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Inverse Problem

In theory formulated as an operator equation

F(x) = y . (1)

defined in the reflexive Banach spaces X and Y , with a convex
domain D(F)⊂ X .
infinite dimensional framework

In many practical inverse problems:

1- solved under a finite-dimensional and discrete setup

2- access only to noisy data yδ ||yδ− y || ≤ δ.

3- sometimes the data are sparse (very fill measurements are
accessible)

Thus, the relation between the finite- and the infinite-dimensional
descriptions of the same problem should be well-understood.
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Addressed questions

Is possible to state a criterion to find appropriately the domain
discretization level in terms of the available data, in order to find a
reliable solution of the inverse problem, which is in general
ill-posed?

YES - many authors have already addressed this issue ex.
Kirsch’s book for a very specific problem!!! Regularization by
discretization !!!

New Trends in Parameter Identification for Mathematical Models On the Choice of the Tikhonov Regularization Parameter and the Discretization Level: A Discrepancy-Based Strategy



Outline Introduction Assumptions and preliminaries Existence and Stability of Tikhonov minimizers The Discrepancy Principle Discrete Forward Operator Convergence rates Numerical Examples ConclusionsInverse Problems

Addressed questions

Is possible to state a criterion to find appropriately the domain
discretization level in terms of the available data, in order to find a
reliable solution of the inverse problem, which is in general
ill-posed?
YES - many authors have already addressed this issue

ex.
Kirsch’s book for a very specific problem!!! Regularization by
discretization !!!

New Trends in Parameter Identification for Mathematical Models On the Choice of the Tikhonov Regularization Parameter and the Discretization Level: A Discrepancy-Based Strategy



Outline Introduction Assumptions and preliminaries Existence and Stability of Tikhonov minimizers The Discrepancy Principle Discrete Forward Operator Convergence rates Numerical Examples ConclusionsInverse Problems

Addressed questions

Is possible to state a criterion to find appropriately the domain
discretization level in terms of the available data, in order to find a
reliable solution of the inverse problem, which is in general
ill-posed?
YES - many authors have already addressed this issue ex.
Kirsch’s book for a very specific problem!!!

Regularization by
discretization !!!

New Trends in Parameter Identification for Mathematical Models On the Choice of the Tikhonov Regularization Parameter and the Discretization Level: A Discrepancy-Based Strategy



Outline Introduction Assumptions and preliminaries Existence and Stability of Tikhonov minimizers The Discrepancy Principle Discrete Forward Operator Convergence rates Numerical Examples ConclusionsInverse Problems

Addressed questions

Is possible to state a criterion to find appropriately the domain
discretization level in terms of the available data, in order to find a
reliable solution of the inverse problem, which is in general
ill-posed?
YES - many authors have already addressed this issue ex.
Kirsch’s book for a very specific problem!!! Regularization by
discretization !!!

New Trends in Parameter Identification for Mathematical Models On the Choice of the Tikhonov Regularization Parameter and the Discretization Level: A Discrepancy-Based Strategy



Outline Introduction Assumptions and preliminaries Existence and Stability of Tikhonov minimizers The Discrepancy Principle Discrete Forward Operator Convergence rates Numerical Examples ConclusionsInverse Problems

Our contribution

Our contribution: Under the context of Tikhonov-type
regularization, i.e.,

Problem
Find a minimizer for the Tikhonov functional

F yδ

α,x0(x) = ‖F(x)− yδ‖p
Y + αfx0(x), (2)

with α > 0 and 1 < p < +∞.

we propose a discrepancy-based rule for choosing appropriately
a regularization parameter and a domain discretization level. We
also establish the corresponding regularizing properties of this
rule under fairly general assumptions.

like a 2 regularization parameter choice!!!
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Related works

Some strongly related works on this subject

1 Anzengruber, S., Hofmann, B. and Mathé, P. Regularization
properties of the sequential discrepancy principle for Tikhonov
regularization in Banach spaces. Appl. Anal., 93(7):1382 - 1400,
2013.

2 Anzengruber, S. and Ramlau, R. Morozov’s discrepancy principle
for Tikhonov-type functionals with nonlinear operators. Inverse
Problems, 26(2), February 2010.

3 Anzengruber, S. and Ramlau, R. Convergence rates for
Morozov’s discrepancy principle using variational inequalities.
Inverse Problems, 27(10), 2011.

4 Bonesky, T. Morozov’s discrepancy principle and Tikhonov-type
functionals. Inverse Problems, 25(1), 2009.
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What we add on the field (Conclusions!!!)

We propose Morozov’s discrepancy principle in the same spirit of
[1], [2], [3]. [4] in the context of nonlinear operators in a discrete
setting.

We also state that the continuous case, presented in these
references, can be recovered from the discrete one, when the
discretization level goes to infinity. noting really new

We use this discrepancy principle as a rule to find appropriately
the discretization level in the domain and the regularization
parameter in Tikhonov regularization. Some how a 2
regularization parameter choice rule

regularizing properties and (+ existence of source conditions)
convergence rates results. as expected
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Assumptions

Assumption

The regularizing functional fx0 : D(fx0)→ R+ is weakly lower
semi-continuous, convex, coercive, and proper. We also assume that
D(F) is in the interior of D(fx0).

Assumption

The forward operator F is continuous under the strong topologies of X
and Y . We also assume that the level sets

Mα(ρ) = {x ∈D(F) : F yδ

α,x0(x)≤ ρ}

are weakly pre-compact and weakly closed. Moreover, the restriction
of F to Mα(ρ) is weakly continuous under the weak topologies of X
and Y .
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Definition

An element x† of D(F) is called a least-square fx0 -minimizing solution
or simply an fx0 -minimizing solution of Problem 1 if it is a least-square
solution, i.e.,

x† ∈ LS := {x ∈D(F) : ‖F(x)− y‖= 0}

and minimizes fx0 in LS , i.e.,

x† ∈ L := argmin{fx0(x) : x ∈ LS}.

We always assume that L 6= /0.
Note that the sets LS and L depend on the noiseless data y .
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Assumptions

Assumption

Let x† be an fx0 -minimizing solution for Problem 1 and x0 ∈D(F) be
fixed. We assume that:

lim inf
t→0+

‖F((1− t)x† + tx0)− y‖p

t
= 0 (3)

Note that Assumption 3 is satisfied by many classes of operators, such
as the class of locally Hölder continuous functions with exponent
greater than 1/2, with p = 2.
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We also need to consider the sequence {Xm}m∈N of finite-dimensional
subspaces of X satisfy:

Xm ⊂ Xm+1, for m ∈ N, and
⋃

m∈N
Xm = X . (4)

Definition
Define the finite-dimensional sets:

Dm = D(F)∩Xm, for m ∈ N. (5)

The set Dm is convex since it is the intersection of a subspace of X
with a convex set.
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Note that, if we had chosen Dm as the orthogonal projection of D(F)
onto the finite-dimensional subspace Xm, we could possibly have that
Dm∩X −D(F) 6= /0, since F is not necessarily linear and D(F) is not
necessarily a subspace of X . Therefore, this definition ensures that
Dm ⊂D(F) for every m ∈ N.
For now on, we assume that Dm 6= /0, for every m. Thus, we want to
find xδ

m,α ∈Dm minimizing (2), with m and α appropriately chosen.
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The analysis that follows depends on how fast the restriction of the
operator F to Dm converges to F as m→ ∞. Thus, we have the
following definition:

Definition

Let Pm : X →Dm be the projection of X onto Dm, x† be a least-square
fx0 -minimizing solution. Define:

γm := sup
x∈B(x0,η)∩D(F)

‖F(x†)−F(Pmx†)‖ and (6)

φm := sup
x∈B(x0,η)∩D(F)

‖x†−Pmx†‖.
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Lemma

For every x ∈D(F), ‖F(x)−F(Pmx)‖→ 0 when m→ ∞.

Proof: From (4) it follows that ‖x−Pmx‖→ 0 as m→ ∞ for every
x ∈D(F). Since the operator F is continuous, the assertion follows.
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Existence

We consider the following optimization problem:

Problem
Find an element of

argmin{‖F(x)− yδ‖p + αfx0(x)}, subject to x ∈Dm. (7)

Theorem (Existence)

Let m ∈ N and δ > 0 be fixed. Moreover, let the Assumptions be
satisfied. Then, for any yδ ∈ Y, it follows that Problem (7) has a
solution.
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Stability

Definition

For given data yδ, we call a solution of Problem (7) stable if for a
strongly convergent sequence {yk}k∈N ⊂ Y, with limit yδ, the
corresponding sequence {xk}k∈N ⊂ X of solutions of Problem (7),
where yδ is replaced by yk in the functional of Problem (7), has a
weakly convergent subsequence {xkl}l∈N, with limit x̃ , a solution of
Problem (7) with data yδ.

Theorem (Stability)

For each m ∈N, the solutions of Problem (7) are stable in the sense of
Definition 4. Moreover, the convergent subsequence {xkl}l∈N with limit
x̃ from Definition 4 satisfies the limit fx0(xkl )→ fx0(x̃).
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Convergence

The following theorem shows that the finite-dimensional Tikhonov
minimizers converge to some fx0 -minimizing solution of Problem ((1)).

Theorem (Convergence)

Let m ∈ N and δ > 0 be fixed. Assume that α = α(δ,γm) > 0 satisfies
the limits:

lim
δ,γm→0

α(δ,γm) = 0 and lim
δ,γm→0

(δ + γm)p

α(δ,γm)
. (8)

Let {xk}k∈N be a sequence of solutions of Problem (7) with
xk = xδk

mk ,αk and δk ,γmk → 0 when k → ∞. Then, it has a weakly
convergent subsequence {xkl}l∈N with weak limit x†, an fx0 -minimizing
solution of Problem (??) with fx0(xkl )→ fx0(x†).
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The discrepancy principle

Definition

Let δ > 0 and yδ be fixed. For λ > τ > 1, we choose m ∈ N and
α > 0, with m = m(δ,yδ) and α = α(δ,yδ), such that

τδ≤ ‖F(xδ
m,α)− yδ‖ ≤ λδ, (9)

holds for xδ
m,α a solution of (7) with these same m and α.

Proposition

There exist m ∈ N and α > 0 satisfying (9).

Proof: Uses similar arguments as in [1]–[4].
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Discrete Morozov’s Principle

Definition (Discrete Morozov’s Principle)

Let δ, yδ and the domain discretization level m be fixed. Define τ1 := τ

and let τ2 be such that 1 < τ1 ≤ τ2 < λ. Then, find
α = α(δ,yδ,m) > 0 such that

τ1(δ + γm)≤ ‖F(xδ
m,α)− yδ‖ ≤ τ2(δ + γm), (10)

holds for xδ
m,α, a solution of Problem 7.

Idea behind: Diagonal argument. We have to choose m ∈N such that
γm satisfies a modified version of (9). For this same m, we choose
α > 0 through (6), given that it is well-posed. Then, these α and m
satisfy the same discrepancy principle, as required.
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The a priori choice for the parameters

Under the present setup, if we choose m ∈ N sufficiently large and
such that

γm ≤
(

λ

τ2
−1

)
δ (11)

is satisfied with λ > τ2 > 1. Then, for this same m ∈ N, it follows that,
when α is chosen through Definition 6, the discrepancy

τ1δ≤ ‖F(xδ
m,α)− yδ‖ ≤ λδ, (12)

is satisfied with xδ
m,α a solution of (7). This follows since,

τ1δ≤ τ1(δ + γm) and τ2(δ + γm)≤ λδ.
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Replace the continuous forward operator by a
finite-dimensional approximation

Let us consider a sequence of finite-dimensional subspaces {Yn}n∈N
of the space Y , such that

Yn ⊂ Yn+1 ⊂ ...⊂ Y and ∪n∈NYn = Y .

In the present discrete setting, we consider the following alternative
discrepancy principle:

Definition

Let δ > 0 and yδ be fixed. For λ > τ > 1, we choose m,n ∈ N and
α > 0, with m = m(δ,yδ), n = n(δ,yδ) and α = α(δ,yδ), such that

τδ≤ ‖Fn(xδ,α
m,n)− yδ‖ ≤ λδ, (13)

holds for xδ,α
m,n, a solution of

min{‖Fn(x)− yδ‖p + αfx0(x)} subject to x ∈Dm. (14)
New Trends in Parameter Identification for Mathematical Models On the Choice of the Tikhonov Regularization Parameter and the Discretization Level: A Discrepancy-Based Strategy
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Replace the continuous forward operator by a
finite-dimensional approximation

In the present context, all the results of the previous sections hold?

Yes!!!
However, some additional calculations should be done when F is
replaced by Fn. The main argument in the convergence analysis is
based on the existence of a diagonal subsequence converging
(weakly) to an fx0 -minimizing solution of Problem 1, when the limits
δ→ 0, m,n→ ∞ are taken.
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Convergence rates: Two situations

Case 1 m and α chosen by the corresponding discrepancy principle.

Case 2 m, n and α chosen by the corresponding discrepancy principle.
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Assumptions and notations

Definition
Let U denote a Banach space and

f : D(f )⊂ U→ R∪{∞}

be a convex functional with sub-differential ∂f (u) at u ∈D(f ). The
Bregman distance (or divergence) of f at u ∈D(f ) and
ξ ∈ ∂f (u)⊂ U∗ is defined by

Dξ(ũ,u) = f (ũ)− f (u)−〈ξ, ũ−u〉, (15)

for every ũ ∈ U, where 〈·, ··〉 is the dual product of U∗ and U.
Moreover, the set

DB(f ) = {x ∈D(f ) : ∂f (u) 6= /0}

is called the Bregman domain of f .
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Case 1: Convergence Rates

Assume the variational source condition

Assumption

There exist β1 ∈ [0,1), β2 ≥ 0 and ξ† ∈ ∂fx0(x†) such that

〈ξ†,x†− x〉 ≤ β1Dξ†(x ,x†) + β2‖F(x)−F(x†)‖ (16)

for x ∈Mαmax(ρ), where αmax,ρ > 0 satisfy ρ > αmaxfx0(x†).

Theorem
Let m and α be chosen through the discrepancy principle (9) and let
Assumption 4 be satisfied. Up to some technical additional hypotheses
(to long for one page slide, we have:

‖F(xδ
m,α)− yδ‖ ≤ λδ and Dξ†(xδ

m,α,x
†)≤ β2(1 + λ)

1−β1
δ. (17)

Key ingredient of the proof: Three terms inequality for the Bregmann
distance

Dξ(a,b) + Dξ(b,c) = Dξ(a,z)+ < ξ− ξ̃,a−b >
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Case 2: Convergence Rates

Define the estimate ηm := Dξ†(Pmx†,x†).

Theorem (Convergence Rates)

Assume that xδ
m,α is a minimizer of the functional in Equation (2)and

the regularization parameter α = α(δ,yδ,γm) satisfies the discrepancy
principle (6). Then, we have the following estimates

‖F(xδ
m,α)−yδ‖= O(δ+γm +ηm +φn) and Dξ†(xδ

m,α,x
†) = O(δ+γm +ηm +φn).

(18)
with ξ† ∈ ∂fx0(x†).
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Numerical Examples

Assuming that the data u was generated by the following parabolic
problem (Black-Scholes equation):

∂u
∂τ
−a(τ,y)

(
∂2u
∂y2 −

∂u
∂y

)
−b

∂u
∂y

= 0 τ > 0, y ∈ R

u(τ = 0,K ) = max{0,1−ey}, for y ∈ R,
dacay conditions

(19)

The inverse problem is to find the diffusion parameter
a ∈ Q := {a ∈ a0 + H1+ε(R+×R) : a1 ≤ a≤ a2} for given sparse
data u.
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We define the forward operator by:

F : Q ⊂ H1+ε(R+×R) −→ L2(R+×R)
a 7−→ u(a)−u(a0),

with a0 ∈ Q fixed and a priori chosen.
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In the calibration we take as true (known) diffusion coefficient the
following:

σ(τ,y) =


2
5
− 4

25
e−τ/2 cos

(
4πy

5

)
, if −2/5≤ y ≤ 2/5

2/5, otherwise,

(20)

and set a = σ2/2. We also assume that b = 0.03 in Equation (??).
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The data is generated with step sizes ∆τ = 0.0025 and ∆y = 0.01
and the coarser grid is given by the step lengths ∆τ = 0.02 and
∆y = 0.1. In the numerical solution of the inverse problem,
Equation (??) is numerically solved in the same mesh we interpolate
the data, i.e., we use ∆τ = 0.02 and ∆y = 0.1 in both cases. We vary
the mesh used to evaluate the diffusion coefficient in order to highlight
the discrepancy principle (??). The step sizes used in the tests were
the following:

∆τ = 0.1,0.08,0.07,0.06,0.05,0.04,0.03,0.02,0.01,0.0075,0.005,0.0025
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Figura: Evolution of the residual as a function of the number of mesh points.
We choose the regularization parameter presenting lower residual. In the
presence of noise, some discretization levels in the domain satisfy the
discrepancy principle. Compare it to the error estimation in Figure 2. The
horizontal line corresponds to λδ.
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Figura: Evolution of the L2-error. In the presence of noise, its minimum is
attained for a coarser mesh satisfying the discrepancy principle of
Equation (??).
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Figura: Left: original surface. Center and right: reconstructions
corresponding to the first and second points satisfying the discrepancy
principle of Figure 1, respectively.
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Figura: Left: original surface. Center and right: reconstructions satisfying the
discrepancy principle of Figure 1.
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Conclusions

We propose Morozov’s discrepancy principle in the same spirit of
[1], [2], [3]. [4] in the context of nonlinear operators in a discrete
setting.

We also state that the continuous case, presented in these
references, can be recovered from the discrete one, when the
discretization level goes to infinity. noting really new

We use this discrepancy principle as a rule to find appropriately
the discretization level in the domain and the regularization
parameter in Tikhonov regularization. Some how a 2
regularization parameter choice rule

regularizing properties and (+ existence of source conditions)
convergence rates results. as expected
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Something more

What we can say about iterative regularization????

We know results in Hilbert Spaces and Linear Operators

Not much for iterative regularization + nonlinear operators +
discretization
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Something more

What we can say about iterative regularization????
We know results in Hilbert Spaces and Linear Operators

Not much for iterative regularization + nonlinear operators +
discretization
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