}]}$ has a \mathcal{T} convergent subsequence and the limit of every \mathcal{T} convergent subsequence solves (IP). If the solution $(x^{\dagger}, u^{\dagger})$ to (IP) is unique then $(x^{\delta}_{\alpha(\delta,y^{\delta})}, u^{\delta}_{\alpha(\delta,y^{\delta})}) \xrightarrow{\mathcal{T}} (x^{\dagger}, u^{\dagger})$.

see, e.g., [Kohn&Vogelius'87, Kohn&McKenny'90, Knowles'98]

see, e.g., [Kohn&Vogelius'87, Kohn&McKenny'90, Knowles'98] Identify spatially distributed conductivity σ in $\Omega \subseteq \mathbb{R}^2$

$$\nabla \cdot J_i = 0$$
, $\nabla^{\perp} \cdot E_i = 0$, $J_i = \sigma E_i$ in Ω , $i = 1, \dots, I$,

(with $\nabla^{\perp}\psi = \left(-\frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_1}\right)^T$ so that $\nabla^{\perp} \cdot = \text{curl}$) from observations of boundary currents j_i and voltages v_i .

see, e.g., [Kohn&Vogelius'87, Kohn&McKenny'90, Knowles'98] Identify spatially distributed conductivity σ in $\Omega \subseteq \mathbb{R}^2$

$$\nabla \cdot J_i = 0$$
, $\nabla^{\perp} \cdot E_i = 0$, $J_i = \sigma E_i$ in Ω , $i = 1, \dots, I$,

(with $\nabla^{\perp}\psi=(-\frac{\partial}{\partial x_2},\frac{\partial}{\partial x_1})^T$ so that $\nabla^{\perp}\cdot=$ curl) from observations of boundary currents j_i and voltages υ_i . Using potentials ϕ_i and ψ_i for J_i and E_i

$$J_i = -\nabla^{\perp}\psi_i$$
, $E_i = -\nabla\phi_i$, $i = 1, \dots, I$,

we can rewrite the problem as

$$\sqrt{\sigma} \nabla \phi_i = \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i \text{ in } \Omega \,, \quad \psi_i = \gamma_i \,, \ \phi_i = v_i \text{ on } \partial \Omega \,, \quad i = 1, \dots, I \,,$$

where
$$\gamma_i(x(s)) = -\int_0^s j_i(x(r)) dr$$
 for $\partial\Omega = \{x(s) : s \in (0, \operatorname{length}(\partial\Omega))\}.$

ㅁㅏ (@ㅏ (돈ㅏ (돈ㅏ - 돈 - 쒸q))

$$\sqrt{\sigma} \nabla \phi_i = \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i \text{ in } \Omega \,, \quad \psi_i = \gamma_i \,, \ \phi_i = v_i \text{ on } \partial \Omega \,, \quad i = 1, \dots, I \,,$$

$$\sqrt{\sigma} \nabla \phi_i = \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i \text{ in } \Omega \,, \quad \psi_i = \gamma_i \,, \ \phi_i = v_i \text{ on } \partial \Omega \,, \quad i = 1, \dots, I \,,$$

equivalent to

$$\min_{\sigma,\underline{\phi},\underline{\psi}} \sum_{i=1}^{I} \frac{1}{2} \int_{\Omega} |\sqrt{\sigma} \nabla \phi_i - \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i|^2 dx$$

s.t.
$$\psi_i = \gamma_i$$
, $\phi_i = v_i$ on $\partial \Omega$, $i = 1, ..., I$

ロ ト 4 個 ト 4 差 ト 4 差 ト 9 Q (C)

$$\sqrt{\sigma} \nabla \phi_i = \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i \text{ in } \Omega \,, \quad \psi_i = \gamma_i \,, \ \phi_i = v_i \text{ on } \partial \Omega \,, \quad i = 1, \dots, I \,,$$

equivalent to

$$\min_{\sigma,\underline{\phi},\underline{\psi}} \sum_{i=1}^{I} \frac{1}{2} \int_{\Omega} |\sqrt{\sigma} \nabla \phi_i - \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i|^2 dx$$

s.t.
$$\psi_i = \gamma_i$$
, $\phi_i = \upsilon_i$ on $\partial \Omega$, $i = 1, ..., I$

equivalent to (since $\int_{\Omega} \nabla \phi_i \cdot \nabla^{\perp} \psi_i \, dx = \int_{\partial \Omega} v_i j_i \, dx$)

$$\min_{\sigma,\underline{\phi},\underline{\psi}} \sum_{i=1}^{I} \frac{1}{2} \int_{\Omega} \left(\sigma |\nabla \phi_i|^2 + \frac{1}{\sigma} |\nabla^{\perp} \psi_i|^2 \right) dx$$

s.t.
$$\psi_i = \gamma_i$$
, $\phi_i = v_i$ on $\partial \Omega$, $i = 1, ..., I$

- **◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ り**へ○

ロト 4回ト 4 三 ト 4 三 ト 9 0 0

Regularized variational EIT

inverse problem (EIT):

$$\begin{aligned} & \min_{\sigma,\underline{\phi},\underline{\psi}} \sum_{i=1}^{I} \frac{1}{2} \int_{\Omega} |\sqrt{\sigma} \nabla \phi_{i} - \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i}|^{2} dx \\ & \text{s.t. } \psi_{i} = \gamma_{i} \,, \,\, \phi_{i} = v_{i} \,\, \text{ on } \partial \Omega \,, \quad i = 1, \dots, I \end{aligned}$$

regularization (RegEIT):

$$\min_{\sigma,\Phi,\Psi} \sum_{i=1}^{I} \left\{ \frac{1}{2} \int_{\Omega} |\sqrt{\sigma} \nabla \phi_i - \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i|^2 dx + \frac{\alpha}{2} (\|\phi_i\|_{H^{\frac{3}{2}-\epsilon}(\Omega)}^2 + \|\psi_i\|_{H^{\frac{3}{2}-\epsilon}(\Omega)}^2) \right\}$$

s.t. $\underline{\sigma} \le \sigma \le \overline{\sigma}$ on Ω ,

$$\left. \begin{array}{l} v_i^\delta - \tau \delta \leq \phi_i \leq v_i^\delta + \tau \delta \,, \\ \gamma_i^\delta - \tau \delta \leq \psi_i \leq \gamma_i^\delta + \tau \delta \,, \end{array} \right\} \quad \text{ on } \partial \Omega \,, \quad i = 1, \dots, I \,.$$

→ special case of regularization with constraint on data misfit
(RdmC)

ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ . 횽 . 쉭٩@

Regularized variational EIT: Function space setting

$$x = \sigma, \qquad u = (\phi_{1}, \dots, \phi_{I}, \psi_{1}, \dots, \psi_{I}), \qquad y = (v_{1}, \dots, v_{I}, \gamma_{1}, \dots, \gamma_{I})$$

$$X = L^{\infty}(\Omega)$$

$$Y = L^{\infty}(\partial \Omega)^{I} \times W^{1,1}(\partial \Omega)^{I}$$

$$V = \{(\phi_{1}, \dots, \phi_{I}, \psi_{1}, \dots, \psi_{I}) \in H^{1}(\Omega)^{2I} : \operatorname{tr}_{\partial \Omega}^{2I}(\phi_{1}, \dots, \phi_{I}, \psi_{1}, \dots, \psi_{I}) \in Y\}$$

$$W = L^{2}(\Omega)^{I}$$

$$A(x, u) = \left(\sqrt{\sigma} \nabla \phi_{1} - \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{1}, \dots, \sqrt{\sigma} \nabla \phi_{I} - \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{I}\right),$$

$$C = \operatorname{tr}_{\partial \Omega}^{2I}$$

$$Q(w) = \frac{1}{2} \|w\|_{L^{2}(\Omega)^{I}}^{2}$$

$$\mathcal{R}(x, u) = \mathcal{R}(u) = \sum_{i=1}^{I} \left(\|\phi_{i}\|_{H^{\frac{3}{2} - \epsilon}(\Omega)^{2I}}^{2} + \|\psi_{i}\|_{H^{\frac{3}{2} - \epsilon}(\Omega)^{2I}}^{2}\right)$$

$$\widetilde{\mathcal{R}}(x, u) = \widetilde{\mathcal{R}}(x) = \|\sigma - \frac{\overline{\sigma} + \sigma}{2}|_{L^{\infty}(\Omega)}, \quad \rho = \frac{\overline{\sigma} - \sigma}{2}$$

$$S(y, \widetilde{y}) = \max_{i \in J^{1}} \prod_{I} \|v_{i} - \widetilde{v}_{i}\|_{L^{\infty}(\partial \Omega)} + \|\gamma_{i} - \widetilde{\gamma}_{i}\|_{L^{\infty}(\partial \Omega)}$$

◆□▶◆圖▶◆臺▶◆臺▶ 臺 ∽9<€

Regularized variational EIT: well-definedness, convergence

$$(\sigma_n, \Phi_n, \Psi_n) \overset{\mathcal{T}}{\rightarrow} (\sigma, \Phi, \Psi) \; \Leftrightarrow \; \begin{cases} \sigma_n \overset{*}{\rightharpoonup} \sigma \; \text{and} \; \frac{1}{\sigma_n} \overset{*}{\rightharpoonup} \frac{1}{\sigma} \; \text{in} \; L^{\infty}(\Omega) \,, \\ (\Phi_n, \Psi_n) \rightarrow (\Phi, \Psi) \; \text{in} \; H^{2-3\epsilon/2}(\Omega)^{2I} \\ (\Phi_n, \Psi_n) \rightarrow (\Phi, \Psi) \; \text{in} \; H^{3/2-\epsilon}(\Omega)^{2I} \,, \\ \operatorname{tr}(\Phi_n, \Psi_n) \rightarrow \operatorname{tr}(\Phi, \Psi) \; \text{in} \; L^{\infty}(\partial \Omega)^{2I} \end{cases}$$

Corollary

For each $y^{\delta} \in Y$ and $\alpha > 0$ a minimizer of (RegEIT) exists.

Let
$$S(y, y^{\delta}) \leq \delta$$
 and $||y^{\delta} - y||_{Y} \to 0$ as $\delta \to 0$, $\sigma \leq \sigma^{\dagger} \leq \overline{\sigma}$ a.e. in Ω

and choose $\alpha = \alpha(\delta, y^{\delta})$ such that $\alpha(\delta, y^{\delta}) \to 0$ as $\delta \to 0$.

Then, as $\delta \to 0$, $y^{\delta} \to y$, the family

 $(\sigma_{\alpha(\delta,y^{\delta})}^{\delta}, \Phi_{\alpha(\delta,y^{\delta})}^{\delta}, \Psi_{\alpha(\delta,y^{\delta})}^{\delta})_{\delta \in (0,\overline{\delta}]}$ has a \mathcal{T} convergent subsequence and the limit of every \mathcal{T} convergent subsequence solves (EIT).

Conclusions and Outlook

- reduced versus all-at-once formulations:
 - Tikhonov: reduced \sim all-at-once
 - Newton: reduced: solve nonlinear and linear models in each step all-at-once: only solve linearized models
 - Landweber: reduced: solve nonlinear and linear models in each step all-at-once: never solve models!

Conclusions and Outlook

- reduced versus all-at-once formulations:
 - Tikhonov: reduced \sim all-at-once
 - Newton: reduced: solve nonlinear and linear models in each step all-at-once: only solve linearized models
 - Landweber: reduced: solve nonlinear and linear models in each step all-at-once: never solve models!
- minimization based formulations:
 - generalizes reduced and all-at-once formulations
 - regularization by penalization and/or constraints
 - comprises variational approach to EIT

Regularization based on all-at-once formulations for inverse problems. *SIAM Journal on Numerical Analysis*, 54:2594–2618, 2016.

B. Kaltenbacher.

All-at-once versus reduced iterative methods for time dependent inverse problems. *Inverse Problems*, 33:064002, 2017.

B. Kaltenbacher.

Minimization based formulations of inverse problems and their regularization. submitted.

B. Kaltenbacher, A. Kirchner, and B. Vexler.

Goal oriented adaptivity in the IRGNM for parameter identification in PDEs II: all-at once formulations. *Inverse Problems*, 30, 2014.

B. Kaltenbacher and M.L. Previatti de Souza.

Convergence and adaptive discretization of the IRGNM Tikhonov and the IRGNM Ivanov method under a tangential cone condition in Banach space. submitted.

Thank you for your attention!