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Abstract

In this article we show under what conditions it is possible to uniquely
identify simultaneously the source and initial conditions in a vibrating
Euler-Bernoulli beam, when the available data is the observation of the
displacement of a point during an arbitrary small interval of time. A
counterexample is also shown to indicate that if some conditions are
not satisfied then the unique identification is impossible.

Alexandre Kawano (University of São Paulo)Simultaneous Identification of Source, Initial Conditions and Asynchronous Sources in the Vibration Problem of Euler-Bernoulli BeamsNovember – 2017 2 / 41



Introduction

The equation

The equation that appears in this work is the Euler-Bernoulli equation that
describes the motion of an elastic beam under dynamic loading.
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Introduction

The problem


ρ∂

2w
∂t2 + ∂2

∂x2

(
EI ∂

2w
∂x2

)
=
∑J

j=1 gj ⊗ fj , in ]0,T0[×]0, L[,

w(0) = w0, in ]0, L[,
∂w
∂t (0, x) = v0, in ]0, L[,

w(t, ξ) = ∂w
∂x (t, ξ) = 0, ∀t ∈ [0,T0[, ∀ξ ∈ {0, L},

(1)
where ρ ∈ C∞([0, L]), ρ > 0, is the mass density, EI ∈ C∞([0, L]), EI > 0,
is the rigidity, {g1, g2, . . . , gJ} ⊂ CJ [0,T0[ is such that

[G (0)] =


1 g1(0) · · · gJ(0)
0 g ′1(0) · · · g ′J(0)
...

...
...

...

0 g
(J)
1 (0) · · · g

(J)
J (0)

 (2)

is invertible. The set of functions {f1, . . . , fJ} ⊂ H−2(]0, L[) describe the
spatial loading imposed to the beam and w is the displacement.
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Introduction

The problem

We will prove that if the initial velocity is known, the force spatial
distribution {f1, . . . , fJ} ⊂ H−2(]0, L[) and the initial position can be
simultaneously identified uniquely given the knowledge of the set

Γ = {(w(t, x) : (t, x) ∈ [0,T ]× Ω0} , (3)

where 0 < T < T0 and Ω0 ⊂ [0, L], non empty open set, can be arbitrarily
small. Furthermore, the initial velocity v0 ∈ L2(]0, L[) can also be uniquely
identified along with the initial position w0 ∈ L2(]0, L[) and the forcing
terms {f1, . . . , fJ} if it is also available the final velocity (knowledge of the
displacement profile is not necessary) of the beam at T0 and the data (3).
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Introduction

Counter example

Let u(t, x) = h(t)ϕ(x). Then it automatically satisfies

ρ
∂2u

∂t2
+

∂2

∂x2

(
EI
∂2u

∂x2

)
=
∂2h

∂t2
ρϕ︸ ︷︷ ︸

g1f1

+ h
∂2

∂x2

(
EI
∂2ϕ

∂x2

)
︸ ︷︷ ︸

g2f2

.

The initial conditions are{
u(0, x) = h(0)ϕ(x), ∀x ∈]0, L],

ut(0, x) = h′(0)ϕ(x), ∀x ∈]0, L].

Consider a situation in which h(0) 6= 0, h′(0) 6= 0, ϕ 6≡ 0, but ϕ|Ω0 = 0. In
this case, the forcing terms f1, f2 and the initial conditions are not null,
but w |[0,T ]×Ω0

= 0. That is, the data (3) is insufficient to fix uniquely the
loading {f1, f2}.

Alexandre Kawano (University of São Paulo)Simultaneous Identification of Source, Initial Conditions and Asynchronous Sources in the Vibration Problem of Euler-Bernoulli BeamsNovember – 2017 6 / 41



Introduction

However, we are going to see that if the initial position is null, the set of
functions g1, g2 satisfy a certain condition and w |[0,T ]×Ω0

= 0, then
necessarily f1 = 0 and f2 = 0.
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The direct problem

Solution of the direct problem
Associated eigenproblem

Consider the eigenvalue problem for Sn ∈ H = H2
0(]0, L[):{

1
ρ
∂2

∂x2

(
EI ∂

2S
∂x2

)
= λnS , in ]0, L[,

S(0) = S(L) = S ′(0) = S ′(L) = 0.
(4)
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The direct problem

Solution of the direct problem
Associated eigenproblem

With respect to the internal product,

〈φ1, φ2〉H =

(
EI

ρ

∂2φ1

∂x2
,
∂2φ2

∂x2

)
L2
ρ(0,L)

, (5)

where

(φ1, φ2)L2
ρ(0,L) =

∫ L

0
ρ(x)φ1(x)φ2(x)dx ,

the operator φ
T7→ 1

ρ
∂2

∂x2

(
EI ∂

2φ
∂x2

)
is self adjoint. Then the set of

eigenvectors of this problem forms an enumerable orthonormal basis
(Sn)n∈N of H that is also orthogonal in L2

ρ(0, L). Furthermore,
O(λn) = n4, Sn ∈ C∞([0, L]), λn > 0 and

(Sn, Sn)L2
ρ(0,L) = 1/λn, ∀n ∈ N. (6)
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The direct problem

Solution of the direct problem
Elements of the dual of H

Any Q ∈ H∗, can be expressed as

Q =
∑
n∈N

βnλnSn, (7)

where (βn)n∈N ∈ `2. In fact, by Riez Theorem there is a
∑

n∈N βnSn ∈ H,
with (βn)n∈N ∈ `2, such that

Q(φ) = 〈φ ,
∑
n∈N

βnSn〉H = (φ,
∑
n∈N

λnβnSn)L2
ρ
.

Then for any Q ∈ H∗ there is a sequence (βn)n∈N ∈ `2 such that
Q =

∑
n∈N λnβnSn.
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The direct problem

Solution of the direct problem
Elements of the dual of H

Any component of the spatial force distribution fj ∈ H∗, j ∈ {1, . . . J} can
be expressed as

fj
ρ

=
∑
n∈N

Aj ,nλnSn,

for (Aj ,n) ∈ `2.
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The direct problem

Solution of the direct problem
Elements of the dual of H

The initial position w0 ∈ L2(]0, L[) and the initial velocity v0 ∈ L2(]0, L[)
are represented respectively by

w0 =
∑
n∈N

Wn

√
λnSn, v0 =

∑
n∈N

Vn

√
λnSn,

where Wn = (w0,
√
λnSn)L2

ρ
. The expression for (Vn)n∈N ∈ `2(N) is

analogous.
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The direct problem

Solution of the direct problem
The solution

Using the Galerkin Method, we get a formal solution of (1) given by

w(t, x) =
∑
n∈N

Vn sin(
√
λnt)Sn(x) +

∑
n∈N

Wn

√
λn cos(

√
λnt)Sn(x)

+
J∑

j=1

∫ t

0
gj(t − τ)

∑
n∈N

Aj ,n

√
λn sin(

√
λnτ) Sn(x)dτ.

(8)

By substitution we can see that (8) is a solution of the first equation of
problem (1) in the sense of distributions. Note that al initial and boundary
conditions are satisfied.
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The direct problem

Solution of the direct problem
Uniqueness for the direct problem

From the fact that (Sn)n∈N forms an orthonormal basis in H and
‖ Sn ‖2

L2
ρ

= 1/λn, ∀n ∈ N, we obtain the following proposition.

Proposition

w ∈ C([0,T0],H2(]0, L[)) ∩ C1([0,T0],H∗). Besides,
w(0),w ′(0) ∈ L2

ρ(0, L).

Using a method analogous to the energy method applied to the wave
equation found, for example, in [Evans(1991)], we can see that (1) admits
at most one solution in C([0,T0],H2(]0, L[)) ∩ C1([0,T0],H∗).
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Inverse problem

Preparation for the solution of the inverse problem
Rewritting the solution of the direct problem

The solution (8) can be rewritten in another form as

w(t, x) =
∑
n∈N

Wn

√
λnSn(x)

+

∫ t

0
1× (

∑
n∈N

Vn

√
λn cos(

√
λnτ)Sn(x)−Wn λn sin(

√
λnτ)Sn(x))dτ

+
J∑

j=1

∫ t

0
gj(t − τ)

∑
n∈N

Aj ,n

√
λn sin(

√
λnτ) Sn(x) dτ.
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Inverse problem

Preparation for the solution of the inverse problem
Rewritting the solution of the direct problem

Defining

F0,V (t, x) =
∑
n∈N

Vn

√
λn cos(

√
λnt)Sn(x),

F0,W (t, x) =
∑
n∈N

Wn λn sin(
√
λnt)Sn(x),

F0(t, x) = F0,V (t, x) + F0,W (t, x),

Fj(t, x) =
∑
n∈N

Aj ,n

√
λn sin(

√
λnτ) Sn(x), j ∈ {1, . . . , J}

The last equation can be put in the final form

w(t, x) =
∑
n∈N

Wn

√
λnSn(x)

+

∫ t

0
1× F0(τ, x)dτ +

J∑
j=1

∫ t

0
gj(t − τ)Fj(t, x) dτ.

(9)
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Inverse problem

Preparation for the solution of the inverse problem
Sequences

Before the next lemma we recall that a sequence (λn)n∈N ⊂ C is uniformly
discrete if there is δ > 0 such that |λn − λm| ≥ δ, for every m,m ∈ N with
m 6= n.
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Inverse problem

Preparation for the solution of the inverse problem
Paley-Wiener space

Given a bounded set S ⊂ Rd , d ∈ N, with positive measure, the
Paley-Wiener space PWS is defined as

PWS =
{

F̂ : F ∈ L2; supp(F ) ⊂ S
}
.

Here we are interested only in the case when d = 1.
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Inverse problem

Preparation for the solution of the inverse problem
Sequences

Definition

The upper uniform density of a uniformly discrete set Λ is defined by

D(Λ) = lim
c→+∞

max
a∈R

#(Λ∩]a, a + c[)

c
.

Definition

An indexed set Λ
.

= (λn)n∈N ⊂ R is an interpolation set for PWS , S ⊂ R
bounded with positive measure, if for every sequence (cn)n∈N ⊂ `2(N)
there is φ ∈ PWS such that φ(λn) = cn, ∀λn ∈ Λ.

In the case of an interval ]a1, a2[⊂ R, Kahane [Kahane(1957)] (see also
[Olevskii and Ulanovskii(2009)]) proved that

D(Λ) <
1

2π
(a2 − a1)⇒ Λ is an interpolating set of PW]a1,a2[. (10)
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Inverse problem

Preparation for the solution of the inverse problem
A fundamental lemma: Statement

Now a lemma directly related to the result we are seeking:

Lemma

Consider F (t, x) =
∑

n∈N Ane
−i
√
λntSn(x), with (An)n∈N ⊂ `2. The

sequences (λn)n∈N and (Sn)n∈N are as described above.
If there are T ∈]0,T0[ and Ω0 ⊂ [0, L] such that F (t, x) = 0 in ]0,T [×Ω0,
then F ≡ 0.
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Inverse problem

Preparation for the solution of the inverse problem
A fundamental lemma: Proof

Observe that

〈F (·, x) , ˆ̂ϕ〉 =
∑
n∈N

AnSn(x)ϕ̂(
√
λn), ∀ϕ ∈ C∞c (]0,T0[).

Note that if ϕ ∈ C∞c (]0,T [) then ϕ̂ ∈ PW]0,T [.

Now, since D((
√
λn)n∈N) = 0, from the density of C∞c (]0,T [) in PW]0,T [,

we obtain that AnSn(x) = 0, ∀n ∈ N. But since (Sn)n∈N is a Hilbert basis,
for any n ∈ N, there is always φ ∈ C∞c (Ω0) such that Sn(φ) 6= 0. Therefore
An = 0, ∀n ∈ N, and F ≡ 0.

�
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Inverse problem

Preparation for the solution of the inverse problem
Non analyticity

Observation

If we test F (t, x) =
∑

n∈N Ane
−i
√
λntSn(x), as in Lemma (2) against

φ ∈ C∞c (Ω0), we get a function t 7→ F̃ (t)
.

= 〈F (t, ·) , φ〉, which is not a
real analytic function in general. This can be seen as we do the following
calculation using integration by parts.∫ t

0
h′′(t − τ)F̃ (τ)dτ −

∫ t

0
h(t − τ)F̃ ′′(τ) dτ

+ h(0)F̃ ′(t) + h′(0)F̃ (t) = F̃ ′(0)h(t).
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Inverse problem

Inverse problem

The main theorem follows.
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Inverse problem

Inverse problem
The main theorem: statement

Theorem

Let J ∈ N, {gj : j = 1, . . . , gJ} ⊂ E ′([0,+∞)) ∩ CJ([0,T [). Suppose that
the matrix

[G (0)] =


g1(0) · · · gJ(0)
g ′1(0) · · · g ′J(0)
...

...
...

g
(J−1)
1 (0) · · · g

(J−1)
J (0)


is invertible.
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Inverse problem

Inverse problem
The main theorem: statement

Theorem (Cont.)

Suppose also that Fj ∈ C∞([0,+∞), S′) satisfies Fj(0, x) = 0, ∀x ∈ [0, L],
∀j ∈ {1, . . . , J}.
If

w(t, x) = C (x) +
J∑

j=1

∫ t

0
gj(t− τ) Fj(τ, x) dt, ∀(t, x) ∈]0,T [×Ω0, (11)

where C is a distribution that does not depend on t, is the solution of (1),
then the existence of T ∈]0,T0[ and Ω0 ∈]0, L[ such that w |]0,T [×Ω0

= 0
implies Fj = 0 in ]0,T [×Ω0, ∀j ∈ {1, . . . , J}.
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Inverse problem

Inverse problem
The main theorem: Proof

We can derivate (11) it with respect to t to obtain

J∑
j=1

gj(0)Fj(t, x) +
J∑

j=1

∫ t

0
g ′j (t− τ) Fj(τ, x) dτ = 0, ∀t ∈]0,T [, ∀x ∈ Ω0.

Now we test both sides of the last equation, with respect to the spatial
variable x , with φ̂ ∈ C∞c (Ω0), φ ∈ PWΩ0 . We obtain

〈
J∑

j=1

gj(0)F̂j(t, ·) +

∫ t

0
g ′j (t − τ) F̂j(τ, ·) dτ , φ

〉
= 0, ∀t ∈]0,T [. (12)
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Inverse problem

Inverse problem
The main theorem: Proof

Derivating (12) with respect to the time variable t and using the
elementary fact that

F̂ ′(t, ξ) =

∫ t

0
F̂ ′′(τ, ξ) dτ + F̂ ′(0, ξ), (13)

we obtain that ∀t ∈]0,T [,〈
J∑

j=1

g ′j (0)F̂j(t, ·) +
J∑

j=1

∫ t

0
[gj(0)ξ4 + g ′′j (t − τ)] F̂j(τ, ·)dτ , φ

〉

= −

〈
J∑

j=1

gj(0)F̂ ′j (0, ·) , φ

〉
.

(14)

Realizing that the left hand side of this equation is zero for t = 0 and the
right hand side does not depend on t, we have necessarily that it must be
necessarily null.
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Inverse problem

Inverse problem
The main theorem: Proof

Derivating again the expression just obtained with respect to the time
variable and using (13), we obtain for all t ∈]0,T ],〈

J∑
j=1

[gj(0)ξ4 + g ′′j (0)]F̂j(t, ·) +
J∑

j=1

∫ t

0
[g ′j (0)ξ4 + g ′′′j (t − τ)] F̂j(τ, ·)dτ , φ

〉

= −

〈
J∑

j=1

g ′j (0)F̂ ′j (0, ·) , φ

〉
.

(15)

Again, the left hand side
∑J

j=1 g ′j (0)F̂ ′j (0, ξ) must be null, because it does
not depend on t and for t = 0 the left hand side is zero.
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Inverse problem

Inverse problem
The main theorem: Proof

By induction we prove that for all t ∈]0,T ],〈
J∑

j=1

[

n+1
2∑

m=1

ξ4( n+1
2
−m)g

(2(m−1))
j (0)]F̂j(t, ·)

+

∫ t

0

J∑
j=1

g
(n)
j (t − τ) +

n−1
2∑

m=1

ξ4( n+1
2
−m)g

(2m−1)
j (0)

 F̂j(τ, ·)dτ, φ

〉
= 0,

(16)

for n odd,
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Inverse problem

Inverse problem
The main theorem: Proof

and〈
J∑

j=1

[

n
2∑

m=1

ξ4( n
2
−m)g

(2m−1)
j (0)]F̂j(t, ·)

+

∫ t

0

J∑
j=1

g
(n)
j (t − τ) +

n
2
−1∑

m=0

ξ4( n
2
−m)g

(2m)
j (0)

 F̂j(τ, ·)dτ, φ

〉
= 0,

(17)

for n even.
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Inverse problem

Inverse problem
The main theorem: Proof

Based on (16) and (17) we define the matrices

[G̃ (0)] = [G̃nj(0)], and [G̃(t)] = [G̃nj(t)], (18)

where

G̃nj(0) =


∑ n+1

2
m=1 ξ

4( n+1
2
−m)g

(2(m−1))
j (0), if n is odd,∑ n

2
m=1 ξ

4( n
2
−m)g

(2m−1)
j (0), if n is even

and

G̃nj(t) =

g
(n)
j (t) +

∑ n−1
2

m=1 ξ
4( n+1

2
−m)g

(2m−1)
j (0), if n is odd,

g
(n)
j (t) +

∑ n
2
−1

m=0 ξ
4( n

2
−m)g

(2m)
j (0). if n is even
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Inverse problem

Inverse problem
The main theorem: Proof

We also define

[F̂ (t, ξ)] = [F̂1(t, ξ) · · · F̂J(t, ξ)]t , [φ(ξ)] = [φ1(ξ) · · ·φJ(ξ)]t .

In this way, (16) and (17) can be written in matrix form〈
[G̃ (0)][F̂ (t, ·)] +

∫ t

0
[G(t − τ)][F̂ (τ, ·)]dτ , [φ]

〉
= [0], ∀t ∈]0,T [. (19)
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Inverse problem

Inverse problem
The main theorem: Proof

Now we recognize the fact that the n-line of the matrix G̃ (0) is the result
of replacing the n-line of the matrix

[G (0)] =


g1(0) · · · gJ(0)
g ′1(0) · · · g ′J(0)
...

...
...

g
(J−1)
1 (0) · · · g

(J−1)
J (0)


by its n-line added to linear combinations of other lines. Since by
hypothesis det[G (0)] 6= 0, we have also det[G̃ (0)] 6= 0. Then, given the
existence of its inverse, we can write (19) as a Volterra integral equation
of the second kind.〈

[F̂ (t, ·)] +

∫ t

0
[G̃ (0)]−1[G(t − τ)][F̂ (τ, ·)]dτ , [φ]

〉
= [0], ∀t ∈]0,T [.

(20)
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Inverse problem

Inverse problem
The main theorem: Proof

The conclusion is that 〈Fj(t, ·) , φ̂〉 = 0, ∀j ∈ {1, . . . , J}, ∀t ∈]0,T [,

∀φ̂ ∈ C∞c (Ω0).
Finally, we apply Lemma 2 again to conclude that Fn ≡ 0, ∀n ∈ {1, . . . J}.

�
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Inverse problem

Inverse problem
Corollary: Statement

Corollary

In problem (1), if v0 ≡ 0, and the matrix (2) is invertible, then the initial
position w0 ∈ L2(]0, L[) and the force spatial distribution
{f1, . . . , fJ} ⊂ H−2(]0, L[) can be simultaneously identified uniquely given
the knowledge of the set Γ described in (3).
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Inverse problem

Inverse problem
Corollary: Proof

Given T ∈]0,T0[ and ∅ 6= Ω0 ⊂]0, L[, Problem 1 defines a linear operator

(w0, (fj)
J
j=1) 7→ w |]0,T0[×Ω0

.

To prove that the information contained in Γ uniquely determines w0 and
(fj)

J
j=1, it suffices to prove that

w |]0,T0[×Ω0
= 0⇒ (w0, (fj)

J
j=1) = (0, 0).
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Inverse problem

Inverse problem
Corollary: Proof

Suppose then that
w |]0,T0[×Ω0

= 0. (21)

With the hypothesis posed in this Corollary, all the conditions for the
application of Theorem 4 are fulfilled. We conclude then that

Fj(t) = 0, ∀t ∈]0,T0[, ∀j ∈ 0, . . . , J.

From Lemma 2 we conclude that the sequences (An,j)n∈N, (Wn)n∈N are all
null, that is, (w0, (fj)

J
j=1) = (0, 0).

�
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Inverse problem

Inverse problem
Corollary: Statement

If we have also information concerning a final observation, then we can say
a little more.

Corollary

In problem (1), if the matrix (2) is invertible, the initial position
w0 ∈ L2(]0, L[), the initial velocity v0 ∈ L2(]0, L[) and the force spatial
distribution {f1, . . . , fJ} ⊂ H−2(]0, L[) can be simultaneously identified
uniquely given the knowledge of the set Γ described in (3) and the
measurement of the velocity distribution at t = T0.

It is enough to revert the time arrow. Equation (1) is invariant if t is
substituted for −t. Then the knowledge of the velocity at t = T0 becomes
the new initial velocity. Then the conclusion follows as an immediate
consequence of Corollary 6.

�
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Discussion and Conclusion

Conclusion

The Counter example presented in the beginning is important because it shows
a case on which data (3) is not sufficient for the unique determination of
the right hand side of equation (1). In fact, over Ω0 where the data is
taken, the displacement is null for every t ≥ 0. Corollary 6 shows that if
the initial condition v0 = 0 is imposed then not only this counter example
is excluded but also in this case data (3) enables unique determination of
the right hand side of equation (1) together with the initial position w(0).
Using reversal of time in Corollary 7, from the final conditions at t = T0,
the initial position and velocity are obtained.
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