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Introduction Inverse Problems

Inverse Problem

@ In theory formulated as an operator equation

F(x)=y. (1)

defined in the reflexive Banach spaces X and Y, with a convex
domain D(F) C X.
infinite dimensional framework
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Introduction Inverse Problems

Inverse Problem

@ In theory formulated as an operator equation

F(x)=y. (1)

defined in the reflexive Banach spaces X and Y, with a convex
domain D(F) C X.
infinite dimensional framework

@ In many practical inverse problems:
1- solved under a finite-dimensional and discrete setup
2- access only to noisy data y® lly®—y|| <8.

3- sometimes the data are sparse (very fill measurements are
accessible)
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Introduction Inverse Problems

Inverse Problem

@ In theory formulated as an operator equation
F(x)=y. (1)

defined in the reflexive Banach spaces X and Y, with a convex
domain D(F) C X.
infinite dimensional framework

@ In many practical inverse problems:

1- solved under a finite-dimensional and discrete setup

2- access only to noisy data y® lly®—y|| <8.

3- sometimes the data are sparse (very fill measurements are
accessible)

@ Thus, the relation between the finite- and the infinite-dimensional
descriptions of the same problem should be well-understood.
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Introduction Inverse Problems

Addressed questions

@ Is possible to state a criterion to find appropriately the domain
discretization level in terms of the available data, in order to find a
reliable solution of the inverse problem, which is in general
ill-posed?
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Introduction Inverse Problems

Addressed questions

@ Is possible to state a criterion to find appropriately the domain
discretization level in terms of the available data, in order to find a
reliable solution of the inverse problem, which is in general
ill-posed?

YES - many authors have already addressed this issue
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Introduction Inverse Problems

Addressed questions

@ Is possible to state a criterion to find appropriately the domain
discretization level in terms of the available data, in order to find a
reliable solution of the inverse problem, which is in general
ill-posed?

YES - many authors have already addressed this issue ex.
Kirsch’s book for a very specific problem!!!
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Introduction Inverse Problems

Addressed questions

@ Is possible to state a criterion to find appropriately the domain
discretization level in terms of the available data, in order to find a
reliable solution of the inverse problem, which is in general
ill-posed?

YES - many authors have already addressed this issue ex.
Kirsch’s book for a very specific problem!!! Regularization by
discretization !l!
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Introduction Inverse Problems

Our contribution

@ Our contribution: Under the context of Tikhonov-type
regularization, i.e.,

Problem

Find a minimizer for the Tikhonov functional

Fo () = [F () = ¥ [15 + i (), @)

witha > 0 and1 < p < +oe.

we propose a discrepancy-based rule for choosing appropriately
a regularization parameter and a domain discretization level. We
also establish the corresponding regularizing properties of this
rule under fairly general assumptions.

like a 2 regularization parameter choice!!!
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Introduction Inverse Problems

Related works

Some strongly related works on this subject

1 Anzengruber, S., Hofmann, B. and Mathé, P. Regularization
properties of the sequential discrepancy principle for Tikhonov
regularization in Banach spaces. Appl. Anal., 93(7):1382 - 1400,
2013.

2 Anzengruber, S. and Ramlau, R. Morozov’s discrepancy principle
for Tikhonov-type functionals with nonlinear operators. Inverse
Problems, 26(2), February 2010.

3 Anzengruber, S. and Ramlau, R. Convergence rates for
Morozov’s discrepancy principle using variational inequalities.
Inverse Problems, 27(10), 2011.

4 Bonesky, T. Morozov’s discrepancy principle and Tikhonov-type
functionals. Inverse Problems, 25(1), 2009.
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Introduction Inverse Problems

What we add on the field (Conclusions!!!)

@ We propose Morozov’s discrepancy principle in the same spirit of
[1], [2], [3]. [4] in the context of nonlinear operators in a discrete
setting.

@ We also state that the continuous case, presented in these
references, can be recovered from the discrete one, when the
discretization level goes to infinity. noting really new

@ We use this discrepancy principle as a rule to find appropriately
the discretization level in the domain and the regularization
parameter in Tikhonov regularization. Some how a 2
regularization parameter choice rule

@ regularizing properties and (+ existence of source conditions)
convergence rates results. as expected
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Assumptions and preliminaries
Assumptions

Assumption

The regularizing functional f,, : D(fy,) — R is weakly lower
semi-continuous, convex, coercive, and proper. We also assume that
D(F) is in the interior of D(f, ).

| \

Assumption

The forward operator F is continuous under the strong topologies of X
and Y. We also assume that the level sets

Ma(p) = {x € D(F) : Fo(x) < p}

are weakly pre-compact and weakly closed. Moreover, the restriction
of F to My(p) is weakly continuous under the weak topologies of X
andy.

A\
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Assumptions and preliminaries

Definition

An element x" of D(F) is called a least-square f,,-minimizing solution
or simply an f,,-minimizing solution of Problem 1 if it is a least-square
solution, i.e.,

x'e LS :={xe D(F) : |F(x)—y|| =0}
and minimizes fy, in LS, i.e.,

x' € L := argmin{f,(x) : x € LS}.

We always assume that £ # 0.
Note that the sets LS and L depend on the noiseless data y.
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Assumptions and preliminaries

Assumptions

Assumption

Let x" be an f,,-minimizing solution for Problem 1 and x, € D(F) be
fixed. We assume that:

F((1—t)x" + txo) — y||P
iming 1E (1= 0x"+x0) —y||P

t—0t t

0 3)

V.

Note that Assumption 3 is satisfied by many classes of operators, such
as the class of locally H6lder continuous functions with exponent
greater than 1/2, with p = 2.
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Assumptions and preliminaries

We also need to consider the sequence { Xi } men of finite-dimensional
subspaces of X satisfy:

Xm C Xmy1, formeN, and | J Xy = X. (4)
meN

Definition
Define the finite-dimensional sets:

Dm=D(F)NXpm, for me N. (5)

The set Dy, is convex since it is the intersection of a subspace of X
with a convex set.
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Assumptions and preliminaries

Note that, if we had chosen D, as the orthogonal projection of D(F)
onto the finite-dimensional subspace X,, we could possibly have that
DmN X —D(F) # 0, since F is not necessarily linear and D(F) is not
necessarily a subspace of X. Therefore, this definition ensures that
Dm C D(F) for every m € N.

For now on, we assume that Dy, # 0, for every m. Thus, we want to
find Xr?v,oc € Dy, minimizing (2), with m and o appropriately chosen.
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Assumptions and preliminaries

The analysis that follows depends on how fast the restriction of the
operator F to Dy, converges to F as m — oo. Thus, we have the
following definition:

Definition

Let Py, : X — Dy, be the projection of X onto Dy, x' be a least-square
fx,-minimizing solution. Define:

VYm = sup ||F(XT)—F(meT)|| and (6)
XEB(Xxo,n)ND(F)

Om = sup ||xT—meTH.
xEB(xo,m)ND(F)
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Assumptions and preliminaries

For every x € D(F), ||F(x) — F(Pmx)|| — 0 when m — oo.

Proof: From (4) it follows that || x — Ppx|| — 0 as m — oo for every
x € D(F). Since the operator F is continuous, the assertion follows.
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Existence
Existence

We consider the following optimization problem:

Problem

Find an element of

argmin{||F(x) — y°||P + afy,(x)}, subjectto x € Dpy.  (7)

Theorem (Existence)

Letm € N and d > 0 be fixed. Moreover, let the Assumptions be
satisfied. Then, for any y5 € Y, it follows that Problem (7) has a
solution.
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Stability

Definition

For given data y®, we call a solution of Problem (7) stable if for a
strongly convergent sequence {yx }xen C Y, with limit y°, the
corresponding sequence { xx }ken C X of solutions of Problem (7),
where y® is replaced by yj in the functional of Problem (7), has a
weakly convergent subsequence { xy, }en, with limit X, a solution of
Problem (7) with data y®.

Theorem (Stability)

For each m € N, the solutions of Problem (7) are stable in the sense of
Definition 4. Moreover, the convergent subsequence {xy, }en with limit
X from Definition 4 satisfies the limit f,(xk,) — fx, (X).

V.
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Existence

Convergence

The following theorem shows that the finite-dimensional Tikhonov
minimizers converge to some f,,-minimizing solution of Problem ((1)).

Theorem (Convergence)

Letm € N and § > 0 be fixed. Assume that o. = o(3,yn) > 0 satisfies
the limits:

|  (8+ym)P
| m) = o a8, Ym)
sim {8, 1m) =0 and lim )

: (8)

Let {xx }ken be a sequence of solutions of Problem (7) with

Xk = x,§7kk7ak and d,Ym, — 0 when k — . Then, it has a weakly
convergent subsequence {xy, }icn with weak limit x', an fy, -minimizing
solution of Problem (27?) with f,, (xk,) — fx,(x").

v
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The discrepancy principle

Definition

Letd > 0 and y® be fixed. For A >t > 1, we choose m € N and
o > 0, with m = m(8,y®) and a. = o3, y°), such that

w8 < ||F(x3.0) — YOIl < A8, (9)

holds for x,§,7a a solution of (7) with these same m and a.

Proposition
There exist m € N and a. > 0 satisfying (9).

Proof: Uses similar arguments as in [1]-[4].
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Discrete Morozov’s Principle

Definition (Discrete Morozov’s Principle)

Letd, y8 and the domain discretization level m be fixed. Define Tt ;=1
and let To be such that 1 < t1 < T < A. Then, find
o= o8, y3,m) > 0 such that

T (8 +¥m) < [IFOxme) = ¥°ll < T2(8+¥m), (10)

holds for x,%w a solution of Problem 7.

v

Idea behind: Diagonal argument. We have to choose m € N such that
Ym satisfies a modified version of (9). For this same m, we choose

o > 0 through (6), given that it is well-posed. Then, these o and m
satisfy the same discrepancy principle, as required.
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The a priori choice for the parameters

Under the present setup, if we choose m € N sufficiently large and

such that N
vms(—1)8 (11)
T2

is satisfied with A > T > 1. Then, for this same m € N, it follows that,
when o is chosen through Definition 6, the discrepancy

T8 < [[F(xG.0) — YOIl < A8, (12)

is satisfied with xf;’m a solution of (7). This follows since,
718 < 11(8 4 Ym) and To(3 +Ym) < AS.
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Replace the continuous forward operator by a

finite-dimensional approximation

Let us consider a sequence of finite-dimensional subspaces { Y, } nen
of the space Y, such that

YnC Yny1 C...CY and UpenYn=Y.

In the present discrete setting, we consider the following alternative
discrepancy principle:

Definition
Letd > 0 and y® be fixed. For A >t > 1, we choose m,n € N and
o > 0, with m = m(8,y?), n= n(3,y®) and o.= (8, y®), such that

8 < ||Fa(xC%) — Ol < A8, (13)

holds for x,?,’ff,, a solution of

min{||Fa(x) — y°||P + ok, (X)} subjectto x € Dp.  (14)
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Replace the continuous forward operator by a

finite-dimensional approximation

In the present context, all the results of the previous sections hold?
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Replace the continuous forward operator by a

finite-dimensional approximation

In the present context, all the results of the previous sections hold?
Yes!!!

However, some additional calculations should be done when F is
replaced by F,. The main argument in the convergence analysis is
based on the existence of a diagonal subsequence converging
(weakly) to an fy,-minimizing solution of Problem 1, when the limits
6 — 0, m,n — oo are taken.
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Convergence rates: Two situations

Case 1 mand a chosen by the corresponding discrepancy principle.
Case 2 m, nand a chosen by the corresponding discrepancy principle.
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Assumptions and notations

Let U denote a Banach space and

f:D(f) C U— RU{oo}

be a convex functional with sub-differential of(u) at u € D(f). The
Bregman distance (or divergence) of f at u € D(f) and
& € of(u) C U* is defined by

De (@, u) = (1) — f(u) = (&, T —u), (15)

for every U € U, where (-,--) is the dual product of U* and U.
Moreover, the set

De(f) = {x € D(f) : (u) 0}

is called the Bregman domain of f.
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Case 1: Convergence Rates

Assume the variational source condition

There exist B4 € [0,1), B2 > 0 and &' € 9f,,(x") such that
(&7, x" = x) < B1Dgi (x,x7) + Bal [F(x) — F(x )| (16)

for x € M, (P), where Omax, p > 0 satisfy p > Oimaxfx, (X")-

| |
\

Theorem

Let m and o. be chosen through the discrepancy principle (9) and let
Assumption 4 be satisfied. Up to some technical additional hypotheses
(to long for one page slide, we have:

IF(xpe) =Pl SA8  and  Dgi(xf 0 x") <
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Case 2: Convergence Rates

Define the estimate 1, := Dg-l-(meT,xT).

Theorem (Convergence Rates)

Assume that xgm is a minimizer of the functional in Equation (2)and

the regularization parameter o. = a(9, y5, Ym) satisfies the discrepancy
principle (6). Then, we have the following estimates

IF(x0) =¥°ll = OB +¥m+1Nm+¢n) and Dei(xpq0x") = O(8-+m N
(18)

with &7 € of,, (xT).

<
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Numerical Examples

Assuming that the data u was generated by the following parabolic
problem (Black-Scholes equation):

ou °u  du ou
&C—a(T,y)<a-}/2—ay>—bay =0 T>0,y€R
u(t=0,K) = max{0,1—¢e"}, foryeR,

dacay conditions
(19)
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Numerical Examples

Assuming that the data u was generated by the following parabolic
problem (Black-Scholes equation):

ou °u  du ou
&C—a(T,y)(a-}/z—ay>—bay =0 T>0,y€R
u(t=0,K) = max{0,1—¢e"}, foryeR,

dacay conditions
(19)
The inverse problem is to find the diffusion parameter
acQ:={aca+HT(Ry xR):a; <a< a} for given sparse
data u.
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We define the forward operator by:

F:QC H'™(R. xR) — L[3(R; xR)
a — u(a)—u(a),

with gy € Q fixed and a priori chosen.
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In the calibration we take as true (known) diffusion coefficient the
following:

2 4 4
g——e—f/zcos (?’) if —2/5<y<2/5

o(t,y) = (20)

2/5, otherwise,

and set a= (52/2. We also assume that b = 0.03 in Equation (??).
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The data is generated with step sizes At = 0.0025 and Ay = 0.01
and the coarser grid is given by the step lengths At = 0.02 and

Ay = 0.1. In the numerical solution of the inverse problem,

Equation (??) is numerically solved in the same mesh we interpolate
the data, i.e., we use At =0.02 and Ay = 0.1 in both cases. We vary
the mesh used to evaluate the diffusion coefficient in order to highlight
the discrepancy principle (??). The step sizes used in the tests were
the following:

At=0.1,0.08,0.07,0.06,0.05,0.04,0.03,0.02,0.01,0.0075,0.005,0.0025
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Figura: Evolution of the residual as a function of the number of mesh points.
We choose the regularization parameter presenting lower residual. In the
presence of noise, some discretization levels in the domain satisfy the
discrepancy principle. Compare it to the error estimation in Figure 2. The
horizontal line corresponds to Ad.
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Figura: Evolution of the L?-error. In the presence of noise, its minimum is
attained for a coarser mesh satisfying the discrepancy principle of

Equation (??).
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Figura: Left: original surface. Center and right: reconstructions
corresponding to the first and second points satisfying the discrepancy
principle of Figure 1, respectively.
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MATURITY 05 MATURTY 05 MATURITY 05
LOG MONEYNESS LOG MONEYNESS LOG-MONEYNESS

Figura: Left: original surface. Center and right: reconstructions satisfying the
discrepancy principle of Figure 1.
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Conclusions

@ We propose Morozov’s discrepancy principle in the same spirit of
[1], [2], [3]. [4] in the context of nonlinear operators in a discrete
setting.

@ We also state that the continuous case, presented in these
references, can be recovered from the discrete one, when the
discretization level goes to infinity. noting really new

@ We use this discrepancy principle as a rule to find appropriately
the discretization level in the domain and the regularization
parameter in Tikhonov regularization. Some how a 2
regularization parameter choice rule

@ regularizing properties and (+ existence of source conditions)
convergence rates results. as expected
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Something more

@ What we can say about iterative regularization????
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Something more

@ What we can say about iterative regularization????
We know results in Hilbert Spaces and Linear Operators

@ Not much for iterative regularization + nonlinear operators +
discretization
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