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The problem

Let E ,F be Banach spaces, A ∈ L(E ,F ). Consider the equation

Au = f , (1)

where f ∈ R(A) is unknown, only noisy data f δ with‖f δ − f ‖F ≤ δ are

available.

Typically the problem is formulated in in�nite-dimensional space. If the

problem is ill-posed, then usually it is �rst regularized and then discretized.

Often the discretization works as regularization as well: if data are noisy

with known noise level δ, then by proper choice of n = n(δ) the solutions

of discretized equations with noisy data converge to the solution of the

original problem with exact data.

Most results about self-regularization have been obtained in Hilbert spaces.

But for integral equations the most natural space is C , especially for

collocation or quadrature methods. Often also L1 is useful to recover sparse

solution.
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Projection methods

Assume that (1) is uniquely solvable. Let u∗ be the solution for exact f .

Let En ⊆ E , Zn ⊆ F ∗ be �nite dimensional subspaces, dimEn = dimZn.

General linear projection method: �nd un ∈ En such that

∀zn ∈ Zn 〈zn,Aun〉F∗,F = 〈zn, f δ〉F∗,F . (2)

De�ne Qn ∈ L(F ,Z ∗n ): ∀g ∈ F , zn ∈ Zn : 〈Qng , zn〉Z∗
n ,Zn = 〈zn, g〉F∗,F .

Then (2) ⇐⇒ QnAun = Qnf
δ.

‖Qn‖ = sup
g∈F ,‖g‖F =1

zn∈Zn,‖zn‖F∗=1

〈Qng , zn〉Z∗
n ,Zn = sup

g∈F ,‖g‖F =1
zn∈Zn,‖zn‖F∗=1

〈zn, g〉F∗,F = 1.

Example. Collocation method for integral equations.

F = C [a, b], Zn = span{δ(t − ti ), i = 1, . . . , n}, ti ∈ [a, b].
(2) ⇐⇒ Aun(ti ) = f δ(ti ), i = 1, . . . , n.
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κ̃n = sup
wn∈En

‖wn‖E
‖QnAwn‖Z∗

n

= sup
wn∈En

‖wn‖E
supzn∈Zn,‖zn‖F∗=1〈zn,Awn〉F∗,F

Lemma 1 (Uniqueness of the discrete solution)

Let dim(En) = dim(Zn) and N (QnA) ∩ En = {0}. Then (2) is uniquely

solvable for each f δ ∈ F .

Denote An := QnA|En : En → Z ∗n . Then the lemma means that An has an

inverse and ‖A−1n ‖ = κ̃n.
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κn = sup
vn∈En

‖vn‖E
‖Avn‖F

, κ̆n = ‖A−1n Qn‖, κ̃n = ‖A−1n ‖ = sup
vn∈En

‖vn‖E
‖QnAvn‖F

,

τn = sup
vn∈En,vn 6=0

‖Avn‖F
‖QnAvn‖Z∗

n

.

Lemma 2

Let dim(En) = dim(Zn) and N (QnA) ∩ En = {0} hold. Then

κn ≤ κ̆n ≤ κ̃n ≤ τnκn.

If there exists τ <∞ such that τn ≤ τ for all n ∈ N then also κ̃n ≤ τκn,
i.e. the quantities κn, κ̆n and κ̃n are all equivalent as n→∞.
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Convergence with a priori choice of n = n(δ)

Theorem 3

Let (1) and (2) be uniquely solvable for each n ≥ n0 and u∗, un be their

solutions. Then the following error estimate holds:

‖un − u∗‖E ≤ min
vn∈En

[‖u∗ − vn‖E + ‖A−1n QnA(u∗ − vn)‖E ] + κ̆nδ

≤ (1 + ‖A−1n QnA‖) dist(u∗,En) + κ̆nδ.

In case of exact data (δ = 0) the convergence ‖un − u∗‖E → 0 as n→∞
holds if and only if there exists a (ûn)n∈N, ûn ∈ En, satisfying the

convergence conditions ‖u∗ − ûn‖E → 0 as n→∞ and

‖A−1n QnA(u∗ − ûn)‖ → 0 as n→∞.

If these conditions hold and the data are noisy, then choosing n = n(δ)
according to a priori rule n(δ)→∞ and κ̆n(δ)δ → 0 as δ → 0 we have

convergence ‖un(δ) − u∗‖E → 0 as δ → 0.
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According to the previous theorem the convergence may hold due to

su�cient smoothness of the solution.

The next theorem gives conditions for convergence for every f ∈ R(A) (i.e.

for every u∗ ∈ E without additional smoothness requirements).

Theorem 4 (Convergence for every f )

Let (1) and (2) be uniquely solvable for n ≥ n0. Then in case of exact data

(δ = 0) the convergence ‖un − u∗‖E → 0 as n→∞ holds for every

f ∈ R(A) if and only if the subspaces En satisfy condition

infvn∈En ‖vn − v‖ → 0 ∀v ∈ E as n→∞, and the projectors

A−1n QnA : E → En are uniformly bounded, i.e.,

‖A−1n QnA‖ ≤ M

for all n ≥ n0 and some constant M.

The last two conditions are necessary and su�cient for existence of

relations n = n(δ) for convergence ‖un(δ) − u∗‖E → 0 as δ → 0 for every

f ∈ R(A) given approximately as arbitrary f δ with ‖f δ − f ‖ ≤ δ.
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For the convergence analysis in case of exact data we can choose di�erent

image spaces, particularly such that the equation becomes well-posed. But

for noisy data the image space is determined by the data.

The following theorem shows that convergence for the �main part� of the

equation implies convergence for the whole equation.

Theorem 5

Let (1) and (2) be uniquely solvable for n ≥ n0. Assume that there exists a

(ûn)n∈N, ûn ∈ En, satisfying ‖u∗ − ûn‖E → 0 as n→∞. Let the operator

A : E → F have the form A = S + K , where S : E →W ⊂ F is invertible,

W is a Banach space with continuous imbedding and K : E →W is

compact. Let the operator Sn := QnS |En : En → Z ∗n be invertible and

‖S−1n QnS‖ ≤ M for some constant M. Then the projection equation

QnAun = Qnf has for n large enough a unique solution un ∈ En , and

un → u∗ as n→∞.
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For considering the in�uence of the noisy data, the behaviour of the

quantities κ̆n is essential. For estimating these quantities we introduce

operators Πn : Z ∗n → F such that the equality QnΠnQn = Qn holds. Then

the operator ΠnQn is a projector in F .
Let Fn = R(Πn). We assume that Fn ⊂W and let Wn = Fn, equipped
with the norm of W . Let In be the identity operator, considered as acting

from Fn to Wn.

Theorem 6 (Estimate of κ̆n)

Let (1) and (2) be uniquely solvable for n ≥ n0. Let the operator

A : E →W be invertible. Then

κ̆n ≤ C‖In‖Fn→Wn , n ≥ n0.
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Choice of n = n(δ) by the discrepancy principle

Theorem 7

Let (1) and (2) be uniquely solvable for n ≥ n0. Let the convergence

κ̆n+1dist(f ,AEn)→ 0 as n→∞

hold. We also assume that there exists a sequence of approximations

(ûn)n∈N, ûn ∈ En, satisfying ‖u∗ − ûn‖E → 0 as n→∞ and

‖A−1n QnA(u∗ − ûn)‖ → 0 as n→∞.

Assume there exists τ <∞ such that τn ≤ τ for all n ∈ N. Let b > τ + 1

be �xed and for δ > 0, let n = nDP(δ) be the �rst index such that

‖Aun − f δ‖F ≤ bδ.
Then nDP(δ) is �nite and ‖unDP(δ) − u∗‖E → 0 as δ → 0.
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Modi�cation of the discrepancy principle

In Theorem 7 the assumption τn ≤ τ for all n ∈ N was required. For

collocation methods this is the uniform boundedness of the interpolation

projector onto the subspace AEn ⊂ F . If F = Cm, this assumption does

not hold in general.

Theorem 8

Let the assumptions of Theorem 7 be satis�ed without uniform

boundedness of τn. Let the sequence bn > (1 + τn)(1 + ε) be �xed with

some �xed ε > 0 and n = nDP(δ) be chosen as the �rst index such that

‖Aun − f δ‖F ≤ bnδ.
Then nDP(δ) is �nite and ‖unDP(δ) − u∗‖E → 0 as δ → 0.
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Cordial integral equations

Consider cordial integral equations of �rst kind∫ t

0

1

t
a(t, s)ϕ(

s

t
)u(s)ds = f (t), 0 ≤ t ≤ T , (3)

where ϕ ∈ L1(0, 1) is called the core of the cordial integral operator,

a, f are given smooth enough functions.

De�ne the cordial integral operators

(Vϕu)(t) =

∫ t

0

1

t
ϕ(

s

t
)u(s)ds,

(Vϕ,au)(t) =

∫ t

0

1

t
a(t, s)ϕ(

s

t
)u(s)ds.

Make a change of variables s = tx , denote b(t, x) = a(t, tx) and de�ne the

corresponding integral operator

(Ṽϕ,bu)(t) =

∫ 1

0
ϕ(x)b(t, x)u(tx)dx .
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Cordial integral operators in spaces Cm

Denote ∆T = {(s, t) : t ∈ [0,T ], s ∈ [0, t]}.

Theorem 9

Let ϕ ∈ L1(0, 1), a ∈ Cm(∆T ). Then Vϕ,a ∈ L(Cm[0,T ]) and

‖Vϕ,a‖Cm[0,T ] ≤ C‖ϕ‖L1(0,1)‖a‖Cm(∆T ).

Theorem 10

Let ϕ ∈ L1(0, 1) and let λ ∈ C with Reλ > 0. Then tλ is an eigenfunction

of Vϕ in C [0,T ], and the corresponding eigenvalue is ϕ̂(λ) =
∫ 1
0 ϕ(x)xλdx .

If Reλ > m, then the eigenfunction belongs to Cm[0,T ].

Theorem 11

Let ϕ ∈ L1(0, 1), a ∈ Cm(∆T ). Then the spectrum of Vϕ,a in Cm[0,T ] is
given by

σm(Vϕ,a) = {0}∪{a(0, 0)ϕ̂(k), k = 0, . . . ,m}∪{a(0, 0)ϕ̂(λ), Re λ > m}.
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Existence and uniqueness of solution

∫ t

0

1

t
a(t, s)ϕ(

s

t
)u(s)ds = f (t), 0 ≤ t ≤ T (3)

Theorem 12

Let ϕ ∈ L1(0, 1), x(1− x)ϕ′(x) ∈ L1(0, 1),

∫ 1

0
ϕ(x)dx > 0

and there exists β < 1 such that (xβϕ(x))′ ≥ 0 for x ∈ (0, 1).
Assume also that a ∈ Cm+1(∆T ) and a(t, t) 6= 0. Then Vϕ,a is injective in

C [0,T ], Cm+1[0,T ] ⊂ Vϕ,a(Cm[0,T ]) ⊂ Cm[0,T ], and
V−1ϕ,a ∈ L(Cm+1[0,T ],Cm[0,T ]).

Corollary 13

Let the assumptions of Theorem 12 be satis�ed and let f ∈ Cm+1[0,T ] be
given. Then the equation is uniquely solvable in C [0,T ] and its solution is

in Cm[0,T ].
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Polynomial collocation method for cordial integral equations

Look for solutions in the form un(t) =
N∑

k=0

ckt
k .

Collocation method:

choose the collocation points tk , k = 0, . . . , n,
solve the collocation equations

N∑
j=0

cj

∫ T

0

1

tk
a(tk , s)ϕ(

s

tk
)s jds = f (tk), k = 0, . . . n. (4)

Need to calculate exactly or �well enough� the integrals∫ T

0

1

tk
a(tk , s)ϕ(

s

tk
)s jds
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In the following E = F = C [0,T ], En is the space of polynomials of order

up to n and Zn is the linear span of δ-functions with supports tk ,
k = 0, . . . , n.
Let a(t, s) ≡ 1. Then Vϕ : En → En and τn is simply the norm of the

interpolation projector from C to C with the interpolation nodes tk ,
k = 0, . . . , n. If tk are the Chebyshev nodes, then τn = 2

π ln(n + 1) + 1.

We chose certain noise levels and the noise was generated by random

numbers with uniform distribution at the collocation nodes. We also found

the optimal number nopt and the corresponding error

eopt = min
n∈N
‖un − u∗‖E = ‖unopt − u∗‖E .

We used the modi�ed discrepancy principle to �nd the �rst n = nDP

satisfying the inequality ‖Aun − f δ‖F ≤ bnδ with bn = 1.001(1 + τn). We

denote the corresponding error by eDP = ‖unDP
− u∗‖.
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Numerical examples: cordial integral equation

Example 1. Consider the cordial integral equation (here φ(x) = 1√
x
)∫ t

0

u(s)ds√
st

=
1

t2 + 1
, t ∈ [0,T ]

with exact solution u(s) = 1−3s2
2(s2+1)2

.

For this equation κn can be estimated using Marko�'s inequality, by Cn2.
Since the right-hand side of the equation is analytic, dist(f ,AEn) converges

to zero exponentially, hence the assumptions of Theorem 8 (modi�cation of

the discrepancy principle) are satis�ed.

We took T = 10 and used noisy data with noise levels δ = 10−4, 10−6, . . . ,
10−14. The number of collocation nodes was 10, 15, 20, . . . , 110.
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The optimal errors and the errors obtained by using the discrepancy

principle with bnDP
are presented in the following table.

δ eopt nopt eDP nDP bnDP

10−4 6 · 10−2 25 8 · 10−2 20 3.94
10−6 1.01 · 10−3 40 2.4 · 10−3 30 4.19
10−8 1.51 · 10−5 40 1.51 · 10−5 40 4.36
10−10 1.8 · 10−7 50 1.8 · 10−7 50 4.56
10−12 4.69 · 10−9 75 9.58 · 10−9 60 4.62
10−14 7.04 · 10−11 105 7.57 · 10−11 70 4.71
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Example 2. Consider the equation∫ t

0

u(s)ds√
st

= t3/2(2− t)5/2, t ∈ [0, 2].

The exact solution is 2t3/2(2− t)5/2 − 5

2
t5/2(2− t)3/2.

The integral operator is the same as in Example 1, hence κn ≤ Cn2. The
distance dist(f ,AEn) can be estimated by Cn−3, hence the assumptions of

Theorem 8 are satis�ed.

We used noisy data with noise levels δ = 10−3, 10−4, . . . , 10−7. The noise

was generated by random numbers with uniform distribution at the

collocation nodes. The number of collocation nodes was

10, 20, 30, . . . , 300.
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The optimal errors and the errors obtained by using the discrepancy

principle with bnDP
are presented in the following table.

δ eopt nopt eDP nDP bnDP

10−3 1.5 · 10−1 10 1.5 · 10−1 10 3.53
10−4 5 · 10−2 40 1.1 · 10−1 30 4.19
10−5 5.24 · 10−3 20 2 · 10−2 50 4.5
10−6 6.13 · 10−4 40 5.16 · 10−3 100 4.94
10−7 9.17 · 10−5 90 5.77 · 10−3 230 5.46
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Numerical examples: spline-collocation for Volterra integral

equation

Consider Volterra integral equation of the �rst kind

(Au)(t) :=

∫ t

0
K (t, s)u(s) ds = f (t), t ∈ [0, 1]

with the operator A ∈ L(Lp(0, 1),C [0, 1]), 1 ≤ p ≤ ∞. The approximation

space is En = S
(−1)
k−1 (I∆), the space of discontinuous piecewise polynomials

of order k − 1 with mesh ∆. We �nd un ∈ En such that

Aun(ti ,j) = f δ(ti ,j), i = 1, . . . , n, j = 1, . . . , k

where ti ,j = (i − 1 + cj)h ∈ [0, 1], i = 1, . . . , n, j = 1, . . . , k are collocation

nodes and 0 < c1 < . . . < ck ≤ 1 are collocation parameters whose choice

is essential.

Now κ̆n can be estimated using Theorem 6 (Estimate of κ̆n); it depends on
how much A is smoothing.
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Example 3. Consider the equation

Au(t) =

∫ t

0
u(s)ds =

tq

q
, t ∈ [0, 1], q ∈ {3/2, 5/2}

with operator A : L1(0, 1)→ C [0, 1]. The exact solution is u(s) = sq−1.
We used for En the space of discontinuous linear splines with uniform mesh

ih, i = 0, . . . , n, where h = 1/n. The collocation points are

ti1 = (i − 1 + c))h, ti2 = ih, c ∈ (0, 1). We took for Fn the space of

continuous linear splines and the inverse property of splines gives

‖w ′n‖ ≤ Cn‖wn‖ ∀wn ∈ Fn, hence κ̆n ≤ Cn. The distance dist(f ,AEn) can

be estimated by Cn−q. It can be shown that here

τ =

{
1 + c2

2(1−c) , if c ≥ 1
2 ,

1 + (1−c)2

2c if c ≤ 1
2 .

τ is minimal for c = 1
2 , then τ = 1.25. In this example τn = τ .

We used c = 1
2 and took b = 1.01 + τ = 2.26 for the discrepancy principle.

The noisy data were generated by the formula f δ(ti ,j) = f (ti ,j) + δθi ,j ,
where δ = 10−m,m ∈ {2, . . . , 7} and θi ,j are random numbers with normal

distribution, normed after being generated: maxi ,j |θi ,j | = 1.
U. Kangro, U. Hämarik (Univ. of Tartu) Self-regularization in Banach spaces Rio 2017 23 / 25



The optimal errors and the errors obtained by using the discrepancy

principle with q = 3/2 and q = 5/2.

δ eopt nopt eDP nDP eopt nopt eDP nDP

10
−1

2.5 · 10−1
1 2.5 · 10−1

1 2.9 · 10−1
1 2.9 · 10−1

1

10
−2

6.8 · 10−2
2 6.8 · 10−2

2 5.4 · 10−2
2 5.4 · 10−2

2

10
−3

1.3 · 10−2
8 1.8 · 10−2

5 9 · 10−3
6 1.1 · 10−2

5

10
−4

3.2 · 10−3
24 3.3 · 10−3

20 1.7 · 10−3
15 3 · 10−3

8

10
−5

7.6 · 10−4
72 8.4 · 10−4

86 3.5 · 10−4
32 6.2 · 10−4

18

10
−6

1.9 · 10−4
128 3.3 · 10−4

512 6.8 · 10−5
72 9.9 · 10−5

46

10
−7

4.5 · 10−5
512 1.2 · 10−4

2048 1.5 · 10−5
128 1.5 · 10−5

128
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