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Inverse Particle Transport Problems: Parameters
Identification

Nuclear Safety: source reconstruction

Optical Thomography : absorption coefficients reconstruction

Solution of the forward problems: analytical approaches (K. Rui,
Programa de Pós Graduação em Engenharia Mecânica, UFRGS)

Inverse techniques (C. Pazinatto, Programa de Pós Graduação em
Matemática Aplicada, UFRGS)
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Inverse Techniques

Source Reconstruction

On the use of Adjoint Operator to the solution of an Inverse Problem ;

Medium (1D) where physical properties and geometry are known

Relevant Issues of Interest:
1 Analytical Discrete Ordinates Method (ADO) ;
2 Adjoint flux: explicit solutions for spatial variable [9]
3 Computational time;
4 General source term: particular solutions
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Forward Problems

Absorption coefficient estimation: biological tissues

Two dimensional transport equation:
1 2D Explicit Nodal Formulation [3]
2 Alternative quadrature schemes × angular directions representation [4]
3 Radiative transfer equation: anisotropy effects
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This Talk

we report some studies and preliminary results we have carried out in
this context

we have considered parameters estimation: coefficients of a proposed
expansion

Isotropic sources
1 Polynomial source
2 Piecewise funcions

Tikhonov’s Regularization

Two-dimensional Radiative Transfer Forward Fomulation
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The Model

We begin with the time-independent neutron transport equation
which considers the distribution of the particles in non-multiplying
homogeneous media, with one energy group, written as follows

Ω · ∇Ψ(r,Ω)︸ ︷︷ ︸
streaming term

+ σtΨ(r,Ω)︸ ︷︷ ︸
total

collision term

=

∫
S
σs(r,Ω′ ·Ω)Ψ(r,Ω′) dΩ′︸ ︷︷ ︸
scattering source term

+Q(r,Ω) (1)

σt represents the total macroscopic cross section;
σs(r,Ω′ · Ω) represents the differential scattering macroscopic cross section;
Ω = (µ, η, ξ) represents the direction of the particle as a vector on the unit sphere S;
Q(r,Ω) is the fixed neutron source term.;

Ψ(r,Ω) is the angular flux at r = (x , y , z) along direction Ω.
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Balance- Phase Space
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Directions
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Variables

Angular variable: discrete directions

New Trends in Parameter Identification for Mathematical Models, RJ, Brasil



Problem of interest

0 zk−1

σd

a b zk z0

Figure: Multilayer slab
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Forward Problem

Lψ = S , L transport operator (2)

Lψ(z , µ) = µ
∂

∂z
ψ(z , µ) + σψ(z , µ)− c

2

L∑
l=0

βlPl(µ)

∫ 1

−1
Pl(µ

′)ψ(z , µ′)dµ′

(3)
ψ is the angular flux of particles, ; µ ∈ [−1, 1] is the cosine of the polar
angle measured from the positive z-axis, z ∈ (0, z0). σ is the total
macroscopic cross-section, c is the mean number of neutral particles
emerging from collisions, βl ’s are the coefficients of the expansion of the
scattering in terms of Legendre’s polynomials Pl ’s.

ψ(0, µ) = g1(µ) + α1ψ(z ,−µ), (4a)

ψ(z0,−µ) = g2(µ) + α2ψ(z0, µ), (4b)

µ ∈ [0, 1], (known) incoming fluxes at the boundaries g1 and g2,
α1, α2 ∈ [0, 1], the reflection coefficients.
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σd is the absorption macroscopic cross-section of a neutral particles
detector located within (0, z0),

r = 〈ψ, σd〉 ≡
∫ z0

0

∫ 1

−1
σd(z , µ)ψ(z , µ)dµdz (5)

is a measure of the absorption rate of neutral particles by the detector. In
this formulation, σd is defined as a positive constant in a given contiguous
region of (0, z0) and zero outside the region. Thus, r measures the
absorption rate of neutral particles within the detector’s region migrating
from all possible directions.
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Closely related to the transport operator L, the adjoint transport operator
L† is defined by [6]

L†ψ†(z , µ) = −µ ∂
∂z
ψ†(z , µ) + σψ†(z , µ)

− c

2

L∑
l=0

βlPl(µ)

∫ 1

−1
Pl(µ

′)ψ†(z , µ′)dµ′ (6)

where all physical parameters are the same as the ones in the transport
operator L. The rate of absorption of neutral particles defined in
Equation (5) might be alternatively computed as [6]

r =
〈
ψ†,S

〉
− P

(
g1, g2, ψ

†
)

(7)

ψ† computed once
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solving the adjoint transport problem

L†ψ† = σd (8)

subjected to boundary conditions prescribed by

ψ†(0,−µ) = α1ψ
†(z , µ), (9a)

ψ†(z0, µ) = α2ψ
†(z0,−µ), (9b)

for µ ∈ [0, 1]. The term P
(
g1, g2, ψ

†) represents a contribution of
particles migrating on both inward and outward directions at z = 0 and
z = z0 and is given by

P
(
g1, g2, ψ

†
)

= −
∫ 1

0
µ
[
g1(µ)ψ†(0, µ) +g2(µ)ψ†(z0,−µ)

]
dµ. (10)
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Homogeneous solution to the adjoint transport equation [9]

~ψ†±,h(z) =
N∑
j=1

[
aj ~φ±(νj)e

−z/νj + bj ~φ∓(νj)e
−(z0−z)/νj

]
, (11)

~ψ†±,h(z) =
[
ψ†h(z ,±µi )

]
∈ RN and ~φ±(ν) = [φ(ν,±µi )] ∈ RN

~φ±(ν) =
1

2
~M−1

(
~I ∓ ν ~B+

)
~x , (12a)

~M = diag (µi ) ∈ RN×N , where ~x ∈ RN and ν > 0 are such that

~B−B+x =
1

ν2
~x , (12b)

~B± =

(
σ~I − c

2

L∑
l=0

βl~Πl
~ΠT
l
~W [1± (−1)l ]

)
~M−1 (12c)

~B± ∈ RN×N ; ~Πl = [Pl(µi )] ∈ RN ; ~W = diag(wi ) ∈ RN×N . 2N directions
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Particular Solutions

S† is a constant source

ψ†p(z , µ) =
S†

σ − cβ0
(13)

S† is an isotropic source Green’s functions

~ψ†±,p(z) =
N∑
j=1

[
aj(z)~φ±(νj) + bj(z)~φ∓(νj)

]
(14)

aj (z) = cj

∫ z

0
S†(z ′)e−(z−z′)/νj dz ′ (15a)

bj (z) = cj

∫ z0

z
S†(z ′)e−(z′−z)/νj dz ′ (15b)

cj = −

N∑
i=1

wi

[
φ(νj , µi ) + φ(νj ,−µi )

]
N∑
i=1

wiµi
[
φ(νj , µi )

2 − φ(νj ,−µi )2
] . (15c)

New Trends in Parameter Identification for Mathematical Models, RJ, Brasil



Source Reconstruction Strategy

• a set of D particle detectors are placed within the physical domain [0, z0];
• for each detector, the adjoint angular flux that solves L†ψ† = σd ,i is
known, with σd ,i the absorption macroscopic cross section of the i-th
detector;
• the original source of neutral particles S might be accurately
approximated by the projection of S onto a linear space with known basis
function fj , j = 1, . . . ,B;
S might be approximated by

Ŝ(z) =
B∑
j=1

αj fj(z), (16)

with constants αj yet to be found, i.e., targets of our source
reconstruction process.
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In this work, only sectionally constant approximations are considered to
the neutral particle source S , thus, given [0, z0] =

⋃B
j=1[zj−1, zj ], a

partition of the physical domain, a function basis is defined as [?]

fj(z) =

{
1, if z ∈

[
zj−1, zj

]
,

0, otherwise.
(17)
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Under these assumptions, the rate of absorption of neutral particles within
the i-th detector region might be computed by

ri = ψ†i Ŝ − P
(
g1, g2, ψ

†
i

)
=

B∑
j=1

αj

〈
ψ†i , fj

〉
− P

(
g1, g2, ψ

†
i

)
(18)

for i = 1, . . . ,D. Upon defining ~r = [ri ] ∈ RD , ~p =
[
P
(
g1, g2, ψ

†
i

)]
∈ RD

and ~A =
[〈
ψ†i , fj

〉]
∈ RD×B , Equation (18) is rewritten in vector form as

~r = ~A~α− ~p (19)

with ~α = [αj ] ∈ RB .
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the coefficients αj in Equation (16) are to be estimated by the
minimization of the objective function [?]

f (~α) = ||~r ′ − ~A~α||22, (20)

with ~r ′ = ~rm − ~p, ~rm = [rm,i ] ∈ RD .
for each neutral particle detector a noisy measurement rm,i is made
available, computed by numerical simulation
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The well known ill-posedness of inverse problems might negatively affect
the quality of the reconstruction. This problem is treated here by searching
for Tikhonov regularized solutions of a minimization problem, i.e, looking
for solutions that minimize the objective function [5]

fλ(~α) = ||~r ′ − ~A~α||22 + λ2||~α||22, (21)

where λ is the Tikhonov’s regularization parameter, here chosen by the
Morozov discrepancy principle [5].
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Test I

S(z) = − z2

150
(z − 10) (22)

• z0 = 10; c = 0.99, σ = 1, L = 6 [9].
• Vacuum boundary conditions at z = 0 and z = 10.
• 10 detectors uniformly distributed within the physical domain
• absorption cross-sections, i = 1, . . . , 10

σd ,i =

{
0.1, z ∈ [0.4 + i − 1, 0.6 + i − 1],
0.0, otherwise,

(23)

For each detector: rm,i (Eq.(5)) solving Lψ = S by the ADO method,
N = 4, PLUS white noise is applied to the readings in order to generate
5000 different tests to the problem.
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Figure shows the distribution of the maximum error imposed on the
readings rm,i .
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Figure: Measurement errors imposed on the readings rm,i .
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• Partitions 1 and 2 to define the basis functions

[0, 10] =
10⋃
j=1

[j − 1, j ] [0, 10] =
20⋃
j=1

[0.5(j − 1), 0.5j ] (24)
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Figure: Dashed line: true source S ; Solid lines: reconstruction Ŝ .

Reconstruction Ŝ (minimal relative error from all the reconstructions)
Figures indicate: reconstruction process was able to recover the shape of
the source of neutral particles S .
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Next, the transport equation Lψ̂ = Ŝ is solved in order to compute
readings r̂m,i with the reconstructed source Ŝ . Relative errors between the
noisy free measurements and the reconstructions were computed.
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Figure: Relative errors on the reconstructed reading r̂m,i using Partitions 1 and 2.

It was noted similar behavior between the error in the measurements and
the reconstruction error. It is also highlighted that the maximum value
computed to the Tikhonov’s regularization parameter were 0.0680 and
0.0472, respectively.
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Test II

Reconstruction of a localized source piecewisely defined for z ∈ [0, 30] by

S(z) =


0.75, z ∈ [17, 20),
1.00, z ∈ [20, 24),
0.25, z ∈ [24, 26],
0.00, otherwise.

(25)

Parameters: c = 0.3, σ = 1 and β0 = 1 (isotropic scattering). As before,
it is also assumed that there is no incoming flux at the boundaries z = 0
and z = 30.
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Test II

60 detectors are uniformly distributed within the physical domain,
absorption cross section

σd ,i =

{
0.1, z ∈ [(2j − 11/10)/4, (2j − 9/10)/4],
0.0, otherwise,

(26)

i = 1, . . . , 60. Just as before, for each detector, a reading rm,i is computed
and, thereafter, white noise were applied to the readings in order to
generate 5000 different tests to the problem.
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Figure: Measurement errors imposed on the readings rm,i .
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For the reconstruction, a partition [0, 30] =
⋃60

j=1[0.5(j − 1), 0.5j ]
is considered to define the basis functions.

Figure: True source S : dashed line; Reconstruction Ŝ : solid line

.

The transport equation is evaluated using the reconstructed source Ŝ in order to calculate the

relative errors between the exact measurements and the noisy ones.

New Trends in Parameter Identification for Mathematical Models, RJ, Brasil



Figure exhibits the maximum relative errors among the sixty measurements
for all 5000 tests.
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Figure: Relative errors on the reconstructed reading r̂m,i using partition

[0, 30] =
⋃60

j=1[0.5(j − 1), 0.5j ].

The errors were found to be inferior than the noise added to the
measurements as Figure (5) indicates. For this test problem, the maximum
value among the Tikhonov’s regularization parameters was 0.1221, a
higher value than the ones presented on the previous test problems.
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60 particles detectors were first distributed uniformly within the slab,
where 18 of these detectors were in z ∈ [17, 26]. As a final test, most of
the detectors are removed with the exception 4 (i = 38, 41, 46 and 51),
resulting in an underdetermined system (objetive-function). The
distribution of the maximum error added to the readings rm,i is shown
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Figure: Measurement errors imposed on the readings rm,i .
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Once more (for each reconstructions) the transport equation is evaluated
with the reconstructed source and the detectors readings are computed.
Figure shows the maximum relative errors among all detectors between the
readings calculated using the reconstructions and the original source. The
maximum value of the regularization parameter was the same as before,
0.1221.
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Figure: Relative errors on the reconstructed reading r̂m,i using partition

[0, 30] =
⋃60

j=1[0.5(j − 1), 0.5j ].
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Computational Aspects

1 tests were performed on a machine equipped with an Intel Core
i5-4670 processor with 16 GiB of RAM

2 minimization of the objective function defined in Equation (21) was
performed by the non-negative least squares nnls subroutine, available
at Netlib

3 the first test problem took an average of 6.9× 10−4 seconds per
inversion.

4 second test problem, an average of 1.2× 10−3 seconds was required
per inversion

5 The third and fourth test problems took an average of 9.8× 10−3 and
8.8× 10−3 seconds per inversion
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Source-detector Problems - Energy Dependence
Forward Transport Problem

We consider a multilayer slab [0,Z ] =
⋃R

r=1[zr−1, zr ]

Energy spectrum divided into G energy groups

Forward transport operator L takes the form [6]

Lψ(z , µ) = µ
∂

∂z
ψ(z , µ) + S(z)ψ(z , µ)

− 1

2

L∑
l=0

Pl(µ)Tl(z)

∫ 1

−1
Pl(µ

′)ψ(z , µ′)dµ′

with µ ∈ [−1, 1]

Within each region [zr−1, zr ]:
S(z) = Sr , G × G diagonal matrix, macroscopic total cross section of
each energy group
Tl(z) = Tl,r , G × G matrices, group transfer cross sections

We also require continuity of ψ on the interface between these regions
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Source-detector Problems
Forward Transport Problem

Thus, we write the forward transport equation as

Lψ = q

Where q is an internal source of neutral particles

Subjected to boundary conditions at incoming directions

ψ(0, µ) = f1(µ) + α1ψ(0,−µ)

ψ(Z ,−µ) = f2(µ) + α2ψ(Z , µ)

with µ ∈ (0, 1]

f1 and f2 represent incoming fluxes of particles

α1, α2 ∈ [0, 1] are reflective coefficients
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Source-detector Problems
Absorption Rate of Particles – Forward Formulation

Particle detector with absorption cross-section σd

The absorption rate in the detector is given by [10]

r = 〈σd,ψ〉 =
G∑

g=1

∫ 1

−1

∫ zb

za

σd ,g (z , µ)ψg (z , µ)dzdµ

New q, f1, f2 ⇒ new evaluation of ψ in order to compute r

The adjoint (backward) transport equation offers an alternative and a
more efficient procedure
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ADO Formulation for Adjoint Problems
Explicit Formulas for the Absorption Rate

Back to the absorption rate evaluation, we may rewrite it as

r =
〈
ψ†

h,q
〉

+
〈
ψ†

p,q
〉

= rh + rp

rh depends only on the homogeneous solution (f1 = f2 = 0)

rh =
NG∑
j=1

νj ,r

[
Br ,j

(
e
− zr−zb

νj,r − e
− zr−za

νj,r

)
− Ar ,j

(
e
− zb−zr−1

νj,r − e
− za−zr−1

νj,r

)]
φj ,r

With φj ,r such that

φj ,r =
N∑

k=1

wk

G∑
g=1

qg
(

Φj ,g ,k
+,r + Φj ,g ,k

−,r

)
with Φj ,g ,k

±,r being the k-th direction of the g-th of the j-th
eigenfunction
If q is constant, rp is such that

rp = 2(zb − za)
G∑

g=1

ψ†p,g ,rqg ,r
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Numerical Results for Source-detector Problems
Test Problem, Ref. [?]

Total group cross-sections

S1 = diag (1.00, 1.20),S2 = diag (0.90, 1.50),

S3 = diag (1.10, 0.85),S4 = S1

Group transfer cross-sections (isotropic scattering)

T0,1 =

[
0.90 0.05
0.20 0.80

]
,T0,2 =

[
0.75 0.10
0.30 0.99

]
,T0,3 =

[
0.95 0.00
0.60 0.20

]
,

T0,4 = T0,1

We compute the absorption rate using both the forward (r) and
backward (r †) formulations with ADO method
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Numerical Results for Source-detector Problems
Test Problem

Table: Absorption rate of neutral particles.

r † r

4 directions 0.19672070465 0.19672070465
8 directions 0.19618914572 0.19618914572

16 directions 0.19618610963 0.19618610963
32 directions 0.19618610990 0.19618610990
64 directions 0.19618610982 0.19618610982

128 directions 0.19618610981 0.19618610981

All solutions performed well when increasing the number of directions

Using explicit formulas, |r − r †| = O
(
10−16

)
The same result was not possible to obtain using numerical
integration

ADO took less than a second to run (even at 128 directions)

# directions = 2× N for ADO
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Source Estimation
A Model for Estimating the Absorption Rate

We consider a slab [0,Z ] with known physical properties

and an internal source of particles q, isotropically defined

A set of D particle detectors is placed within the slab with absorption
cross-sections σdi

In practice, readings are expected to be noisy

Question: given the readings, are we able to recover q?

Suppose known solutions to L†ψ†
i = σdi (ADO method)

We suppose that q ≈ q̃ = [q̃1 · · · q̃G ]T , with

q̃g (z) =

Bg∑
b=1

αb,g q̃b,g (z)
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Source Estimation
A Model for Estimating the Absorption Rate

This way, we have

ri =
〈
ψ†

i , q̃
〉

=
G∑

g=1


Bg∑
b=1

αb,gAi ,b,g − pi ,g


With Ai ,b,g =

∫ 1

−1

∫ Z

0
ψ†i ,g (z , µ)q̃b,g (z)dzdµ

And

pi ,g =

∫ 1

0
µ
[
ψ†i ,g (0, µ)f1,g (µ) + ψ†i ,g (Z ,−µ)f2,g (µ)

]
dµ

Finally, we write

r(α1, . . . ,αG ) =
G∑

g=1

[
Agαg − pg

]
with Ag = [Ai ,b,g ], αg = [αb,g ] and pg = [pi ,g ]
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Source Estimation
Inverse Problem

Given exact measurements r(α1, . . . ,αG ), we consider additive errors
such that

r̃ = r(α1, . . . ,αG ) + ε

If ε ∼ N (0,W), we might write the probability density function for
the error distribution as [5]

π(ε) = (2π)−D/2|W|−1/2 exp

{
−1

2
[̃r − r]T W−1 [̃r − r]

}
Which is maximized when

SML(α1, . . . ,αG ) = [̃r − r]T W−1 [̃r − r]

is minimized

Since r is linear, a common approach for the minimization is the least
squares method
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Numerical Results for Source Estimation Problems
Test Problem I

We consider a single layer slab defined for z ∈ [0, 10], total
macroscopic cross-sections S = diag (1.0, 1.2), and group transfer
cross-sections

T0 =

[
0.90 0.05
0.20 0.80

]
And a particles’ source q = [q1 q2]T , with components given by

q1(z) =

{
0.6, z ∈ [3.0, 5.0],
0.0, otherwise

and

q2(z) =

{
0.3, z ∈ [6.0, 7.0],
0.0, otherwise
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Numerical Results for Source Estimation Problems
Test Problem I

Our minimization problem takes the form

Sλ(α) =
∣∣∣∣∣∣W−1/2 [̂r − Aα]

∣∣∣∣∣∣2 + λ2 ||α||2

with r̂ = r̃ − p, p =
[
pT
1 pT

2

]T
, A = [A1 A2], α =

[
αT

1 α
T
2

]T
Tikhonov regularized solution due to the ill-posedness of the problem
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Numerical Results for Source Estimation Problems
Test Problem I

r0 = [r0,i ] calculated with DD method, considering 128 discrete
directions, 100 nodes per cm and tolerance of 10−12

Using r0, we compute perturbed measurements ri with
W1 = diag([0.01r0,i ]

2) and W2 = diag([0.05r0,i ]
2)

A is computed using the ADO method to approximate the adjoint
fluxes, with N = 4 (8 discrete directions)

We searched for non-negative solutions for our minimization problem
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Numerical Results for Source Estimation Problems
Test Problem I – Noisy Measurement
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Numerical Results for Source Estimation Problems
Test Problem I – q estimation
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Numerical Results for Source Estimation Problems
Test Problem I – Scalar Flux
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Numerical Results for Source Estimation Problems
Test Problem II – Noisy Measurement
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Numerical Results for Source Estimation Problems
Test Problem II – q estimation

0 1 2 3 4 5 6 7 8 9 10

z, cm

0

0.2

0.4

0.6

0.8

q
1
(z

)

Group 1 -- Absolute Error: 0.1050, Relative Error: 12.37%

0 1 2 3 4 5 6 7 8 9 10

z, cm

0

0.1

0.2

0.3

q
2
(z

)

Group 2 -- Absolute Error: 0.0747, Relative Error: 24.89%

New Trends in Parameter Identification for Mathematical Models, RJ, Brasil



Numerical Results for Source Estimation Problems
Test Problem II – Scalar Flux
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Concluding Remarks

method was successfully applied in simple source reconstruction 1D
model problems with energy dependence

yielding good results in the sense that errors on the estimated
measurements were found slightly inferior to the noise added to the
real readings (one-group)

solution is fast
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Ongoing Projects and Future Works

alternative forms of errors

probabilistic approaches (preliminary results)

2D model : inverse (adjoint) and forward problem

1 Coarser meshes: accuracy improved
2 Angular discretization error and Ray Effects: use of alternative

quadrature schemes up to higher orders
3 currently: development of the associated eigenvalue problem for more

general phase functions

New Trends ?
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