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2.1 Introduction
In this chapter we propose a nonstationary iterated Tikhonov Kaczmarz (iTK)
type method for obtaining stable approximations to systems of linear ill-posed
operator equations. The iTK methods are Kaczmarz type methods [13], where
the steps are defined using the same heuristic as in the iterated Tikhonov (iT)
method [3, Section 1.2].

The novelty of our approach consists in defining the Lagrange multipliers
using a strategy inspired by [2]. That is the multipliers are chosen as to guarantee
the residual of the next iterate to be in a range (use a different range as the one
proposed in [2]).
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The inverse problems we are interested in consists of determining an un-
known quantity x ∈ X from the set of data (y0, . . . ,yN−1) ∈ Y N , where X and Y
are Hilbert spaces, and N ≥ 1. In practical situations, one does not know the data
exactly. Instead, only approximate measured data yδ

i ∈ Y satisfying

‖yδ

i − yi‖ ≤ δi , i = 0, . . . ,N−1 , (2.1)

are available, where δi > 0 are the (known) noise levels. The available data yδ
i

are obtained by indirect measurements of the parameter x, this process being
described by the system of ill-posed operator equations

Ai x = yi , i = 0, . . . ,N−1 . (2.2)

where Ai : X→Y are bounded linear operators, whose inverses A−1
i : R(Ai)→ X

either do not exist, or are not continuous. Consequently, approximate solutions
are extremely sensitive to noise in the data.

There is a vast literature on iterative methods for the stable solution of (2.2).
We refer the reader to the text books [7, 12, 1, 16, 14, 5] and the references
therein.

What concerns systems of linear ill-posed equations and Kaczmarz type
methods, we refer the reader to [17]. In this article Nashed considered Kacz-
marz (and Cimmino) methods for solving a problem related to the inverse Radon
Transform, which is written in the form of abstract equations (see (1.1) to (1.4)
in [17]). It is proven that the Kaczmarz method converges to a weighted least-
squares solution of (2.2) [17, Section 2], which is defined by means of the oblique
generalized inverse defined in [17, pg.167]. In this article Nashed also discusses
the generalization of Kaczmarz (and Cimmino) method to operator equations in
function spaces (this is the framework presented above in (2.2), (2.1)). The final
paragraph in [17] reads:

“It is hoped that the semicontinuous (or semidiscrete, depending on
your viewpoint) analogues of the methods of Kaczmarz and Cim-
mino developed in this paper . . . will be further adapted to the con-
text of reconstruction problems.”

It is our hope that the present manuscript is able to give a small step in the
direction pointed by professor Nashed back in 1980.

Iterated Tikhonov Type Methods

Standard iterated Tikhonov (iT) type methods for solving the ill-posed problem
(2.1), (2.2) are defined, after rewritting (2.2) as a single equation Ax = y, where
A = (A0, . . . ,AN−1) : X → Y N and yδ = (yδ

0 , . . . ,y
δ
N−1), by the iteration formula

xδ

k+1 = arg minx∈X

{
λk‖Ax−yδ‖2 +‖x− xδ

k ‖2} (2.3)
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or, equivalentely, by

xδ

k+1 = xδ

k −λk
(
I +λkA∗A

)−1A∗
(
Axδ

k −yδ
)

=
(
λ
−1
k I +A∗A

)−1[
λ
−1
k xδ

k +A∗yδ
]
,

(2.4)

where A∗ : Y N → X is the adjoint operator to A. The parameter λk > 0 can be
viewed as the Lagrange multiplier of the problem of projecting xδ

k onto a levelset
of ‖Ax− yδ‖2. If the sequence {λk = λ} is constant, iteration (2.4) is called
stationary iT [16, 7, 15], otherwise it is denominated nonstationary iT [6, 10, 3].

In the nonstationary iT methods, each λk is chosen either a priori (e.g., the
geometrical choice λk = qk, q > 1) or a posteriori [4, 2]. In this manuscript we
focus on the a posteriori strategy investigated in [2], where the authors propose a
choice for the Lagrange multipliers, which requires the residual at the next iterate
to assume a prescribed value dependent on the current residual and also on the
noise level. We extend the strategy used in [2], by defining a different range. This
allow us to give convergence proof different to the one in [2], which boils down
to a particular instance of [3, Theorem 1.4].

Iterated Tikhonov Kaczmarz Type Methods

The method proposed and analyzed in this manuscript for solving the the system
of ill-posed problems (2.1), (2.2) is a Kaczmarz type method, where each step is
defined as in the iT method (2.4) and the choice of Lagrange multipliers proposed
in [2] is adopted. This iterative method is defined by

xδ

k+1 = xδ

k +hk , (2.5)

where

hk =

{
λk(I +λkA∗[k]A[k])

−1A∗[k]
(
yδ

[k]−A[k]xδ

k

)
, if ‖A[k]xδ

k − yδ

[k]‖> τδ[k]

0 , otherwise
(2.6)

and

λk =

{
chosen as in Algorithm 2.2.1 , if ‖A[k]xδ

k − yδ

[k]‖> τδ[k]

0 , otherwise.
(2.7)

We use the notation [k] = (k mod N)∈ {0,1, . . . ,N−1}. Here xδ
0 ∈ X is an initial

guess and τ > 1 is a fixed constant.
Notice that, if ‖A[k]xδ

k − yδ

[k]‖ > τδ[k] for some k, then hk ∈ X is a tipical step
of the iterated Tikhonov method for the [k]-th equation A[k]x = y[k] of system
(2.2). Otherwise, the computation of (λk,hk) is avoided. We set λk = 0, hk = 0
and xδ

k+1 = xδ

k .
Following [2] we refer to this method as range-relaxed iterated Tikhonov

Kaczmarz (rriTK) method. Essentialy, it consists in incorporating the Kaczmarz



48 � Deterministic and Stochastic Optimal Control and Inverse Problems

strategy into the iterated Tikhonov method investigated in [2]. This procedure is
analog to the one introduced in [9, 8] regarding the Landweber Kaczmarz (LWK)
iteration.

As usual in Kaczmarz type algorithms, a group of N subsequent steps (start-
ing at some multiple of N) is called a cycle. In the noisy data case, the iTK
iteration should be terminated when, for the first time, all xδ

k are equal within a
cycle. That is, the iteration is stopped at step k∗ = k∗

(
{δi}i, {yδ

i }i
)

such that

k∗ := min
{

lN : l ∈ N and xδ

lN = xδ

lN+1 = · · ·= xδ

lN+N

}
. (2.8)

In other words, k∗ ∈N is the smallest multiple of N such that xδ

k∗ = xδ

k∗+1 = · · ·=
xδ

k∗+N or, equivalently, such that λk∗ = λk∗+1 = · · ·= λk∗+N = 0.

Outline of the Manuscript

The article is organized as follows: In Section 2.2 we introduce the rriTK method,
on which we focus on this manuscript. A detailed formulation of this method is
given and some preliminary results are obtained, including an estimate for the
“gain” (Proposition 2.2.4), as well as estimates for the Lagrange multipliers λk
(Corollary 2.2.6) and for the stoping index k∗ (Corollary 2.2.8). In Section 2.3
a convergence result for the rriTK method is presented. Section 2.4 is devoted
to numerical experiments. A benchmark system of linear ill-posed equations
(derived from the Hilbert matrix in R100,100) is considered. The performance of
the rriTK method is compared against two other nonstationary iT type methods:
the well established geometric iterated Tikhonov method (giT) with λk = 2k and
the iT method in [2] (rriT). Section 2.5 is dedicated to final remarks and conclu-
sions.

2.2 A Range-relaxed Iterated Tikhonov Kaczmarz
Method

In the sequel we introduce the range-relaxed iterated Tikhonov Kaczmarz (rriTK)
method for solving the ill-posed linear system (2.1), (2.2). Subsection 2.2.1
is devoted to main assumptions needed in the analysis. The new method is
presented in Subsection 2.2.2 and a corresponding algorithm is discussed.
In Subsection 2.2.3 we derive some basic properties of the proposed method,
and prove preliminary results and estimates.

The implementable method proposed here happens to be a nonstationary iTK
type method where, in each iteration, the set of feasible choices for the Lagrange
multipliers is an interval, instead of a single real number. For this reason, this
method is called a (nonstationary) range-relaxed iterated Tikhonov method.
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2.2.1 Main Assumptions
For the remaining of this chapter we suppose that the following assumptions hold
true:

(A1) There exists x? ∈ X such that Aix? = yi, where yi ∈ R(Ai),
i = 0, . . . ,N−1, are the exact data.

(A2) The operators Ai : X → Y is linear, bounded and ill-posed, i.e.,
even if the operator A−1

i : R(Ai) → X (the left inverse of Ai) exists,
it is not continuous.

From (A2) it follows the existence of C > 0 with C := maxi ‖Ai‖. Moreover, we
write δ := maxi δi > 0. Thus, δ = 0 in the exact data case, and δ > 0 in the noisy
data case.

2.2.2 Description of the Method
As already discussed in the introduction, the iterative step of the rriTK method
is analog to the one proposed in [2]. This step is discussed in the sequel.

For i = 0, . . . ,N − 1 and µ > 0 define the levelsets Ω
i
µ := {x ∈ X ; ‖Aix−

yδ
i ‖ ≤ µ} of the residual w.r.t. the ith-equation of system (2.2). Given k ∈ N, set

i = [k]. If xδ

k does not belong to Ω
i
δi

, the next iterate xδ

k+1 is computed by solving
the range-relaxed projection problem{

minx ‖x− xδ

k ‖2

s.t. ‖Aix− yδ
i ‖2 ≤ µ

2, Φ̄(‖Aixδ

k − yδ
i ‖,δi)≤ µ ≤ ¯̄

Φ(‖Aixδ

k − yδ
i ‖,δi)

(2.9)
for (x,µ) ∈ X×R. Here

Φ̄(u,v) = (p̄u+(1− p̄)v)
1
2 and ¯̄

Φ(u,v) = ( ¯̄pu+(1− ¯̄p)v), ∀ u,v ∈ R ,

with 0 < p̄ < ¯̄p < 1.
If (x′,µ ′) is a solution of (2.9), we define xδ

k+1 = x′ and
‖Aixδ

k+1 − yδ
i ‖ = µ

′ (see Lemma 2.2.1 below). As observed in [2], xδ

k+1 is
generated from xδ

k by projecting it onto any one of the range of convex sets
(Ωi

µ)Φ̄≤µ≤ ¯̄
Φ

.
Since the solution of (2.9) is not unique, there are several possible choices

for xδ

k+1. The next lemma addresses this issue. For a proof we refer the reader
to [2, Lemma 2.3].

Lemma 2.2.1 Suppose ‖Aixδ

k − yδ
i ‖ > δi. The following assertions are equiva-

lent

1. x′ = ΠΩµ
(xδ

k ) and Φ̄(‖Aixδ

k − yδ
i ‖,δi)≤ µ

′ ≤ ¯̄
Φ(‖Aixδ

k − yδ
i ‖,δi);
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2. (x′,µ ′) ∈ X ×R is a solution of the range-relaxed projection problem
(2.9);

3. x′ = xδ

k −λ (I +λA∗i Ai)
−1A∗i (Aixδ

k − yδ
i ), for some λ > 0,

Φ̄(‖Aixδ

k − yδ

i ‖,δi) ≤ ‖Aix′− yδ

i ‖ ≤ ¯̄
Φ(‖Aixδ

k − yδ

i ‖,δi) ,

and µ
′ = ‖Aix′− yδ

i ‖;

(here ΠΩ(x) represents the orthogonal projection of x onto the convex set Ω).

It follows from Lemma 2.2.1 that solving the range-relaxed projection prob-
lem in (2.9) sums up to solving the inequalities Φ̄(‖Aixδ

k − yδ
i |,δi) ≤ ‖Aix′−

yδ
i ‖ ≤ ¯̄

Φ(‖Aixδ

k − yδ
i ‖,δi), with x′ = xδ

k − λ (I + λA∗i Ai)
−1A∗i (Aixδ

k − yδ
i ) and

µ
′ = ‖Aix′−yδ

i ‖. This is the quintessential ingredient to define an implementable
version of the range-relaxed iterated Tikhonov Kaczmarz (rriTK) method as
follows:

Algorithm 2.2.1 Range-relaxed iterated Tikhonov Kaczmarz method (rriTK)

[1] choose an initial guess x0 ∈ X; set k = 0;

[2] choose 0 < p̄ < ¯̄p < 1 (with p̄ > δ ¯̄p) and τ > 1;

[3] repeat
[3.1] i = [k];

[3.2] if
[
‖Ai xδ

k − yδ
i ‖ > τδi

]
then

compute (λk,hk) ∈ R×X such that{
hk = −λk

(
I +λkA∗i Ai

)−1
A∗i
(
Ai xδ

k − yδ
i
)

Φ̄(‖Aixδ
k − yδ

i ‖,δi) ≤ ‖Ai(xδ
k +hk)− yδ

i ‖ ≤ ¯̄
Φ(‖Aixδ

k − yδ
i ‖,δi)

else
λk = 0; hk = 0;

[3.3] xδ
k+1 = xδ

k +hk;

[3.4] k = k+1;

until
[

([k] = 0) and (λk−1 = λk−2 = · · ·= λk−N = 0)
]
;

[4] k∗ = k−N;

An immediate consequence of Lemma 2.2.1 is the fact that Step [3.2] of
Algorithm 2.2.1 is well defined, i.e., it is allways possible to solve the problem
for (λk,hk) in this step.
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2.2.3 Preliminary Results
For simplicity of notation we write bδ

k := yδ
i − Aixδ

k+1 = yδ
i − Aixδ

k − Aihk,
with i = [k], and C > 0 is defined as above. Moreover, for exact data
y = (y0, . . . ,yN−1), the iterates in (2.5) are denoted by xk, in contrast to xδ

k in
the noisy data case (analog notation for bk := yi−Ai xk+1).

Our first result concerns basic properties of the iterative step of the rriTK
method. The proofs of the assertions are straightforward and will be omitted.

Lemma 2.2.2 Assume that (A1) and (A2) are satisfied and let xδ

k , hk, λk be de-
fined by (2.5), (2.6) and (2.7) respectively. For all 0 ≤ k < k∗ and i = [k], the
assertions

a) Ai xδ

k+1− yδ
i = (λkAi A∗i + I)−1(Ai xδ

k − yδ
i );

b) hk = λkA∗i
(
yδ

i −Ai xδ

k+1

)
;

c)
(

p̄‖Ai xδ

k − yδ
i ‖
) 1

2 ≤ ‖Ai xδ

k+1− yδ
i ‖ ≤ ‖Ai xδ

k − yδ
i ‖.

hold true whenever λk > 0.

Remark 2.2.3 Let us consider the exact data case for a moment. From Step [3.2]
of Algorithm 2.2.1 we learn that the residual w.r.t. the ith-equation (with i = [k])
reduces from iterate xk to the next iterate xk+1, namely

‖Ai xk+1− yi‖ ≤ ¯̄p‖Ai xk− yi‖ . (2.10)

In other words, we have geometrical decay of this residual.

In what follows we estimate the “gain” ‖xδ

k+1− x?‖2−‖xδ

k − x?‖2. This is a
central result for the analysis derived in this manuscript (all subsequent corollar-
ies in this section derive from the next proposition).

Proposition 2.2.4 Assume that (A1) and (A2) are satisfied and let xδ

k , hk, λk be
defined by (2.5), (2.6) and (2.7) respectively. For δ = maxi δi sufficiently small,
it holds

‖xδ

k+1− x?‖2−‖xδ

k − x?‖2 ≤ −2(p̄−δ ¯̄p)λk ‖Ai xδ

k − yδ

i ‖−‖xδ

k+1− xδ

k ‖2,
(2.11)

for k = 0, . . . ,k∗−1. In particular, in the exact data case (yδ
i = yi) we have

‖xk+1− x?‖2−‖xk− x?‖2 ≤ −2 p̄λk ‖Ai xk− yi‖−‖xk+1− xk‖2, k = 0, . . .
(2.12)
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Proof. Let i = [k]. If ‖Ai xδ

k −yδ
i ‖ ≤ τδi, then λk = 0 and xδ

k+1 = xδ

k . Thus, (2.11)
is trivial. Otherwise, it follows from Lemma 2.2.2 (b) that

‖xδ

k+1− x?‖2−‖xδ

k − x?‖2

= 2〈xδ

k+1− xδ

k , xδ

k+1− x∗〉−‖xδ

k+1− xδ

k ‖2

= 2λk 〈yδ

i −Aixδ

k+1, Ai(xδ

k+1− x?)〉−‖xδ

k+1− xδ

k ‖2

= 2λk 〈yδ

i −Aixδ

k+1, Aixδ

k+1− yδ

i + yδ

i −Aix?〉−‖xδ

k+1− xδ

k ‖2

≤ 2λk
[
−‖bδ

k ‖2 +‖bδ

k ‖δi
]
−‖xδ

k+1− xδ

k ‖2. (2.13)

If δ < 1 then (2.11) follows from p̄‖Ai xδ

k −yδ
i ‖+(1− p̄)δi≤‖bδ

k ‖2 and ‖bδ

k ‖≤
¯̄p‖Ai xδ

k − yδ
i ‖+(1− ¯̄p)δi (see Step [3.2] of Algorithm 2.2.1), together with p̄ >

δ ¯̄p (see Step [2]). To conclude the proof notice that, in the exact data case δ = 0
and (2.12) follows directly from (2.11). 2

Proposition 2.2.4 has several relevant consequences, namely: monotonicity
of the iTK method (Corollary 2.2.5); a uniform estimate for the Lagrange mul-
tipliers (Corollary 2.2.6); the summability of important series (Corollary 2.2.7);
finiteness of the stoping index k∗ (Corollary 2.2.8).

Corollary 2.2.5 Assume that (A1) and (A2) are satisfied and let xδ

k , hk, λk be
defined by (2.5), (2.6) and (2.7) respectively. Then

‖xδ

k+1− x?‖2 ≤ ‖xδ

k − x?‖2 , k = 0, . . . ,k∗−1 . (2.14)

Additionaly, in the exact data case we have ‖xk+1 − x?‖2 ≤ ‖xk − x?‖2,
for k = 0,1, . . .

Corollary 2.2.6 Assume that (A1) and (A2) are satisfied and let xδ

k , hk, λk be de-
fined by (2.5), (2.6) and (2.7) respectively. Moreover, let bδ

k be defined as above.
Then

λk ≥
(
‖Aixδ

k − yδ
i ‖−‖bδ

k ‖
)
‖Aixδ

k − yδ
i ‖

‖A∗i (Aixδ

k − yδ
i )‖2

, k = 0, . . . ,k∗−1 . (2.15)

Moreover, if ‖Ai xδ

k − yδ
i ‖ > τδi (for some 0 ≤ k < k∗− 1) then λk > C−2(1−

¯̄p)(1− 1
τ
), with C > 0 defined as above.

Additionaly, in the exact data case we have λk ≥C−2(1− ¯̄p), for k = 0,1, . . .

Proof. Let 0 ≤ k < k∗. If ‖Aixδ

k − yδ
i ‖ ≤ τδi then λk = 0 and xδ

k+1 = xδ

k . Thus,
(2.15) is trivial. On the other hand, if ‖Aixδ

k − yδ
i ‖ > τδi, the proof of (2.15)

follows the lines of [2, Corollary 2.5].
To prove the second assertion, notice that Step [3.2] of Algorithm 2.2.1 guar-

antees ‖bδ

k ‖ ≤ ¯̄p‖Aixδ

k − yδ
i ‖+(1− ¯̄p)δi. Consequently, ‖Aixδ

k − yδ
i ‖−‖bδ

k ‖ ≥
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(1− ¯̄p)(‖Aixδ

k − yδ
i ‖−δi). Thus, we obtain from (2.15)

λk ≥
‖Aixδ

k − yδ
i ‖−‖bδ

k ‖
C2‖Aixδ

k − yδ
i ‖

≥ 1
C2 (1− ¯̄p)

(
1−δi/‖Aixδ

k − yδ

i ‖
)

(2.16)

and the second assertion follows from the aditional assumption ‖Ai xδ

k − yδ
i ‖ >

τδi.
Finally, in the case of exact data, λk ≥ C−2(1− ¯̄p) follows from the first

inequality in (2.16) together with ‖bk‖ ≤ ¯̄p‖Aixk− yi‖. 2

Corollary 2.2.7 Assume that (A1) and (A2) are satisfied and let xk, hk, λk be
defined by (2.5), (2.6) and (2.7) in the exact data case (i.e., yδ

j = y j, j = 0, . . . N−
1). Then the series

∞∑
k=0
‖xk+1−xk‖2 ,

∞∑
k=0

λk ‖A[k]xk−y[k]‖ ,
∞∑

k=0
λk ‖bk‖ ,

∞∑
k=0

λ 2
k ‖bk‖2 ,

∞∑
k=0
‖A[k]xk−y[k]‖

are all summable.

Proof. The first two assertions follow from (2.12), using a telescopic se-
ries argument. The next two assertions follow from a comparison test and
Lemma 2.2.2 (c). The last assertion follows from the second one and Corol-
lary 2.2.6. 2

Corollary 2.2.8 Assume that (A1) and (A2) are satisfied and let xδ

k , hk, λk be
defined by (2.5), (2.6) and (2.7). Then the stopping index k∗ defined in (2.8) is
finite and

k∗ ≤ N‖x0− x?‖2
[2(p̄−δ ¯̄p)(1− ¯̄p)(τ−1)

C2 δmin

]−1
. (2.17)

Proof. Assume by contradiction that k∗ is not finite, i.e., in each cycle
{lN, . . . , lN +N− 1}, l ∈ N, of the rriTK method, there exists at least one in-
dex j(l) ∈ {0, . . . ,N−1} such that ‖A j(l) xlN+ j(l)− yδ

j(l)‖ ≥ τδ j(l).
From Proposition 2.2.4 follows that (2.11) holds for k ∈ N. Summing over k and
using the fact that either ‖A[k]xδ

k − yδ

[k]‖ ≥ τδ[k] or λk = 0, we obtain (with the
notation i = [k])

‖x0− x∗‖2 ≥ 2(p̄−δ ¯̄p)
lN∑

k=0
λk‖Aixδ

k − yδ
i ‖

≥ 2(p̄−δ ¯̄p)
l∑

s=0
λsN+ j(s)‖A j(s) xδ

sN+ j(s)− yδ

j(s)‖

≥ 2(p̄−δ ¯̄p)
l∑

s=0
λsN+ j(s)τδ j(s) ≥ l 2(p̄−δ ¯̄p)(1− ¯̄p)(τ−1)

C2 δmin , l ∈ N

(2.18)
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(the last inequality follows from Corollary 2.2.6). Since the right hand side of
(2.18) becomes unbounded as l → ∞ a contradiction is established, and the
finiteness of k∗ follows. Estimate (2.17) follows now substituting k∗ = lN in
(2.18). 2

2.3 A Convergence Result for Exact Data
Our main goal in this section is to prove convergence of the rriTK method in the
case δi = 0, i = 0, . . . ,N−1. Notice that, in this exact data case, λk > 0 and hk =
xk+1− xk = 0 if and only if ‖Aixk− yi‖= 0 (see Step [3.2] of Algorithm 2.2.1).

Theorem 2.3.1 ((Convergence for exact data)) Assume that (A1) and (A2) are
satisfied and let xk, hk, λk be defined by (2.5), (2.6) and (2.7) in the exact data
case (i.e., yδ

i = yi, i = 0, . . . N− 1). Then xk converges to a solution of (2.2) as
k→∞.

Proof. We define ek := x?− xk. From Corolary 2.2.5 follows that ‖ek‖ is mono-
tone non-increasing. Thus, ‖ek‖ converges to some ε ≥ 0. In what follows we
show that ek is in fact a Cauchy sequence.

In order to prove that ek is indeed a Cauchy sequence, it suffices to prove
|〈en−ek,en〉|→ 0, |〈en−el,en〉|→ 0 as k, l→∞ with k≤ l for some k≤ n≤ l
[11, Theorem 2.3]. Let k ≤ l be arbitrary and write k = k0N + k1, l = l0N + l1,
with k1, l1 ∈ {0, . . . ,N−1}. Now let n0 ∈ {k0, . . . , l0} be such that

N−1∑
s=0

λn0N+s ‖As xn0N+s−ys‖ ≤
N−1∑
s=0

λi0N+s ‖As xi0N+s−ys‖ , for all i0 ∈{k0, . . . , l0} ,
(2.19)

and set n = n0N +N−1. Therefore

|〈en− ek,en〉| =
∣∣∣∑n−1

i=k 〈(xi+1− xi),(xn− x?)〉
∣∣∣

=
∣∣∣∑n−1

i=k λi〈A[i] xi+1− y[i],A[i] xn−A[i] x?〉
∣∣∣

≤
∑n0

i0=k0

∑N−1
i1=0 λi‖Ai1 xi+1− yi1‖‖Ai1 xn− yi1‖

≤
∑n0

i0=k0

∑N−1
i1=0 λi‖bi‖‖Ai1 xn− yi1‖ (2.20)

(we use the notation i = i0N + i1). The last term on the right hand side of (2.20)
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can be estimated by

‖Ai1 xn− yi1‖ = ‖Ai1 xn0N+N−1− yi1‖
≤ ‖Ai1 xn0N+i1+1− yi1‖+

∑N−2
s=i1+1‖Ai1 xn0N+s+1−Ai1 xn0N+s‖

≤ ‖Ai1 xn0N+i1+1− yi1‖+
∑N−2

s=i1+1C‖xn0N+s+1− xn0N+s‖

= ‖Ai1 xn0N+i1+1− yi1‖+
∑N−2

s=i1+1Cλn0N+s‖A∗s (As xn0N+s+1− ys)‖

≤ ‖Ai1 xn0N+i1+1− yi1‖+
∑N−1

s=0 C2
λn0N+s‖As xn0N+s+1− ys‖

≤ ( 1
λmin

+C2)
∑N−1

s=0 λn0N+s‖As xn0N+s+1− ys‖

(with λmin =C−2(1− ¯̄p), cf. Corolary 2.2.6). Hence, by the minimality property
(2.19) follows ‖Ai1 xn−yi1‖≤ ( 1

λmin
+C2)

∑N−1
s=0 λi0N+s‖As xi0N+s+1−ys‖, for i0 ∈

{k0, . . . , l0}. Inserting this last inequality into (2.20) we obtain

|〈en− ek,en〉| ≤
( 2− ¯̄p

1− ¯̄p

)
C2∑n0

i0=k0

∑N−1
i1=0λi‖bi‖

[∑N−1
s=0 λi0N+s‖As xi0N+s+1− ys‖

]
=

( 2− ¯̄p
1− ¯̄p

)
C2∑n0

i0=k0

[∑N−1
i1=0λi‖bi‖

]2

≤
( 2− ¯̄p

1− ¯̄p

)
C2N

∑n0
i0=k0

∑N−1
i1=0λ 2

i ‖bi‖2

= ( 2− ¯̄p
1− ¯̄p )C

2N
∑n

i=k0
λ 2

i ‖bi‖2. (2.21)

Hence by Corolary 2.2.7 the right hand side of (2.21) go to zero as k, l→∞.
Analogously one shows that |〈en− el,en〉| → 0 as k, l→∞.

Thus, ek is a Cauchy sequence and xk converges to some x+ ∈ X . Since the
residuals ‖A[k] xk− y[k]‖ converge to zero as k→∞ (see Corolary 2.2.7), this x+

is a solution of (2.2). 2

2.4 Numerical Experiments
In this section the rriTK method (see Algorithm 2.2.1) is implemented for solving
a benchmark problem, which happens to be a well known system of linear ill-
posed equations.

The setup is inspired in [17, Introduction]. Let the operator A=
[
ai, j = 1/(i+

j− 1)
]24

i, j=1 be a Hilbert matrix. The Hilbert matrix is scaled such that each line
ai of A satisfy ‖ai‖= 1.

Set N = 8 and define Ai ∈ R3,24 to be the block of A formed by lines a3i, . . . ,
a3i+2, i = 0, . . . ,N−1. In this setup we have X = R24 and yi ∈ Y = R3.

The performance of the rriTK method is compared against three concurrent
Kaczmarz type methods: (i) the Landweber Kaczmarz (LWK) method; (ii) the
stationary iTK (siTK) method with constant λk = 2; (iii) the geometric iTK
method (giTK) with λk = 2k.
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In our numerical experiments we set x? = (1, . . . ,1) ∈ X and compute the
corresponding exact data yi = Ai x?. The noise levels are δi = δ = 0.1%; noisy
data yδ

i satisfying (2.1) is generated by adding to yi randomly generated noise.
The discrepancy principle constant is τ = 4.0. Moreover, in Step [3.2] of Algo-
rithm 2.2.1 we use the constants p̄ = 0.1 and ¯̄p = 0.8

The first two plots in Figure 2.1 (TOP and CENTER) show the evolution of
iteration error and residual (respectively) for the Kaczmarz type methods imple-
mented in this section. The LWK (gray) reached the discrepancy principle after
3050 cycles; the siTK (black) after 1528 cycles, the giTK (blue) after 23 cycles,
and the rriTK (red) after 10 cycles. In these plots the x-axis shows the number of
computed cycles.

In the last plot of Figure 2.1 (BOTTOM) the values of ‖Aixδ

k+1− yδ
i ‖, i =

[k], for the rriTK method are shown (black). Moreover, in order to verify the
two inequalities in Step [3.2] of Algorithm 2.2.1, the upper bound ¯̄

Φ(‖Aixδ

k −
yδ

i ‖,δi) (green) and the lower bound Φ̄(‖Aixδ

k − yδ
i ‖,δi) (magenta) are shown.

In this plot the x-axis shows the number of effectively computed iterates xδ

k .
Although 10 cycles were computed (i.e., a total of 80 steps), only 44 iterates xk
were actually computed. For the remaining 36 steps, the residual of the current
equation ‖Aixδ

k − yδ
i ‖ was below the discrepancy τδi; consequently, xδ

k+1 = xδ

k in
Step [3.2] avoiding the task of solving problem (2.9).

————————————– ————————————–
A careful reader will notice that the comparison of methods presented in Fig-

ure 2.1 is far from being fair. Indeed, in Kaczmarz type methods, the computa-
tion of an iterative step is avoided (i.e., xδ

k+1 = xδ

k ) whenever the residual satisfies
‖Aixδ

k −yδ
i ‖≤ τδi. Consequently, the numerical burden of computing a cycle dif-

fers from method to method (as well as from cycle to cycle of the same method).
Therefore, plotting iteration errors (or residuals) after each cycle does not give a
proper comparison of the efficiency of these methods.

————————————– ————————————–
In Figure 2.2 the evolution of iteration error and residual (for the same Kacz-

marz type methods as before) are plotted as functions of effectively computed
iterates xk. This allows a fair comparison between these methods, since the num-
ber of computed iterates is proportional to the total computational burden of a
iTK type method.

It is worth noticing that, in Kaczmarz type methods we have monotonicity
of the iteration error ‖xδ

k − x?‖, see Corollary 2.2.5. However monotonicity of
residual ‖Axδ

k −yδ‖ cannot be guaranteed. In this regard, the best result available
is Lemma 2.2.2 (c). These two facts can be observed in both Figures 2.1 and 2.2.
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Figure 2.1: (TOP) Iteration error; (CENTER) Residual; (BOTTOM) Inequalities in Step [3.2].

2.5 Conclusions
We investigate nonstationary iTK type methods for computing stable approxi-
mate solutions to systems of linear ill-posed operator equations. The main con-
tribution of this chapter is to extend the strategy for choosing the Lagrange multi-
pliers in [2] (we propose a different range). This modification allow us to couple
the iT method with the Kaczmarz strategy and also to give a convergence proof
(Section 2.3) completely different from the one in [2].

This strategy is advantageous, since it allows each of these multipliers to
belong to a non-degenerate interval. Consequently, the actual computation of
Lagrange multipliers satisfying the theoretical requirements for the convergence
analysis (Step [3.2]) is in much simplified.

We prove monotonicity of the proposed rriTK method (2.14) and verify ge-
ometrical decay of the residual (2.10). Moreover, we provide estimates to the
“gain” ‖x?− xδ

k ‖2−‖x?− xδ

k+1‖2 in (2.11) and (2.12), as well as a lower bound
to the Lagrange multipliers (2.15), and an estimate to stopping index k∗ (2.17).
A convergence proof in the case of exact data is given (Theorem 2.3.1).
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Figure 2.2: Iteration error and residual as functions of the accumulated number of steps.

An algorithmic implementation of the rriTK method is proposed (Algo-
rithm 2.2.1). The resulting rriTK algorithm is competitive with giTK and also
with other two well known Kaczmarz type methods (LWK and siTK).

The rriTK is tested for a well known benchmark problem modeled by a
Hilbert matrix in the noisy data case. The obtained results validate the efficiency
of our method.
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