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Abstract. Magnetic Resonance Imaging with parallel data acquisition requires algorithms for
reconstructing the patient’s image from a small number of measured lines of the Fourier domain
(k-space).

In contrast to well-known algorithms like SENSE and GRAPPA and its flavors we consider
the problem as a non-linear inverse problem. However, in order to avoid cost intensive derivatives
we will use Landweber-Kaczmarz iteration and in order to improve the overall results some
additional sparsity constraints.

1. Introduction
The Magnetic Resonance Imaging, also known as MR imaging or simply MRI, is one of the most
popular and powerful medical imaging techniques.

Using strong magnetic fields the atoms (mostly hydrogen) in a specified slice of the body are
turned into small radio stations emitting signals with a specific frequency. These signals can be
detected simultaneously with multiple antenna coils placed around the body (therefore “Parallel
MRI”).

As a result we get the 2D Fourier transform of the water distribution of this particular slice.
In one pass one can read one line of this 2D Fourier transform; the acquiring time of this line is
due to medical and technical constraints already at the lower possible limit. Hence a speed up
of the method can just be achieved by measuring less data, ie. less lines in the Fourier domain.
As all antenna coils have different spatial characteristics (i.e. they illuminate different parts of
the image) even now from the theoretical point of view all necessary information to get a high
resolution image are hidden in the data. We want to retrieve these information from the parallel
measurements by appropriate mathematical algorithms. These have to cope with two problems,
on the one hand side they have to keep the noise at a reasonable level and on the other hand
need to keep undersampling (i.e. in the spatial domain overfolding) artifacts as low as possible.
An additional complication is posed by the problem that the sensitivity characteristics of the
antenna coils is not very well known and may change from patient to patient.

This problem has been largely investigated and a number of one pass methods have been
developed, e.g. SMASH [1], SENSE [2], GRAPPA [3] and SPACE-RIP [4].
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Recently we have investigated [5] an alternative algorithm which considers this problem as
non-linear inverse problem using IRGNM [6, 7] for regularization. As we have to solve several
times a very high dimensional linear equation for this method speed is still an issue and therefore
we seek for other less demanding iterative methods.

This article is outlined as follows. In Section 2 the description of a mathematical model for
Magnetic Resonance Imaging is presented, and the inverse problem for MRI is introduced. Then
we will perform a two step approach: In the first step (Section 3) we will generate a reasonable
(i.e. very smooth) guess for the receiver sensitivities accepting that the resulting guess for the
image will be too smooth as well. Using a particular assumption on the sensitivity kernels,
we are able to derive convergence and stability results for our iterative methods. In a second
step (Section 4) we will freeze the receiver sensitivities and use adapted image processing tools
(mainly sparsity constraints) to regain a reasonable sharp image.

2. Direct and inverse problems
A discrete mathematical model The measurement Mj ∈ Y of one of the N antenna coils (N
typically ranging from 12 to 36) can be written in the following way

Mj = Fj(P,Sj) := P[F(P × Sj)] (1)

where we have the following notation. P ∈ X̃ = RK shall denote the 2D image which we
would like to reconstruct. Typical sizes of P found in applications are either K = 256× 256 or
K = 512× 512 pixels.
Sj ∈ CK is the sensitivity profile of this specific antenna coil. Normally one knows (or can

rapidly estimate) a rough approximation of this quantity using the fact that from the engineering
side one tries that it roughly holds the (pointwise) equation

N∑
j=1

S2
j = 1. (2)

Additionally it is known that all Sj are very smooth quantities.
× denotes the point-wise product, i.e. we do not have a convolution as in similar problems

like blind deconvolution.
F is the Discrete Fourier Transform (DFT). The numerical evaluation of the DFT requires

O(p2
num) arithmetical operations. If pnum is a power of two, the DFT can be replaced by the

Fast Fourier Transform (FFT), which can be computed by the Cooley-Tukey algorithm3 and
requires only O(pnum log(pnum)) operations.

P is a projection operator which in the typical setting selects the center lines of the Fourier
domain and in the high frequent parts uses every kth line.

Hence combining the above information Fi : X → Y is a bilinear operator.

Formulation of the inverse problem Next we use the discrete model above as starting point to
formulate an inverse problem for MRI.

Due to the experimental nature of the data acquisition process, we shall assume that the data
Mi in (1) is not exactly known. Instead, we have only approximate measured data Mδ

i ∈ Y
satisfying

‖Mδ
i −Mi‖ ≤ δi , (3)

3 The FFT algorithm was published independently by J.W. Cooley and J.W. Tukey in 1965. However, this
algorithm was already known to C.F. Gauß around 1805.
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with δi > 0 (noise level). Therefore, the inverse problem for MRI can be written in the form of
the following system of nonlinear equations

Fi(P,Si) = Mδ
i , i = 0, . . . , N − 1 . (4)

It is worth noticing that the nonlinear operators Fi’s are continuously Fréchet differentiable, and
the derivatives are locally Lipschitz continuous:

Fi[P,Si]′(P,Si) = P[F(P × Sj + P × Sj)]. (5)

3. Iterative regularization
In this section we analyze efficient iterative methods for obtaining stable solutions of the inverse
problem in (4).

3.1. An image identification problem
Our first goal is to consider a simplified version of problem (4). We assume that the sensitivity
kernels Sj are known, and we have to deal with the problem of determining only the image P.
This assumption can be justified by the fact that, in the praxis, one has very good approximations
for the sensitivity kernels, while the image P is completely unknown.

In this particular case, the inverse problem reduces to

F̃i(P) = Mδ
i , i = 0, . . . , N − 1 , (6)

where F̃i(P) = Fi(P,Si). This is a much simpler problem, since F̃i : X̃ → Y are linear and
bounded operators.

We follow the approaches in [8, 9] and derive two iterative regularization methods of Kaczmarz
type for problem (6). Both iterations can be written in the form

Pδ
k+1 = Pδ

k − ωkαksk , (7)

where
sk := F̃[k](Pδ

k)∗(F̃[k](Pδ
k)−Mδ

i ) , (8)

ωk :=

{
1 ‖F̃[k](Pδ

k)−Mδ
i ‖ > τδ[k]

0 otherwise
. (9)

Here τ > 2 is an appropriately chosen constant, [k] := (k mod N) ∈ {0, . . . , N − 1} (a group
of N subsequent steps, starting at some multiple k of N , is called a cycle), Pδ

0 = P0 ∈ X̃ is
an initial guess, possibly incorporating some a priori knowledge about the exact image, and
αk ≥ 0 are relaxation parameters. Distinct choices for the relaxation parameters αk lead to the
definition of the two iterative methods:

1) If αk is defined by

αk :=

{
‖sk‖2/‖F̃[k](Pδ

k)sk‖2 ωk = 1
1 ωk = 0

, (10)

the iteration (7) corresponds to the loping Steepest-Descent-Kaczmarz method (lSDK) [9].
2) If αk ≡ 1, (7) corresponds to the loping Landweber-Kaczmarz method (lLK) [8].

The iterations should be terminated at kδ
∗ when, for the first time, all Pk are equal within a

cycle, i.e. all ωk were 0 in the cycle.
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Convergence analysis of the lSDK method From (1) follows that the operators F̃i are linear and
bounded. Therefore, there exist M > 0 such that

‖F̃i‖ ≤ M , i = 0, . . . , N − 1 . (11)

Since the operators F̃i are linear, the local tangential cone condition is trivially satisfied (see
(20) below). Thus, the constant τ in (9) can be chosen such that τ > 2. Moreover, we assume
the existence of

P∗ ∈ Bρ/2(P0) such that F̃i(P∗) = Mi , i = 0, . . . , N − 1 , (12)

where ρ > 0 and (Mi)N−1
i=0 ∈ Y N denotes to exact data satisfying (3).

In the sequel we summarize several properties of the lSDK iteration. For a complete proof of
the results we refer the reader to [9, Section 2].

Lemma 3.1 Let the coefficients αk be defined as in (10), the assumption (12) be satisfied for
some P∗ ∈ X̃, and the stopping index kδ

∗ be defined as above. Then the following assertions hold
true:

1) There exists a constant α > 0 such that αk > α, for k = 0, . . . , kδ
∗.

2) Let δi > 0 in (3). Then the stopping index kδ
∗ is finite.

3) Pδ
k ∈ Bρ/2(P0) for all k ≤ kδ

∗.
4) The following monotony property is satisfied:

‖Pδ
k+1 − P∗‖2 ≤ ‖Pδ

k − P∗‖2 , k = 0, 1, . . . , kδ
∗ , (13)

‖Pδ
k+1 − P∗‖2 = ‖Pδ

k − P∗‖2 , k > kδ
∗ . (14)

Moreover, in the case of noisy data (i.e. δi > 0) we have

‖F̃i(Pδ
kδ
∗
)−Mδ

i ‖ ≤ τδi , i = 0, . . . , N − 1 . (15)

The lSDK method is a convergent regularization method in the sense of [10] which has been
proven in [9]. Please note that (14) is a trivial consequence of the definition of kδ

∗ and hence we
can indeed stop at kδ

∗ as afterwards nothing changes any more.

Theorem 3.2 (Convergence) Let αk be defined as in (10), the assumption (12) be satisfied
for some P∗ ∈ X̃, and the data be exact, i.e. Mδ

i = Mi in (3). Then, the sequence Pδ
k defined

in (7) converges to a solution of (6) as k →∞.

Theorem 3.3 (Stability) Let the coefficients αk be defined as in (10), and the assumption
(12) be satisfied for some P∗ ∈ X̃. Moreover, let the sequence {(δ1,m, . . . , δN,m)}m∈N (or simply
{δm}m∈N) be such that limm→∞(maxi δi,m) = 0, and let Mδm

i be a corresponding sequence of
noisy data satisfying (3) (i.e. ‖Mδm

i −Mi‖ ≤ δi,m, i = 0, . . . , N − 1, m ∈ N). For each m ∈ N,
let km

∗ be the stopping index defined above. Then, the lSDK iterates Pδm
km
∗

converge to a solution
of (6) as m →∞.
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Convergence analysis of the lLK method The convergence analysis results for the lLK iteration
are analog to the ones presented in Theorems 3.2 and 3.3 for the lSDK method. In the sequel
we summarize the main results that we could extend to the lLK iteration [8].

Theorem 3.4 (Convergence Analysis) Let αk ≡ 1, the assumption (12) be satisfied for
some P∗ ∈ X̃, the operators F̃i satisfy (11) with M = 1, and the stopping index kδ

∗ be defined
as above. Then the following assertions hold true:

1) Let δi > 0 in (3). Then the stopping index kδ
∗ defined is finite.

2) Pδ
k ∈ Bρ/2(P0) for all k ≤ kδ

∗.
3) The monotony property in (13), (14) is satisfied. Moreover, in the case of noisy data, (15)

holds true.
4) For exact data, i.e. δi = 0 in (3), the sequence Pδ

k defined in (7) converges to a solution of
(6) as k →∞.

5) Let the sequence {δm}m∈N, the corresponding sequence of noisy data Mδm
i , and the stopping

indexes km
∗ be defined as in Theorem 3.3. Then, the lLK iterates Pδm

km
∗

converge to a solution
of (6) as m →∞.

Notice that the assumption M = 1 in Theorem 3.4 is nonrestrictive. Indeed, since the operators
F̃i are linear, it is enough to scale the equations in (6) with appropriate multiplicative constants.

3.2. Identification of image and sensitivity
Our next goal is to consider the problem of determining both the image P as well as the
sensitivity kernels Sj in (4). The lLK and lSDK iterations can be extended to the nonlinear
system in a straightforward way

(Pδ
k+1, (Sj)δ

k+1) = (Pδ
k , (Sj)δ

k)− ωkαksk , (16)

where
sk := F ′

[k](P
δ
k , (Sj)δ

k)
∗(F[k](Pδ

k , (Sj)δ
k)−Mδ

i ) , (17)

ωk :=

{
1 ‖F[k](Pδ

k , (Sj)δ
k)−Mδ

i ‖ > τδ[k]

0 otherwise
. (18)

In the lLK iteration we choose αk ≡ 1, and in the lSDK iteration we choose

αk :=

{
‖sk‖2/‖F ′

[k](P
δ
k , (Sj)δ

k)sk‖2 ωk = 1

1 ωk = 0
. (19)

In order to extend the convergence results in [8, 9] for these iterations, we basically have to
prove two facts:

1) Assumption (14) in [8].
2) The local tangential cone condition [8, Eq. (15)], i.e. the existence of (P0, (Sj)0) ∈ X and

η < 1/2 such that

‖Fi(P,Sj) − Fi(P̄, S̄j) − F ′
i (P,Sj)[(P,Sj) − (P̄, S̄j)]‖Y ≤ η‖Fi(P,Sj) − Fi(P̄, S̄j)‖Y ,

(20)

for all (P,Sj), (P̄, S̄j) ∈ Bρ(P0, (Sj)0), and all i = 1, . . . , N .
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The first one represents no problem. Indeed, the Fréchet derivatives of the operators Fi

are locally Lipschitz continuous. Thus, for any (P0, (Sj)0) ∈ X and any ρ > 0 we have
‖F ′

i (P, (Sj))‖ ≤ M = Mρ,P0,(Sj)0 for all (P, (Sj)) in the ball Bρ(P0, (Sj)0) ⊂ X.
For the local cone condition we can rewrite using the definitions

‖P[F [(P − P)× (Sj − Sj)]]‖Y ≤ η‖P[F(P × Sj − P × Sj)]‖Y , (21)

Obviously this condition does not need to hold; however the breakdown will just occur when
P−P and Sj−Sj are big (which we rule out anyway) or (P−P)×Sj ≈ P×(Sj−Sj) point-wise.

Therefore, the techniques used to prove convergence of the lLK and lSDK iterations in [8, 9]
cannot be extended to the nonlinear system (4), however in practice it can be consider highly
unlikely that the above case happens.

It is worth noticing that the local tangential cone condition is a standard assumption in
the convergence analysis of adjoint type methods (Landweber, steepest descent, Levenberg-
Marquardt, asymptotical regularization) for nonlinear inverse problems [10, 11, 12, 13, 6, 14, 15].
Thus, none of the classical convergence proofs for these iterative methods can be extended to
system (4).

The general problem with the approach presented up till now is that it will though returning
mathematically seen good results be not very valuable for the medical imaging part where as
in every imaging application one has an emphasis on small scale high frequent structures like
edges. Therefore we will use this approach to generate a good approximation to the sensitivities
which we can use for the approach presented in the next section.

4. Tikhonov regularization
As mentioned earlier, the above algorithm produces reconstructions of the sensitivities Sj as well
as of the image P. Since the sensitivities are essentially smooth functions their approximations
will be good, whereas the image we obtain would be ’oversmoothed’, i.e. we would not get a
good reconstruction of edges.

Therefore, as a second step we propose to reconsider the linear inverse problem (6) using
only the sensitivities from the above algorithm. In order to get better results, this time we use
a procedure that is suitable for jumps in the data such as edges. One way of doing this is by
using bounded variation penalization, but this has the disadvantage of having a high numerical
complexity, which is why we propose to use a Besov space penalty instead. In particular, we
want to minimize the functional

Jα(P) =
N−1∑
i=0

‖F̃i(P)−Mδ
i ‖2 + α · ‖P‖Bs

p,p
, (22)

where ‖.‖Bs
p,p

denotes the norm of the Besov space Bs
p,p. If we take a sufficiently smooth wavelet

basis (ϕγ)γ∈Γ of L2(Rd) and denote the coefficients of the expansion with respect to this basis
by Pγ , i.e.

Pγ = 〈P, ϕγ〉, (23)

then the norms Bs
p,p are equivalent to the norms

‖P‖s,p :=
( ∑

γ∈Γ

2σp|γ| |〈P, ϕγ〉|
)1/p

(24)

where σ = s + d(1
2 −

1
p) ≥ 0. In our case the dimension d is equal to 2 and with the particular

choice p = 1 the norm is simply the `1-norm of the coefficients (Pγ)γ . The functional (22) then
reduces to
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Jα(P) =
N−1∑
i=0

‖F̃i(P)−Mδ
i ‖2 + α ·

∑
γ∈Γ

|Pγ |. (25)

This functional is a slight extension to the type considered in [16] and adapting these results,
the minimizer can be computed iteratively as a limit of the sequence (Pk)k, where

Pk+1 = Sα/(2N)

(
Pk +

1
N

∑
i

F̃∗
i

(
Mδ

i − F̃i(P)
))

. (26)

and

Sµ(x) =

{
x− sign(x) · µ if |x| ≥ µ

0 if |x| < µ.
(27)

5. Conclusions
As we have seen we have presented a method for parallel MRI which both uses the specific
structure of the problem and the demands of medical image processing.

A challenging numerical task will be the incorporation of as accurate as possible a priori
information in order to both reduce the noise and the undersampling (i.e. overfolding) artifacts.
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