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Introduction

We consider the nonlinear constrained optimization program:
minimize

x
f (x)

subject to g(x) 6 0, g ∈ Rm

and h(x) = 0, h ∈ Rp

where:

f : Rn → R, g : Rn → Rm and h : Rn → Rp

f (x), g(x) and h(x) are smooth functions, not necessarily convex.
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Introduction

We present a general approach for interior point algorithms to solve the
nonlinear constrained optimization problem.

Given an initial estimate x of at the interior of the inequality constraints,
these algorithms define a sequence of interior points with the objective
reduced at each iteration.

By this technique, first order, quasi Newton or Newton algorithms can be
obtained.
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Introduction

In this talk, we present:

A FEASIBLE DIRECTION ALGORITHM At each point a descent feasible
direction is obtained. Then, an inaccurate line search is done to get a
new interior point with a reasonable decrease of the objective.

A FEASIBLE ARC ALGORITHM The line search is done along an arc.
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Introduction

The present approach is:

Simple to code, strong and efficient.

It does not involve penalty functions, active set strategies or Quadratic
Programming subproblems.

It merely requires to solve two linear systems with the same matrix at
each iteration and to perform an inaccurate line search.

In practical applications, more efficient algorithms can be obtained by
taking advantage of the structure of the problem and particularities of the
functions in it.
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Nonlinear constrained optimization

Our approach is based on FDIPA - The Interior Point Algorithm for
Standart Nonlinear Constrained Optimization.

Following we shall describe FDIPA and the basic ideas involved in it.

Herskovits, J., “A Feasible Directions Interior Point Technique For
Nonlinear Optimization”, Journal of Optimization Theory and Algorithms,
1998.

Herskovits, J., “A two-stage feasible directions algorithm for nonlinear
constrained optimization”, Mathematical Programming, 1986.
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About FDIPA

FDIPA is a general technique to solve nonlinear constrained optimization
problems.

Requires an initial point at the interior of the inequality constraints and
generates a sequence of interior points.

When the problem has only inequality constraints the objective function
is reduced at each iteration.

FDIPA only requires the solution of 2 linear systems with the same
matrix at each iteration.

FDIPA is very robust and it no requires parameters tuning.
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About FDIPA

We describe now FDIPA and discuss the ideas involved in it, in the framework
of the inequality constrained problem:{

minimize
x

f (x)

subject to g(x) 6 0

Let be the feasible set:

Ω ≡
{

x ∈ Rn : g(x) 6 0
}
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Definitions

d ∈ Rn at x ∈ Rn is a descent direction for a smooth function
φ(x) : Rn → R if dT∇φ(x) < 0.

d ∈ Rn is a feasible direction for the problem, at x ∈ Ω, if for some
θ(x) > 0 we have x + td ∈ Ω for all t ∈ [0, θ(x)].

A vector field d(x) defined on Ω is said to be a uniformly feasible
directions field of the problem (2), if there exists a step length τ > 0 such
that x + td(x) ∈ Ω for all t ∈ [0, τ ] and for all x ∈ Ω. That is, τ ≤ θ(x) for
x ∈ Ω.
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About FDIPA

Search Direction
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FDIPA – Feasible Direction Interior Point Algorithm

Parameter. ξ ∈ (0, 1), η ∈ (0, 1), ϕ > 0 e ν ∈ (0, 1).

Data. x ∈ int(Ωa), λ ∈ Rm
+ and B ∈ Rn×n, where the initial quasi-Newton

matrix is Symmetric and Positive Definite.

Step 1. Computation of the search direction d .

(i) Solve the following linear systems to obtain d0, d1 ∈ Rn and λ0, λ1 ∈ Rm.[
B ∇g(x)

Λ∇g>(x) G

] [
d0 d1
λ0 λ1

]
=

[
−∇f (x) 0

0 −λ

]
If d0 = 0, stop.

(ii) If d>1 ∇f (x) > 0, compute ρ = min

{
ϕ‖d0‖2, (ξ − 1)

d>0 ∇f (x)

d>1 ∇f (x)

}
Otherwise, compute ρ = ϕ‖d0‖2

(iii) Compute the search direction d = d0 + ρd1.
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FDIPA – Feasible Direction Interior Point Algorithm

Step 2. Line Search.

Find t , the first element of {1, ν, ν2, ν3 . . . } such that

f (x + td) 6 f (x) + t .η.d>∇f (x)

and

gi (x + td) < 0, λ̄i ≥ 0,

gi (x + td) ≤ gi (x), λ̄i < 0.

Step 3. Updates.

(i) Update the new point by x = x + td .

(ii) Define a new value for B ∈ Rm×m symmetric and positive definite.

(iii) Define a new value for λ ∈ Rm
+

(iv) Go to Step 1.
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About FDIPA

At each point FDIPA computes first a Search Direction that is a
Feasible Descent Direction of the problem

Then, through a line search procedure, a new feasible point with a
lower cost, is obtained

In fact, the search directions constitute a Uniformly Feasible
Directions Field
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About FDIPA

Karush-Kuhn-Tucker optimality conditions:

If x is a local minimum, then

∇f (x) +∇g(x)λ = 0

G(x)λ = 0

g(x) 6 0

λ > 0

where:

λ ∈ Rm are the dual variables, and

G(x) diagonal matrix with Gii (x) = gi (x).

In the present approach, we look for (x , λ) that satisfy KKT conditions.
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Assumptions

There exists a real number a such that the set Ωa ≡ {x ∈ Ω : f (x) 6 a}
is compact and has an interior Ω0

a.

Each x ∈ Ω0
a satisfy g(x) < 0.

The functions f and g are continuously differentiable in Ωa and their
derivatives satisfy a Lipschitz condition.

(Regularity Condition). For all Stationary Point x∗ ∈ Ωa, the vectors
∇gi (x∗), for i such that gi (x∗) = 0, are linearly independent.
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About FDIPA

We propose Newton like iterations to solve the equations in KKT conditions:

∇f (x) +∇g(x)λ = 0

G(x)λ = 0

in such a way that each iterate satisfies the inequations:

g(x) 6 0

λ > 0

We define a function ψ such that:

ψ(x , λ) = 0⇐⇒

{
∇x L(x , λ) = 0

ΛG(x) = 0

The Jacobian matrix of ψ is:[
B ∇g(x)

Λ∇gT (x) G(x)

]
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About FDIPA

A Newton-like Iteration in (x , λ) for the equations in KKT condition is:[
B ∇g(x)

Λ∇gT (x) G(x)

] [
x0 − x
λ0 − λ

]
= −

[
∇f (x) +∇g(x)λ

G(x)λ

]
where:

(x , λ) is the present point,

(x0, λ0) is a new estimate.

Λ is a diagonal matrix such that Λii = λi .
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About FDIPA

We can take:

B = ∇2f (x) +
m∑

i=1

λi∇2g(x) : a Newton’s Method;

B : a quase-Newton approx.: Quasi-Newton;

B = I : a First order method.

We define now the vector d0 in the primal space, as

d0 = x0 − x

Then, we have:

Bd0 +∇g(x)λ0 = −∇f (x)

Λ∇gT (x)d0 + G(x)λ0 = 0
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About FDIPA

We prove that, if;

B is Positive Definite;

λ > 0.

and

g(x) 6 0;

then:

The system has an unique solution;

d0 is a descent direction of f (x).
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About FDIPA

However, d0 is not always a feasible direction.

In fact,
Λ∇gT (x)d0 + G(x)λ0 = 0

is equivalent to:

λi∇gT
i (x)d0 + gi (x)λ0i ; i = 1, . . . ,m

Thus, d0 is not always feasible since is tangent to the active constraints.
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About FDIPA

Then, to obtain a feasible direction, a negative number is added in the right
side:

λi∇gT
i (x)d + gi (x)λi = −ρλiωi , i = 1, . . . ,m,

and we get a new perturbed system:

Bd +∇g(x)λ = −∇f (x)

Λ∇gT (x)d + G(x)λ = −ρλ

where ρ > 0.

The negative number in the right hand side produces the effect of bending d0

to the interior of the feasible region, being the deflection relative to each
constraint proportional to ρ.
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About FDIPA

As the deflection is proportional to ρ and d0 is descent, by establishing
upper bounds on ρ, it is possible to ensure that d is a descent direction
also.

Since dT
0 ∇f (x) < 0, we can obtain these bounds by imposing:

dT∇f (x) 6 αdT
0 ∇f (x),

which implies dT∇f (x) < 0.
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About FDIPA

Let us consider

Bd0 +∇g(x)λ0 = −∇f (x)

Λ∇gT (x)d0 + G(x)λ0 = 0

and the auxiliary system of linear equations

Bd1 +∇g(x)λ1 = 0

Λ∇gT (x)d1 + G(x)λ1 = −λ
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About FDIPA

We have that the roots of

Bd +∇g(x)λ = −∇f (x)

Λ∇gT (x)d + G(x)λ = −ρλ

are
d = d0 + ρd1

and
λ = λ0 + ρλ1

By substitution of d = d0 + ρd1 in dT∇f (x) 6 αdT
0 ∇f (x), we get

ρ 6 (α− 1)
dT

0 ∇f (x)

dT∇f (x)

in the case when dT
1 ∇f (x) > 0

Otherwise, any ρ > 0 holds.
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About FDIPA

Search Direction
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About FDIPA

In fact, the search direction d constitutes an uniformly feasible directions
field.

To find a new primal point, an inaccurate line search is done in the
direction of d .

We look for a new interior point with a satisfactory decrease of the
objective.

Different updating rules can be employed to define a new λ positive.
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About the Line Search

We extend Armijo’s Line Search to this kind of interior point algorithms:

Compute t , the first number of the sequence
{

1, ν, ν2, ν3, . . .
}

, such that:

f (x + td) < f (x) + tη∇f T (x)d

and
gi (x + td) < 0, if λi > 0

or
gi (x + td) 6 gi (x), otherwise

These conditions:
(i) Ensure a reasonable decrease of the function.
(ii) Only accept interior points.
(iii) Avoids saturation of non active constraints.

In practice we employ more efficient line search procedures:
(i) An extension of Wolfe’s rule, combined with interpolations of the functions.
(ii) An extension of Goldstein’s rule, combined with interpolations of the

functions.
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Theoretical Results

First we prove that the algorithm never fails, in particular that the linear
systems have an unique solution.

We prove that any sequence given by the algorithm converges to a KKT
point for any way of updating, and, that verify the assumptions above.

Moreover, converges to Karush-Kuhn- Tucker pair. Depending on the
way of updating , global convergence in the dual space can also be
obtained.
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Theoretical Results

Several practical applications and test problems were solved very
efficiently with this algorithm.

However for some problems with highly nonlinear constraints the unitary
step length is not obtained and the rate of convergence is worst than
superlinear.

This effect is similar to the Maratos’ effect for the feasible direction
methods and occurs when the feasible direction supports a too short
feasible segment.

The Feasible Arc technique avoids this effect.

29/38



Theoretical Results

The arc search technique was first presented by Mayne and Polak,
1976.

Painer and Tits, 1987, employed it in a feasible SQP algorithm.

Panier, Tits and Herskovits, 1988 modified FD-IPA by including an arc
search.

All this methods require an additional SQP subproblem.

With the present approach we only need to solve an additional linear
system.
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About FAIPA

To include 2nd order information about the constraints:
We compute the search direction d of the Feasible Directions Algorithm,
and

ω̃i = gi (x + d)− gi (x)−∇gi (x)d .

In effect:

ω̃i ≈
1
2

d>∇2gi (x)d

That is, ω̃ is an approximation of the 2nd derivative of gi (x) along d .
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FAIPA – Feasible Direction Interior Point Algorithm

Finally,

i) The 2nd order correction d̃ is computed by solving:

Bd̃ +∇g(x)λ̃ = 0;

λ∇g>(x)d̃ + g(x)λ̃ = −λω̃,

ii) The feasible arc is defined as: xk+1 = xk + td + t2d̃ .

32/38



About FAIPA

Search Arc
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About FAIPA

We prove that:

i) For any x ∈ Ω, there is a θ(x) > 0 such that x = td + t2d̃ for all
t ∈ [0, θ(x)].

ii) θ(x) > 1 for x near enough of a Karush - Kuhn – Tucker Point.
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FAIPA – Feasible Arc Interior Point Algorithm

Parameter. ξ ∈ (0, 1), η ∈ (0, 1), ϕ > 0 e ν ∈ (0, 1).

Data. x ∈ int(Ωa), ω ∈ Rm
+, λ ∈ Rm

+ and B ∈ Rn×n, where the initial
quasi-Newton matrix is Symmetric and Positive Definite.

Step 1. Computation of the search direction d .

(i) Solve the following linear systems to obtain d0, d1 ∈ Rn and λ0, λ1 ∈ Rm.[
B ∇g(x)

Λ∇g>(x) G

] [
d0 d1
λ0 λ1

]
=

[
−∇f (x) 0

0 −Λω

]
If d0 = 0, stop.

(ii) If d>1 ∇f (x) > 0, compute ρ = min

{
ϕ‖d0‖2, (ξ − 1)

d>0 ∇f (x)

d>1 ∇f (x)

}
Otherwise, compute ρ = ϕ‖d0‖2

(iii) Compute the search direction d = d0 + ρd1.
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FAIPA – Feasible Arc Interior Point Algorithm

Step 2. Compute ω̃i and d̃

(i) Compute
ω̃i = gi (x + d)− gi (x)−∇g>i (x)d

(ii) Solve the linear system:

Bd̃ +∇g(x)λ̃ = 0

Λ∇g>(x)d̃ + G(x)λ̃ = Λω̃

36/38



FAIPA – Feasible Arc Interior Point Algorithm

Step 3. Arc Search.

Find t , the first element of {1, ν, ν2, ν3 . . . } such that

f (x + td + t2d̃) 6 f (x) + t .η.d>∇f (x)

and

gi (x + td + t2d̃) < 0, λ̄i ≥ 0,

gi (x + td + t2d̃) ≤ gi (x), λ̄i < 0.

Step 4. Updates.

(i) Update the new point by x = x + td + t2d̃ .

(ii) Define a new value for B ∈ Rm×m symmetric and positive definite.

(iii) Define a new value for λ ∈ Rm
+

(iv) Go to Step 1.
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