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Abstract. We propose a regularization method for solving ill-posed
problems, under the assumption that the solutions are piecewise constant
functions with unknown level sets and unknown level values. A level set
framework is established for the inverse problem and a Tikhonov regu-
larization approach is proposed. Existence of generalized minimizers for
the Tikhonov functional is proven. Moreover, we establish convergence
and stability results, characterizing our Tikhonov approach as a regular-
ization method. Based on the necessary conditions of optimality for the
Tikhonov functional, a level-set type method is derived and implemented
numerically for solving an inverse source problem. This allow us to test
the quality of the proposed algorithm.

1 Introduction

Several inverse problems of interest consist of identifying an unknown physical
quantity u ∈ X , that can be represented by a piecewise constant function, over
a bounded given domain Ω, from the set of data y ∈ Y , where X , Y are Hilbert
spaces. This process being described by the model

F (u) = y , (1)

where F : D(F ) ⊂ X → Y and the set of data is obtained by indirect mea-
surements of the parameter. Because of this, in practical applications the exact
data y ∈ Y is, in general, not known. Given is only approximate measured data
yδ ∈ Y , corrupted by noise of level δ > 0 and satisfying

‖yδ − y‖Y ≤ δ . (2)
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In the case where the unknown function u is a piecewise constant function dis-
tinguishing between two given values (i.e., up to an affine transformation, u is
a characteristic function), level set approaches were considered in [1,2,3,4,5,6].
In this case, since the level values of u are known, one needs only to identify the
level sets of u, i.e. the inverse problem reduces to a shape identification problem.

In the case where the unknown function u is a piecewise constant function
distinguishing between several given values, multiple level set approaches were
considered in [6,7,8]. If the level values of u are also unknown the inverse problem
becomes harder, since one has to identify both the level sets as well as the level
values of the unknown parameter u. In this case, the dimension of the parameter
space increases by the number of unknown level values.

Our starting point in this article is the assumption that the parameter u in
(1) is a piecewise constant function assuming two unknown values, i.e. u(x) ∈
{c1, c2} a.e. in Ω ⊂ R

d, d = 2, 3. In this case one can assume the existence of an
open mensurable set D ⊂⊂ Ω s.t. u(x) = c1, x ∈ D and u(x) = c2 x ∈ Ω/D.

We propose a level set approach to represent the unknown parameter u. First
we introduce the H1-function φ, which act as a regularization on the parameter
space. Then, using the Heaviside projector H : H1(Ω) → L∞(Ω), a solution of
(1) can be represented in the form

u = c1H(φ) + c2(1 − H(φ)) =: P (φ, c1, c2) . (3)

With this notation we have D = {x ∈ Ω ; φ(x) > 0} and Ω/D = {x ∈ Ω ; φ(x) <
0}. The level values c1, c2 ∈ R are unknown and have to be determined as well.

As already observed in [3], the Heaviside operator H maps H1(Ω) into the set
V := {χD ; D ⊂ Ω measurable, Hn−1(∂D) < ∞}, where Hn−1(S) denotes the
(n-1)-dimensional Hausdorff-measure of the set S. Therefore, the operator P in
(3) maps H1(Ω) × R2 into the admissible parameter set U := {u = q(v, c1, c2);
v ∈ V and c1, c2 ∈ R}, where q : V ×R

2 � (v, c1, c2) 	→ c1v + c2(1− v) ∈ L∞(Ω).
Using the level set framework introduced above, the inverse problem in (1),

with data given as in (2), can be written in the form of the operator equation

F (P (φ, c1, c2)) = yδ . (4)

Once an approximate solution (φ, c1, c2) of (4) is obtained, a corresponding so-
lution of (1) can be computed using equation (3). In this article, approximate
solutions to (4) are obtained by minimizing the Tikhonov functional

Gα(φ, c1, c2) := ‖F (P (φ, c1, c2)) − yδ‖2
Y + α

{
β1|H(φ)|BV + β2‖φ − φ0‖2

H1

+ β3

∑2
j=1 |cj − cj

0|2
}

, (5)

based on TV -H1 penalization. Here φ0 and cj
0 are known reference parameters.

This Tikhonov functional extends the ones proposed in [5, 6, 9] (based on TV
penalization) and [3, 8] (based on TV -H1 penalization). To motivate the regu-
larization terms in (5), notice that they effect: i) the boundedness of the level
lines of φ as well as it’s H1-norm; ii) the boundedness of cj . These two facts
allow us to guarantee existence of (generalized) minimizers of Gα in L∞ ∩ BV.
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This article is outlined as follows: In Section 2 we introduce the concept
of generalized minimizers for the functional Gα in (5). In Section 3 we derive
a convergence analysis for this Tikhonov approach. In Section 4 we introduce
stabilized functionals and prove that the corresponding minimizers approximate
a minimizer of Gα. Section 5 is devoted to numerical experiments. A level set type
method is implemented for solving a two-dimensional inverse potential problem.

2 The Concept of Generalized Minimizers

We shall consider the model problem described as in the introduction under the
following general assumptions:

(A1) Ω ⊆ R
n is bounded, connected, with piecewise C1 boundary ∂Ω.

(A2) The operator F : D(F ) ⊂ L1(Ω) → Y is continuous and Fréchet-
differentiable on D(F ) with respect to the L1(Ω)-topology.
(A3) ε, α and βj , j = 1, 2, 3 denote positive parameters.
(A4) Equation (1) has a solution, i.e. there exists u ∈ U satisfying F (u) = y
and a function φ ∈ H1(Ω) satisfying |∇φ| = 0, in a neighborhood of {φ = 0}
such that H(φ) = z, for some z ∈ V . Moreover, there exist constants values
c1, c2 ∈ R such that q(z, c1, c2) = u.

For each ε > 0, we define the operator

Pε(φ, c1, c2) := c1Hε(φ) + c2(1 − Hε(φ)) , (6)

where Hε is the continuous approximation to H given by:

Hε(t) :=
{

1 + t/ε for t ∈ [−ε, 0]
H(t) for t ∈ R/ [−ε, 0] .

In order to guarantee existence of a minimizer of Gα in (5), we adapt to
the level-set framework described above, the concept of generalized minimizers
formulated in [3].

Definition 1. Let the operators H, P , Hε and Pε be defined as above.

a) A vector (z, φ, c1, c2) ∈ L∞(Ω) × H1(Ω) × R
2 is called admissible when

there exists a sequence {φk} of H1(Ω)-functions satisfying limk ‖φk − φ‖L2 =
0, and also there exists a sequence {εk} ∈ R

+ converging to zero such that
limk ‖Hεk

(φk) − z‖L1 = 0.

b) A minimizer of Gα is considered to be any admissible vector (z, φ, c1, c2)
minimizing

Gα(z, φ, c1, c2) :=
∥
∥F (q(z, c1, c2)) − yδ

∥
∥2

Y
+ αR(z, φ, c1, c2) (7)

over the set of admissible vectors, where

R(z, φ, c1, c2) = ρ(z, φ) + β3

∑2
j=1 |cj − cj

0|2 , (8)

ρ(z, φ) := inf
{

lim inf
k→∞

[
β1|Hεk

(φk)|BV + β2‖φk − φ0‖2
H1

]}
. (9)

The infimum in (9) is taken over all sequences {εk} and {φk} characterizing
(z, φ, c1, c2) as an admissible vector.
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c) A generalized minimizer of Gα(φ, c1, c2) is an admissible vector (z, φ, c1, c2)
minimizing the functional Gα in (7) on the set of admissible vectors.

2.1 Relevant Properties of Admissible Vectors

First we verify some basic properties of the operators Pε, Hε and q that will be
necessary in the subsequent analysis.

Lemma 1. Let Ω be given as above and j = 1, 2.

(i) Let {zk}k∈N be a bounded sequence in L∞(Ω) converging to some element
z in L1(Ω) and {cj

k}k∈N be a sequence of real numbers converging to cj.
Then q(zk, c1

k, c2
k) converges to q(z, c1, c2) in L1(Ω).

(ii) Let (z, φ) ∈ L1(Ω) × H1(Ω), be such that Hε(φ) → z in L1(Ω) as ε → 0
and let c1, c2 ∈ R. Then Pε(φ, c1, c2) → q(z, c1, c2) in L1(Ω) as ε → 0.

(iii) Given ε > 0, let {φk}k∈N be a sequence in H1(Ω) converging to φ ∈ H1(Ω)
in the L2-norm. Then Hε(φk) → Hε(φ) in L1(Ω), as k → ∞. More-
over, if {cj

k}k∈N are sequences of real numbers converging to some cj, then
q(Hε(φk), c1

k, c2
k) → q(Hε(φ), c1, c2) in L1(Ω), as k → ∞.

Proof. Since Ω is assumed to be bounded, we have L∞(Ω) ⊂ L1(Ω). To prove
(i), notice that

‖q(zk, c1
k, c2

k)−q(z, c1, c2)‖L1 =
∫

Ω

|c1
kzk + c2

k(1 − zk) − c1z − c2(1 − z)| dx

≤
∫

Ω

|zk| (|c1
k − c1| + |c2

k − c2|)dx +
∫

Ω

(
(|c1| + |c2|)|zk − z| + |c2

k − c2|) dx

≤|Ω| ‖zk‖L∞(|c1
k − c1| + |c2

k − c2|) + (|c1| + |c2|)‖zk − z‖L1 + |Ω| |c2
k − c2| ,

which converges to zero as k → ∞. Assertion (ii) follows with similar arguments.
The first part of assertion (iii) is a direct consequence of the inequality ‖Hε(φk)−
Hε(φ)‖L1(Ω) ≤ ε−1

√
meas(Ω)‖φk − φ‖L2(Ω). The second part of assertion (iii)

follows by a combination of the inequality above and assertion (i). �

Lemma 2. Let (zk, φk, c1
k, c2

k) be a sequence of admissible vectors converging in
L1(Ω)×L2(Ω)×R

2 to some (z, φ, c1, c2). Then (z, φ, c1, c2) is also an admissible
vector.

Sketch of the proof. In order to prove that (z, φ, c1, c2) is also an admissible
vector, one uses an argument of extraction of diagonal subsequences, analogously
as in [8, Lemma 2]. �

2.2 Relevant Properties of the Penalization Functional

In the next lemmas we verify two properties of the functional R which are fun-
damental for the convergence analysis in Section 3.

Lemma 3. The functional R in (8) is coercive on the set of admissible vectors.
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Sketch of the proof. Let (z, φ, c1, c2) be an admissible vector. From [8, Lemma 4]
follows

ρ(z, φ) ≥ (
β1|z|BV + β2‖φ − φ0‖2

H1

)
. (10)

Now, from (10) and the definition of R in (8) follows

β1|z|BV + β2‖φ − φ0‖2
H1 + β3

∑2
j=1 |cj − cj

0|2 ≤
ρ(z, φ) + β3

∑2
j=1 |cj − cj

0|2 = R(z, φ, c1, c2) ,

concluding the proof. �
Lemma 4. The functional R in (8) is weak lower semi-continuous on the set of
admissible vectors, i.e. given a sequence {(zk, φk, c1

k, c2
k)} of admissible vectors

such that zk → z in L1(Ω), φk ⇀ φ in H1(Ω), cj
k → cj in R, for some admissible

vector (z, φ, c1, c2), then it follows

R(z, φ, c1, c2) ≤ lim inf
k∈N

R(zk, φk, c1
k, c2

k) .

Proof. The functional ρ(z, φ) is weak lower semi-continuous cf. [8, Lemma 5].
Moreover, the Euclidean norm in R

2 is also lower semi-continuous. The lemma
follows from the fact that the functional R in (8) is a linear combination of lower
semi-continuous functionals. �

3 Convergence Analysis

First we prove that for any positive parameters α, β the functional Gα in (5) is
well posed.

Theorem 1 (Well-Posedness). The functional Gα in (5) attains minimizers
on the set of admissible vectors.

Proof. Notice that the set of admissible vectors is not empty, since (0, 0, 0, 0) is
admissible. Let {(zk, φk, c1

k, c2
k)} be a minimizing sequence for Gα, i.e. a sequence

of admissible vectors satisfying Gα(zk, φk, c1
k, c2

k) → inf Gα ≤ Gα(0, 0, 0, 0) < ∞.
Then, {Gα(zk, φk, c1

k, c2
k)} is a bounded sequence of real numbers. Therefore,

{(zk, φk, c1
k, c2, k)} is uniformly bounded in BV×H1(Ω)×R

2. Thus, the Sobolev
compact embedding theorem [10] and the Bolzano-Weierstrass theorem guaran-
tees the existence of a subsequence (denoted again by {(zk, φk, c1

k, c2
k)}) and the

existence of (z, φ, c1, c2) ∈ L1(Ω) × H1(Ω) × R
2 such that φk → φ in L2(Ω),

φk ⇀ φ in H1(Ω), zk → z in L1(Ω) and cj
k → cj in R.

From Lemma 2 we conclude that (z, φ, c1, c2) is an admissible vector. More-
over, from the weak lower semi-continuity of R together with the continuity of
F and q we obtain

lim
k→∞

Gα(zk, φk, c1
k, c2

k) = lim
k→∞

{‖F (q(zk, c1
k, c2

k)) − yδ‖2
Y + αR(zk, φk, c1

k, c2
k)

}

≥ ‖F (q(z, c1, c2)) − yδ‖2
Y + αR(z, φ, c1, c2) = Gα(z, φ, c1, c2) , (11)

proving that (z, φ, c1, c2) minimizes Gα. �
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In the next theorems we present the main convergence and stability results. The
proofs use classical techniques from the analysis of Tikhonov type regularization
methods (see, e.g., [11, 12]).

Theorem 2 (Convergence for exact data). Assume that we have exact data,
i.e. yδ = y and βj > 0 , j = 1, 2, 3. For every α > 0 let (zα, φα, c1

α, c2
α) denote

a minimizer of Gα on the set of admissible vectors. Then, for every sequence of
positive numbers {αk}k∈N converging to zero there exists a subsequence, denoted
again by {αk}l∈N, such that (zαk

, φαk
, c1

αk
, c2

αk
) is strongly convergent in L1(Ω)×

L2(Ω) × R
2. Moreover, the limit is a solution of (1).

Proof. Let (z†, φ†, c1,†, c2,†) be a solution of (1) – its existence is guaranteed by
assumption (A4). Let {αk}k∈N be a sequence of positive numbers converging to
zero. For each k ∈ N, let (zk, φk, c1

k, c2
k) := (zαk

, φαk
, c1

αk
, c2

αk
) be a minimizer of

Gαk
. Then, for each k ∈ N we have

Gαk
(zk, φk, c1

k, c2
k) ≤ ∥∥F (q(z†, c1,†, c2,†)) − y

∥∥2

Y
+ αkR(z†, φ†, c1,†, c2,†)

= αkR(z†, φ†, c1,†, c2,†) . (12)

Since αkR(zk, , φk, c1
k, c2

k) ≤ Gαk
(zk, φk, c1

k, c2
k), it follows from (12) that

R(zk, φk, c1
k, c2

k) ≤ R(z†, φ†, c1,†, c2,†) < ∞ . (13)

Moreover, from the assumption on the sequence {αk}, it follows that

lim
k→∞

αkR(z†, φ†, c1,†, c1,†) = 0 . (14)

From (13) and Lemma 3 we conclude that the sequences {φk}, {zk} and {cj
k}j=1,2

are bounded in H1(Ω) , BV and R
2 respectively. Using an argument of extraction

of diagonal subsequences (see proof of Lemma 2) we can guarantee the existence
of an admissible vector (z̃, φ̃, c̃1, c̃2) such that

(zk, φk, c1
k, c2

k) → (z̃, φ̃, c̃1, c̃2) in L1(Ω) × L2(Ω) × R
2 .

From Lemma 1 (i) follows that q(z̃, c̃1, c̃2) = lim
k→∞

q(zk, c1
k, c2

k) on L1(Ω). Using

the continuity of the operator F together with (12) and (14) we conclude that

y = lim
k→∞

F (q(zk, c1
k, c2

k)) = F (q(z̃, c̃1, c̃2)) .

On the other hand, from the lower semi-continuity of R and (13) it follows that

R(z̃, φ̃, c̃1, c̃2) ≤ lim inf
k→∞

R(zk, φk, c1
k, c2

k)

≤ lim sup
k→∞

R(zk, φk, c1
k, c2

k)) ≤ R(z†, φ†, c̃1, c̃2) ,

concluding the proof. �
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Theorem 3 (Convergence for noisy data). Let α = α(δ) be a function
satisfying lim

δ→0
α(δ) = 0 and lim

δ→0
δ2α(δ)−1 = 0. Moreover, let {δk}k∈N be a se-

quence of positive numbers converging to zero and yδk ∈ Y be corresponding
noisy data satisfying (2). Then, there exist a subsequence, denoted again by
{δk}, and a sequence {αk := α(δk)} such that (zαk

, φαk
, c1

αk
, c2

αk
) converges in

L1(Ω) × L2(Ω) × R
2 to solution of (1).

Proof. Let (z†, φ†, c1,†, c1,†) be a solution of (1).1 For each k ∈ N, denote by
(zk, φk, c1

k, c2
k) := (zα(δk), φα(δk), c

1
α(δk), c

2
α(δk)) a minimizer of Gα(δk). Then, for

each k ∈ N we have

Gαk
(zk, φk, c1

k, c2
k) ≤ ∥

∥F (q(z†, c1,†, c1,†)) − yδk
∥
∥2

Y
+ α(δk)R(z†, φ†, c1,†, c2,†)

≤ δ2
k + α(δk)R(z†, φ†, c1,†, c2,†) . (15)

Taking the limit k → ∞ in (15), it follows from the theorem assumptions
that lim

k→∞
∥∥F (q(zk, c1

k, c2
k)) − yδk

∥∥2 ≤ lim
k→∞

Gαk
(zk, φk, c1

k, c2
k) = 0. Therefore,

lim
k→∞

F (q(zk, c1
k, c2

k)) = y. Moreover, from (15) and the definition of Gαk
, it fol-

lows that R(zk, φk, c1
k, c2

k) ≤ δ2
k α(δk)−1 + R(z†, φ†, c1,†, c2,†). Thus, from the

assumptions on the function α(δk), we conclude that lim sup
k→∞

R(zk, φk, c1
k, c2

k) ≤
R(z†, φ†, c1,†, c2,†). The proof follows arguing as in the proof of Lemma 2. �

4 Numerical Solution

In the sequel we introduce a functional which can be handled numerically, and
whose minimizers are ’close’ to the minimizers of Gα. Let Gε,α be the stabilized
functional defined by

Gε,α(φ, c1, c2) := ‖F (Pε(φ, c1, c2)) − yδ‖2
Y + α

{
β1|Hε(φ)|BV+

+ β2‖φ − φ0‖2
H1 + β3

∑2
j=1 |cj − cj

0|2
}
, (16)

where Pε(φ, c1, c2) := q(Hε(φ), c1, c2) is the functional defined in (6). The func-
tional Gε,α is well-posed as the following lemma shows:

Lemma 5. Given positive constants α, ε, βj, j = 1, 2, 3 as above, a function
φ0 ∈ H1(Ω) and cj

0 ∈ R, j = 1, 2, the functional Gε,α in (16) attains a minimizer
on H1(Ω) × R

2.

Proof. Since inf{Gε,α(φ, c1, c2) : (φ, c1, c2) ∈ H1(Ω) × R
2} ≤ Gε,α(0, 0, 0) < ∞,

there exists a minimizing sequence {(φk, c1
k, c2

k)} in H1(Ω) × R
2 satisfying

lim
k→∞

Gε,α(φk, c1
k, c2

k) = inf{Gε,α(φ, c1, c2) : (φ, c1, c2) ∈ H1(Ω) × R
2} .

1 The existence of solutions is guaranteed by (A4).
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Then, for fixed α > 0, the sequences {φk} and {cj
k}j=1,2 are bounded in H1(Ω)

and R
2 respectively. Therefore, φk ⇀ φ in H1(Ω) and cj

k → cj in R, j = 1, 2.
Moreover, by the weak lower semi-continuity of the H1–norm and the continuity
of the Euclidean norm in R, it follows that ‖φ − φ0‖2

H1 ≤ lim inf
k→∞

‖φk − φ0‖2
H1 ,

and |cj − cj
0| ≤ lim inf

k→∞
|cj

k − cj
0|.

From the Sobolev compact embedding theorem [13] we have φk → φ in L2(Ω).
Therefore, Lemma 1 implies

‖Hε(φ
j
k) − Hε(φj)‖L1 ≤ ε−1√meas(Ω)‖φk − φ‖L2 → 0,

‖Pε(φk, c1
k, c2

k) − Pε(φ, c1, c2)‖L1 = ‖q(Hε(φk), c1
k, c2

k) − q(Hε(φ), c1, c2)‖L1 → 0.

Thus, it follows from [10, Theorem 1, pg 172] that |Hε(φ)|BV ≤ lim inf
k→∞

|Hε(φk)|BV.
Now, from the continuity of F and q, together with the estimates above we obtain

Gε,α(φ, c1, c2) ≤ lim
k→∞

‖F (Pε(φk, c1
k, c2

k)) − yδ‖2
Y + α

{
β1 lim inf

k→∞
|Hε(φk)|BV+

+ β2 lim inf
k→∞

‖φk − φ0‖2
H1 + β3 lim inf

k→∞
∑2

j=1 |cj
k − cj

0|2
}

≤ lim inf
k→∞

Gε,α(φk, c1
k, c2

k) = inf Gε,α,

concluding the proof. �

In the sequel we prove that, when ε → 0, the minimizers of Gε,α approximate a
minimizer of the functional Gα.

Theorem 4. Let α and βj be given as above. For each ε > 0, denote by (φε,α,
c1
ε,α, c2

ε,α) a minimizer of Gε,α. There exists a sequence of positive numbers εk →
0 such that (Hεk

(φεk ,α), φεk,α, c1
εk,α, c2

εk,α) converges strongly in L1(Ω)×L2(Ω)×
R

2 and the limit minimizes Gα on the set of admissible vectors.

Proof. The functional Gα attains a generalized minimizer (zα, φα, c1
α, c2

α) on the
set of admissible vectors (cf. Theorem 1). From Definition 1, there exists a se-
quence {εk} of positive numbers converging to zero and corresponding sequences
{φk} in H1(Ω) satisfying φk → φα in L2(Ω), Hεk

(φk) → zα in L1(Ω). Moreover,
we can further assume [8, Lemma 3] that

R(zα, φα, c1
α, c1

α) = lim
k→∞

{
β1|Hεk

(φk)|BV + β2‖φk − φ0‖2
H1 + β3

∑2
j=1 |cj

k − cj
0|2

}
.

Let (φεk
, c1

εk
, c2

εk
) be a minimizer of Gεk,α. The sequences {φεk

}, {Hεk
(φεk

)} and
{cj

k}j=1,2 are uniformly bounded in H1(Ω), BV(Ω) and R
2 respectively. By the

compact Sobolev embedding theorem [13], the compact embedding of BV into L1

[10] and the Bolzano-Weierstrass theorem, there exist convergent subsequences
whose limits are denoted by φ̃, z̃ and c̃j . Summarizing, we have φεk

→ φ̃ in
L2(Ω), Hεk

(φεk
) → z̃ in L1(Ω), and cj

k → c̃j in R, j = 1, 2. Thus, (z̃, φ̃, c̃1, c̃2) ∈
L1(Ω) × H1(Ω) × R

2 is an admissible vector (cf. Lemma 2).



58 A. DeCezaro, A. Leitão, and X.-C. Tai

From the definition of R, Lemma 1 and the continuity of F , it follows that

‖F (q(z̃, c̃1, c̃2)) − yδ‖2
Y = lim

k→∞
‖F (Pεk

(φεk
, c1

εk
, c2

εk
)) − yδ‖2

Y ,

R(z̃, φ̃, c̃1, c̃2) ≤ lim inf
k→∞

{
β1|Hεk

(φεk
)|BV + β2‖φεk

− φ0‖2
H1 + β3

2∑

j=1

|cj
εk

− cj
0|2

}
.

Therefore,

Gα(z̃, φ̃, c̃1, c̃2) = ‖F (q(z̃, c̃1, c̃2)) − yδ‖2
Y + αR(z̃, φ̃, c̃1, c̃2)

≤ lim inf
k→∞

Gεk,α(φεk
, c1

εk
, c2

εk
) ≤ lim inf

k→∞
Gεk,α(φk, c1

k, c2
k)

≤ lim sup
k→∞

‖F (Pεk
(φk, c1

k, c2
k)) − yδ‖2

Y

+ α lim sup
k→∞

{
β1|Hεk

(φk)|BV + β2‖φk − φ0‖2
H1 + β3

∑2
j=1 |cj

k − cj
0|2

}

= ‖F (q(zα, c1
α, c2

α)) − yδ‖2
Y + αR(zα, φα, c1

α, c2
α) = Gα(zα, φ1

α, c1
α, c2

α) ,

characterizing (z̃, φ̃, c1
α, c2

α) as a minimizer of Gα. �

4.1 Optimality Conditions for the Stabilized Functional

For numerical purposes it is convenient to derive first order optimality conditions
for minimizers of the stabilized functionals Gε,α. Therefore, we consider Gε,α in
(16) with Y = L2(Ω) and we look for the Gâteaux directional derivatives with
respect to φ and the unknown constants cj for j = 1, 2.

Since H ′
ε(φ) is self-adjoint, we can write the optimality conditions for the

functional Gε,α in the form of the system

α(Δ − I)(φ − φ0) = Lε,α,β(φ, c1, c2), in Ω ; (φ − φ0) · ν = 0, at ∂Ω (17a)

α (cj − cj
0) = Lj

ε,α,β(φ, c1, c2), j = 1, 2 . (17b)

Here ν(x) is the external unit normal vector at x ∈ ∂Ω, β̄ := (2β3)−1, and

Lε,α,β(φ, c1, c2) = (c1 − c2)β−1
2 H ′

ε(φ)∗F ′(Pε(φ, c1, c2))∗(F (Pε(φ, c1, c2)) − yδ)
−β1(2β2)−1H ′

ε(φ)∇·[∇Hε(φ)/|∇Hε(φ)|], (18a)

L1
ε,α,β(φ, c1, c2) = β̄

(
F ′(Pε(φ, c1, c2))Hε(φ)

)∗(F (Pε(φ, c1, c2)) − yδ), (18b)

L2
ε,α,β(φ, c1, c2) = β̄

(
F ′(Pε(φ, c1, c2))(1 − Hε(φ))

)∗(F (Pε(φ, c1, c2)) − yδ).(18c)

5 Numerical Results

In this section a level-set type method based on the system of optimality condi-
tions (17) is used for solving an inverse potential problem of recovering a piece-
wise constant function u : Ω → {c1, c2}, from measurements of the Cauchy data
of its corresponding potential on the boundary of the domain Ω = (0, 1)× (0, 1).
Notice that no knowledge of the image of u (values c1, c2 ∈ R) is assumed.
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5.1 The Inverse Potential Problem

To describe the direct problem, we define the operator F : L2(Ω) → L2(∂Ω) by
F : u(x) 	→ F (u) := wν |∂Ω, where u is a piecewise constant function in L2(Ω)
with u(x) ∈ {c1, c2} a.e. in Ω, and w ∈ H1(Ω) solves the elliptic boundary value
problem

Δw = u , in Ω ; w = 0 , at ∂Ω . (19)

Since u ∈ L2(Ω), the Dirichlet boundary value problem in (19) has a unique
solution, namely the potential w ∈ H2(Ω) ∩ H1

0 (Ω).
The inverse problem we are concerned with, consists in determining the piece-

wise constant source function u from measurements of the Neumann trace of w
at ∂Ω, i.e. from wν |∂Ω . Using the above notation, the inverse potential problem
can be written in the abbreviated form F (u) = yδ, where the data yδ has the
same meaning as in (2).

Other inverse problems for the operator F were considered in [3, 8]. In [3] a
level set method was used for recovering the indicator function u = χD of a
star-shaped domain D ⊂ R

2. In [8] a multiple level set method was used for
recovering a simple function u : Ω → {c1, . . . , c4}. In both cases, knowledge of
the (finite) image of u was assumed.

5.2 A Level-Set Algorithm for the Inverse Potential Problem

In the sequel we describe the level set regularization algorithm. This method
compares to the level set method as proposed in [8]. The complexity of our
algorithm is as follows: at each iteration of the level set method, four elliptic
boundary value problems (BVP) are solved (two of Dirichlet type and two of
Neumann type).

In Table 1 an explicit fixed point procedure for solving the the optimality
condition (18) is outlined. In the first step the residual rk ∈ L2(∂Ω) of the
iterate (φk, c1

k, c2
k) is evaluated. This corresponds to solving one elliptic BVP

of Dirichlet type. In the second step the solution hk ∈ H1(Ω) of the adjoint
problem for the residual is evaluated. This corresponds to solving one elliptic
BVP of Dirichlet type. In the fourth step, the velocity function vk ∈ H1(Ω) for
the level-set function is evaluated. This corresponds to solving an elliptic BVPs
of Neumann type.

In the subsequent numerical experiments this algorithm was implemented
using a finite element method for the solution of partial differential equations.

5.3 Numerical Experiment

In our experiment we consider the inverse problem of reconstructing the right
hand side u in (19) from the knowledge of a single pair of Cauchy data (0, yδ)
at ∂Ω. We further assume that the level value c2 = 0 is given, and that we have
to identify only the support of u and the level value c1 ∈ R

+.
The data yδ = y = F (u) for solving the inverse problem is known exactly, i.e.

δ = 0, and is obtained by solving numerically the elliptic boundary value problem
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Table 1. Level set algorithm for the inverse potential problem

1. Evaluate the residual rk := F (Pε(φk, c1
k, c2

k))− yδ = (wk)ν |∂Ω − yδ, where
wk solves

Δwk = Pε(φk, c1
k, c2

k) , in Ω ; wk = 0 , at ∂Ω .
2. Evaluate hk := F ′(Pε(φk, c1

k, c2
k))∗(rk) ∈ L2(Ω), solving

Δhk = 0 , in Ω ; hk = rk , at ∂Ω .
3. Calculate Lε,α,β(φk, c1

k, c2
k) and Lj

ε,α,β(φk, c1
k, c2

k), j = 1, 2 as in (18).
4. Evaluate the velocity vk ∈ H1(Ω), solving

(Δ − I)vk = Lε,α,β(φk, c1
k, c2

k) , in Ω ; (vk)ν = 0 , at ∂Ω .
5. Update the level set function φk and the level values cj

k, j = 1, 2:

φk+1 = φk + 1
α

vk , cj
k+1 = cj

k + 1
α

Lj
ε,α,β(φk, c1

k, c2
k) .

in (19) (the word ’exactly’ here means: up to the precision of the numerical
method used for solving the direct problem).

For the direct problem we use the values: c1 = 1, c2 = 0 to compute the exact
solution. In the computation of the inverse problem, the exact solution is known
a priori to assume the values {c1, 0} (with unknown c1). Moreover, when the
data are given exactly, the iterative level-set method is implemented without
the additional regularization term |Hε(φ)|BV, i.e. β1 = 0.

The solution u of the inverse problem as well as the initial guess Pε(φ0, c
1
0)

for the level-set method are shown in Figure 1. Notice that the support of u
corresponds to a non-connected proper subset of Ω, The initial guess c1

0 = 1.5 is
used for the unknown level value.

In Figure 2 the evolution of the level set method for the first 1500 iterative
steps is presented. As one can see in this figure, the shapes of both inclusions
are reasonably reconstructed, and the level value c1 is accurately reconstructed
as well. The iteration is stopped when the residual drops below the predefined
precision ‖F (Pε(φk, c1

k)) − y‖L2 < 10−2.

Fig. 1. Numerical experiment: The picture on the left hand side shows the coefficient to
be reconstructed. On the right hand side, the initial condition for the level-set method.
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Fig. 2. Numerical experiment: On the left hand side a plot of P (φk, c1
k) for k = 1500.

The picture on the right hand side shows the corresponding iteration error.

We performed other numerical simulations with different choice of initial guess
(φ0, c

1
0), and observed that the number of iterative steps required in order to

obtain a reasonable approximation (up to the predefined precision of 10−2 in
the L2-norm) strongly depends on the choice of the initial guess c1

0. On the
other hand, the final result is not sensitive with respect to the choice of the
initial guess φ0.
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