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Abstract In this article we propose a novel nonstationary iterated Tikhonov
(nIT) type method for obtaining stable approximate solutions to ill-posed operator
equations modeled by linear operators acting between Banach spaces. We propose
a novel a posteriori strategy for choosing the sequence of regularization parameters
(or, equivalently, the Lagrange multipliers) for the nIT iteration, aiming to obtain a
fast decay of the residual.

Numerical experiments are presented for a 1D convolution problem (smooth
Tikhonov functional and Banach parameter-space), and for a 2D deblurring problem
(nonsmooth Tikhonov functional and Hilbert parameter-space).

1 Introduction

In this article we propose and (numerically) investigate a new nonstationary Iterated
Tikhonov (nIT) type method [6, 9] for obtaining stable approximations of linear ill-
posed problems modeled by operators mapping between Banach spaces.

The novelty of our approach consists in adopting an a posteriori strategy for the
choice of the Lagrange multipliers, which aims to achieve a predefined decay of
the residual in each iteration. This strategy differs from the classical choice for the
Lagrange multipliers in [9, 10], which propose an a priori strategy, and leads to an
unknown decay rate of the residual.

The inverse problem we are interested in consists of determining an unknown
quantity x 2 X from the set of data y 2 Y, where X, Y are Banach spaces. In
practical situations, one does not know the data exactly; instead, only approximate
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measured data yı 2 Y are available with

kyı � ykY � ı ; (1)

where ı > 0 is the (known) noise level. The available data yı are obtained by
indirect measurements of the parameter x, this process being described by the ill-
posed operator equation

A x D yı ; (2)

where A W X ! Y is a bounded linear operator, whose inverse A�1 W R.A/ ! X
either does not exist, or is not continuous. For a comprehensive study of this type of
problems, we refer the reader to the text book [13] and to the references therein.

Iterated Tikhonov type methods are typically used for linear inverse problems.
Applications of this method for linear operator equations in Hilbert spaces can be
found in [9] (see also [4] for the nonlinear case). In the Hilbert space setting, both
a priori and a posteriori strategies for choosing the Lagrange multipliers have been
extensively analyzed [6].

The research on the Banach space setting is still ongoing. Some preliminary
results can be found in [10] for linear operator equations, and in [11] for nonlinear
systems. In both references above, the authors consider a priori strategies for
choosing the Lagrange multipliers.

The approach presented here is devoted to the Banach space setting, and consists
in adopting an a posteriori strategy for the choice of the Lagrange multipliers. The
penalty terms used in our Tikhonov functionals are the same as in [11] and consist
of Bregman distances induced by (uniformly) convex functionals (e.g., the sum of
the L2-norm with the TV-seminorm).

This chapter is outlined as follows: In Sect. 2 a revision of relevant background
material is presented. In Sect. 3 we introduce our nIT method. In Sect. 4 possible
implementations of our method are discussed; the evaluation of the Lagrange
multipliers is addressed, as well as the issue of minimizing the Tikhonov functionals.
Section 5 is devoted to numerical experiments, while in Sect. 6 we present some final
remarks and conclusions.

2 Background Material

For details about the material discussed in this section, we refer the reader to the
textbooks [3] and [13].

Unless the contrary is explicitly stated, we always consider X a real Banach
space. The effective domain of the convex functional f W X ! R WD .�1; 1� is
defined as

Dom . f / WD fx 2 X W f .x/ < 1g :
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The set Dom . f / is always convex and we call f proper provided Dom . f / is not
empty. The functional f is called uniformly convex if there exists a continuous and
strictly increasing function 'WRC

0 ! R
C
0 with the property ' .t/ D 0 implies t D 0;

such that

f .�x C .1 � �/ y/ C � .1 � �/ ' .kx � yk/ � �f .x/ C .1 � �/ f . y/ ; (3)

for all � 2 .0; 1/ and x; y 2 X: Of course f uniformly convex implies f strictly
convex, which in turn implies f convex. The functional f is lower semi-continuous
(in short l.s.c.) if for any sequence .xk/k2N � X satisfying xk ! x, it holds

f .x/ � lim inf
k!1 f .xk/ :

It is called weakly lower semi-continuous (w.l.s.c.) if above property holds true with
xk ! x replaced by xk * x: Obviously every w.l.s.c functional is l.s.c. Further, any
Banach space norm is w.l.s.c.

The sub-differential of a functional f W X ! R is the point-to-set mapping @f W X !
2X�

defined by

@f .x/ WD f� 2 X� W f .x/ C h�; y � xi � f . y/ for all y 2 Xg :

Any element in the set @f .x/ is called a sub-gradient of f at x: The effective domain
of @f is the set

Dom .@f / WD fx 2 X W @f .x/ ¤ ;g :

It is clear that the inclusion Dom .@f / � Dom . f / holds whenever f is proper.
Sub-differentiable and convex l.s.c. functionals are strongly connected to each

other. In fact, a sub-differentiable functional f is convex and l.s.c. in any open convex
set of Dom . f / : On the other hand, a proper, convex and l.s.c. functional is always
sub-differentiable on its effective domain.

The definition of sub-differential readily yields

0 2 @f .x/ ” f .x/ � f . y/ for all y 2 X:

If f ; gW X ! R are convex functionals and there is a point x 2 Dom . f / \ Dom .g/

where f is continuous, then

@ . f C g/ .x/ D @f .x/ C @g .x/ for all x 2 X: (4)

Moreover, if Y is also a real Banach space, hW Y ! R is convex, b 2 Y; AW X ! Y is
a bounded linear operator and h is continuous at some point of the range of A; then

@ .h .� � b// . y/ D .@h/ . y � b/ and @ .h ı A/ .x/ D A� .@h .Ax// ;
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for all x 2 X and y 2 Y; where A�W Y� ! X� is the Banach-adjoint of A: As a
consequence,

@ .h .A � �b// .x/ D A� .@h/ .Ax � b/ for all x 2 X: (5)

If a convex functional f W X ! R is Gâteaux-differentiable at x 2 X; then f has a
unique sub-gradient at x; namely, the Gâteaux-derivative itself: @f .x/ D frf .x/g :

The sub-differential of the convex functional

f .x/ D 1

p
kxkp ; p > 1; (6)

is called the duality mapping and is denoted by Jp: It can be shown that for all x 2 X;

Jp .x/ D
n
x� 2 X� W hx�; xi D kx�k kxk and kx�k D kxkp�1

o
:

Thus, the duality mapping has the inner-product-like properties:

hx�; yi � kxkp�1 kyk and hx�; xi D kxkp ;

for all x� 2 Jp .x/ : In a Hilbert spaces X, by using the Riesz Representation
Theorem, one can prove that J2 .x/ D x for all x 2 X. Further, only in Hilbert
spaces J2 is a linear map.

Banach spaces are classified according with their geometrical characteristics.
Many concepts concerning these characteristics are usually defined using the
modulus of convexity and the modulus of smoothness, but most of these definitions
can be equivalently stated observing the properties of the functional f defined in (6).1

This functional is convex and sub-differentiable in any Banach space X. If (6) is
Gâteaux-differentiable in the whole space X; this Banach space is called smooth. In
this case, Jp .x/ D @f .x/ D frf .x/g and therefore, the duality mapping JpW X ! X�
is single-valued. If the functional f in (6) is Fréchet-differentiable in X; this space
is called locally uniformly smooth and it is called uniformly smooth provided f is
uniformly Fréchet-differentiable in bounded sets. As a result, the duality mapping
is continuous (resp. uniformly continuous in bounded sets) in locally uniformly
smooth (resp. uniformly smooth) spaces. It is immediate that uniform smoothness
implies local uniform smoothness, which in turn implies smoothness. Further, none
reciprocal is true. Similarly, a Banach space X is called strictly convex whenever (6)
is a strictly convex functional. Moreover, X is called uniformly convex if the
functional f in (6) is uniformly convex. It is clear that uniform convexity implies
strict convexity. It is well-known that both uniformly smooth and uniformly convex
Banach spaces are reflexive.

1Normally, the differentiability and convexity properties of this functional are independent of the
particular choice of p > 1:
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Assume f is proper. Then choosing elements x; y 2 X with y 2 Dom .@f / ; we
define the Bregman distance between x and y in the direction of � 2 @f .y/ as

D� f .x; y/ WD f .x/ � f . y/ � h�; x � yi :

Obviously D� f .y; y/ D 0; and since � 2 @f .y/ ; it additionally holds D� f .x; y/ � 0:

Moreover, it is straightforward proving the Three Points Identity:

D�1 f .x2; x1/ � D�1 f .x3; x1/ D D�3 f .x2; x3/ C h�3 � �1; x2 � x3i ;

for all x2 2 X; x1; x3 2 Dom .@f / ; �1 2 @f .x1/ and �3 2 @f .x3/ : Further, the
functional D� f .�; y/ is strictly convex whenever f is strictly convex, and in this case,
D� f .x; y/ D 0 iff x D y:

When f is the functional defined in (6) and X is a smooth Banach space, the
Bregman distance has the special notation �p .x; y/ ; i.e.,

�p .x; y/ WD 1

p
kxkp � 1

p
kykp � ˝

Jp . y/ ; x � y
˛
:

Since J2 is the identity operator in Hilbert spaces, a simple application of the
polarization identity shows that �2 .x; y/ D 1

2
kx � yk2 in these spaces.

If f W X ! R is uniformly convex, then for all y 2 X; x 2 Dom .@f /, � 2 @f .x/

and � 2 .0; 1/ ;

f .�x C .1 � �/ y/ � f .x/ C h�; .�x C .1 � �/ y/ � xi
D f .x/ C .1 � �/ h�; y � xi ;

which in view of (3) implies

h�; y � xi C �' .kx � yk/ � f . y/ � f .x/ :

Now, letting � ! 1�; we obtain ' .kx � yk/ � D� f .y; x/ : Analogously, the
inequality

' .kx � yk/ � D� f .x; y/ (7)

holds true for all x 2 X; y 2 Dom .@f / and � 2 @f .y/ ; whenever f is uniformly
convex. In particular, in a smooth and uniformly convex Banach space X, the above
inequality reads ' .kx � yk/ � �p .x; y/ :

It is well-known that for 1 < p < 1; the Lebesgue space Lp .˝/ ; the Sobolev
space Wn;p .˝/ and the space of p-summable sequences `p .R/ are uniformly
smooth and uniformly convex Banach spaces.
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3 The Iterative Method

In this section we introduce the nonstationary iterated Tikhonov method to solve (2).
The method we propose here is in the spirit of the method in [11], with the
distinguish feature of using an endogenous strategy for the choice of the Lagrange
multipliers �ı

k.
Specifically, fixing r > 0 and a uniformly convex penalty term f , the iterative

method defines sequences .xı
k/ in X and .�ı

k / in X� iteratively by

xı
k WD arg min

x2X

�ı
k

r

��Ax � yı
��r C D�ı

k�1
f

�
x; xı

k�1

�

�ı
k WD �ı

k�1 � �ı
kA�Jr.Axı

k � yı/;

where the multiplier �ı
k will be determined using only information about A, ı, yı

and xı
k�1.

Our strategy for selecting the Lagrange multipliers is inspired in the recent work
[1], where it was proposed an endogenous strategy for the choice of the Lagrange
multiplier in the iterative method for solving (2), when X and Y are Hilbert spaces.
This method is based on successive orthogonal projection methods onto a family of
shrinking, separating convex sets. Specifically, the iterative method in [1] obtains
the new iterate projecting the current one onto a levelset of the residual function,
whose level belongs to a range defined by the current residual and by the noise
level. Further, the admissible Lagrange multipliers (in each iteration) shall belong
to a non-degenerate interval.

With the view to extend this framework to Banach space setting we are forced
to work with Bregman distance and Bregman projections. This is due to the well-
known fact that in Banach spaces the metric projection onto a convex and closed set
C, defined as PC.x/ D arg minz2Ckz � xk2, loses the decreasing distance property
of the orthogonal projection in Hilbert spaces. In order to recover this property,
one should minimize in Banach spaces the Bregman distance, instead of the norm-
induced distance.

In what follows we assume the following conditions:

(A.1) There exist an element x? 2 X such that Ax? D y, where y 2 R.A/ is the exact
data.

(A.2) f is a l.s.c. function.
(A.3) f is a uniformly convex function.
(A.4) X and Y are reflexive Banach spaces and Y is smooth.

We define ˝r
�, the �-levelset of the residual functional kAx � yık, as

˝r
� WD

�
x 2 X W 1

r
kAx � yıkr � 1

r
�r

�
:
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We observe that since A is a continuous linear operator it follows that ˝r
� is closed

and convex.
Now, given Ox 2 Dom.@f / and � 2 @f .Ox/, we can define the Bregman projection

of Ox onto ˝r
�, as a solution of the minimization problem

�
min D� f .x; Ox/

s:t: 1
r kAx � yıkr � 1

r �r:
(8)

It is clear that a solution of the above problem depends on the sub-gradient �.
Furthermore, since D� f .�; Ox/ is strictly convex, which follows from the uniformly
convexity of f , problem (8) has at most one solution.

The fact that the projection is well defined when � > ı, and in this case we can
set P f

˝r
�
.Ox/ WD arg min

x2˝r
�

D� f .x; Ox/, is a consequence of the following lemma.

Lemma 1 If � > ı then problem (8) has a solution.

Proof Hypothesis (A.1), together with Eq. (1) and the assumption that � > ı, imply
that the feasible set of problem (8), i.e. the set ˝r

�, is nonempty.
By conditions (A.2) and (A.3) we have that D� f .�; Ox/ is proper, convex and l.s.c.

Furthermore, relation (7) implies that D� f .�; Ox/ is a coercive function. Hence, the
lemma follows using that X is a reflexive space and applying [2, Corollary 3.23].

ut
It is easy to see that if 0 � �0 � � then ˝r

�0 � ˝r
�, and A�1.y/ � ˝r

� for all
� � ı. Furthermore, with the available information of the solution set of (2), ˝r

ı

is the set of best possible approximate solution for this inverse problem. However,
since problem (8) may be ill-posed when � D ı, our best choice is to generate xı

k
from xı

k�1 … ˝r
ı as a solution of problem (8), with Ox D xı

k�1 and � D �k such that
we guarantee a reduction of the residual norm while preventing ill-posedness of (8).

For this purpose, we now analyze the minimization problem (8) by means of
Lagrange multipliers. The Lagrangian function associated with problem (8) is

L .x; �/ D �

r
.kAx � yıkr � �r/ C D� f .x; Ox/ :

We observe that for each � > 0 the function L .�; �/ W X ! R is l.s.c. and convex.
For any � > 0 define the following functions

�.Ox; �/ D arg min
x2X

L .x; �/ ; GOx.�/ D kA�.Ox; �/ � yıkr: (9)

The next lemma gives a classical Lagrange multiplier result for problem (8),
which will be useful for formulating the nIT method.
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Lemma 2 Suppose that kAOx � yık > � > ı, then the following assertions are
equivalent

1. x is a solution of (8);
2. there exists �� > 0 such that x D �.Ox; ��/ and GOx.��/ D �r.

Proof By (1), hypothesis (A.1) and the assumption � > ı, we have that x? 2 X is
such that

kAx? � yıkr < �r:

Inequality above implies the Slater condition for problem (8). Thus, using that A
is continuous and D� f .�; Ox/ is l.s.c., we have that x is a solution of (8) if and only
if there exists � 2 R such that the point .x; �/ satisfies the Karush-Kuhn-Tucker
(KKT) conditions for this minimization problem, see [12].

The KKT conditions [12] for (8) are

� � 0; GOx.�/ � �r; �.GOx.�/ � �r/ D 0; 0 2 @xL .x; �/:

If we suppose that � D 0 in relations above, then the definition of the Lagrangian
function, together with the strictly convexity of D� f .�; Ox/, implies that Ox is the unique
minimizer of L .�; 0/. Since kAOx � yık > � we conclude that the pair .Ox; 0/ does
not satisfy the KKT conditions. Hence, we have � > 0 and GOx.�/ � �r D 0. We
conclude the lemma using the definition of �.Ox; �/. ut

We are now ready to formulate the nIT method for solving (2).
Properties (4) and (5), together with the definition of the duality mapping, imply

that the point xı
k 2 X minimizes the Tikhonov functional

Tı
� .x/ WD �ı

k

r

��Ax � yı
��r C D�ı

k�1
f

�
x; xı

k�1

�
;

if and only if

0 2 �ı
kA�Jr

�
Axı

k � yı
� C @f

�
xı

k

� � �ı
k�1: (10)

Hence, since Y is a smooth Banach space, we have that the duality mapping Jr is
single valued and

�ı
k�1 � �ı

kA�Jr
�
Axı

k � yı
� 2 @f

�
xı

k

�
:

Therefore, �ı
k in step 3.2 of Algorithm 1 is well defined and it is a sub-gradient of f

at xı
k.
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Algorithm 1 The iterative method
[1] choose an initial guess x0 2 X and �0 2 @f .x0/;
[2] choose � 2 .0; 1/, 	 > 1 and set k WD 0;
[3] while

�kAxı
k � yık > 	ı

�
do

[3.1] k WD k C 1;

[3.2] compute �ı
k, xı

k such that xı
k D arg min

x2X

�ı
k

r kAx � yıkr C D�ı
k�1

f .x; xı
k�1/,

and ır < Gxı
k�1

.�ı
k/ � �

�ı C .1 � �/kAxı
k�1 � yık�r

.

Set �ı
k D �ı

k�1 � �ı
kA�Jr.Axı

k � yı/.

4 Algorithms and Numerical Implementation

4.1 Determining the Lagrange Multipliers

As before, we consider the function GOx.�/ D ��Ax� � yı
��r

, where x� D �.�; Ox/

represents the minimizer of the Tikhonov functional

T� .x/ D �

r

��Ax � yı
��r C D� f .x; Ox/ : (11)

In order to determine the Lagrange multiplier in the iteration k; we need to calculate
�k > 0 such that Gxk�1 .�k/ 2 Œak; bk� ; where

ak WD ır and bk WD .�ı C .1 � �/kAxk�1 � yık/r;

with 0 < � < 1 pre-defined.
For doing that, we have employed three different methods: the well-known secant

and Newton methods and a third strategy, called adaptive method, which we explain
now: fix 
1; 
2 2 .0; 1/, c1 > 1 and start with �ı

0 > 0: In the k-th iteration, k � 1;

we define �ı
k D ck�

ı
k�1, where

ck D
8
<
:

ck�1
1; if Gxk�2 .�
ı
k�1/ < ak�1

ck�1=
2; if Gxk�2 .�
ı
k�1/ > bk�1

ck�1; otherwise
; for k � 2:

The idea behind the adaptive method is observing the behavior of the residual in
last iterations and trying to determine how much the Lagrange multiplier should be
increased in the next iteration. For example, the residual Gxk�2 .�

ı
k�1/ D kAxk�1 �

yıkr lying on the left of the target interval Œak�1; bk�1�, means that �ı
k�1 was too

large. We thus multiply the number ck�1 by a number 
1 2 .0; 1/ in order to reduce
the speed of growing of the Lagrange multipliers �ı

k, trying to hit the target in the
next iteration.

Although the Newton method is efficient, in the sense that it normally finds
a good approximation for the Lagrange multiplier in very few steps, it has the
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drawback of demanding the differentiability of the Tikhonov functional, and
therefore it cannot be applied in all situations.

Because it does not require the evaluation of derivatives, the secant method can
be used even for a nonsmooth Tikhonov functional. A disadvantage of this method
is the high computational effort required to perform it.

Among these three possibilities, the adaptive strategy is the cheapest one, since
it only demands one minimization of the Tikhonov functional per iteration. Further,
this simple strategy does not request the derivative of this functional, which makes
it fit in a large range of applications.

Notice that this third strategy may generate a �ı
k such that Gxk�1 .�

ı
k/ 62 Œak; bk� in

some iterative steps. This is the reason for correcting the factors ck in each iteration.
In our numerical experiments, the condition Gxk�1 .�

ı
k/ 2 Œak; bk� was satisfied in

almost all steps (see the slope of the green curve on Fig. 3; bottom picture).

4.2 Minimization of the Tikhonov Functional

In our numerical experiments, we are interested in solving the inverse problem (2),
where the linear and bounded operator A W Lp .˝/ ! L2 .˝/ ; 1 < p < 1; the
noisy data yı and the noise level ı > 0 are known.

In order to apply the iterative method (Algorithm 1), a minimizer of the Tikhonov
functional (11) needs to be calculated on each iteration. Minimizing this functional
can be itself a very challenging task. We have used two algorithms for achieving this
goal in our numerical experiments: (1) the Newton method was used for minimizing
this functional in the case p ¤ 2 and with a smooth function f ; which induces the
Bregman distance in the penalization term. (2) The so called ADMM method was
employed in order to minimize the Tikhonov functional for the case p D 2 (Hilbert
space) and a nonsmooth functional f . In the following, we explain the details.

First we consider the Newton method. Define the Bregman distance induced by
the norm-functional f .g/ WD 1

p kgkp
Lp ; 1 < p < 1; which leads to the smooth

penalization term D� f .g; h/ D �p .g; h/ ; see Sect. 2. The resultant Tikhonov
functional is

T� .g/ D �

2

��Ag � yı
��2 C �p .g; gk�1/ ;

where gk�1 is the current iterate.2 In this case, the optimality condition (10) reads:

F .g/ D �A�yı C Jp .gk�1/ ; (12)

where g 2 Lp .˝/ is the minimizer of the above Tikhonov functional and F .g/ WD
�A�Ag C Jp .g/ :

2Here (2) is replaced by Ag D yı .
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In order to apply the Newton method to the nonlinear equation (12), one needs
to evaluate the derivative of F; which (if it exists) is given by F0 .g/ D �A�A C
J0

p .g/ : Next, we prove that Jp is at least Gâteaux-differentiable in Lp .˝/ ; if p � 2:

Further, we present an explicit expression for J0
p .g/ ; which will be used later in our

numerical experiments.
The key for finding a formula for J0

p .g/ is observing the differentiability of the
function � W R ! R, x 7! 1

p jxjp : This function is differentiable in R whenever
p > 1, and in this case,

� 0 .x/ D jxjp�1 sign .x/ ; where sign .x/ D
8
<
:

1; if x > 0

0; if x D 0

�1; if x < 0

: (13)

Furthermore, � is twice differentiable in R if p � 2; with derivative given by

� 00 .x/ D . p � 1/ jxjp�2 : (14)

This formula still holds true for 1 < p < 2; but only in Rn f0g : In this case, � 00 .0/

does not exist and � 00 .x/ grows to infinity as x approaches to zero.

Since Jp .g/ D
�

1
p kgkp

Lp

�0
can be identified with (see [3])

Jp .g/ D jgjp�1 sign .g/ ; (15)

which looks very similar to � 0 in (13), the bounded linear operator J0
p.g/ W Lp .˝/ !

Lp�

.˝/ is similar to � 00 in (14). Indeed, for any fixed g 2 Lp.˝/, with p � 2, we
have

˝
J0

p .g/ ; h
˛ D

D
. p � 1/ jgjp�2 ; h

E
; (16)

for every h 2 Lp .˝/, where the linear operator . p � 1/jgjp�2 is understood
pointwise: h 7! . p � 1/jg.�/jp�2h.�/. This ensures that Jp is Gâteaux-differentiable
in Lp .˝/ and its derivative J0

p can be identified with .p � 1/ j�jp�2.
In the discretized setting, J0

p .g/ is a diagonal matrix whose i-th element on its

diagonal is .p � 1/ jg .xi/jp�2 ; with xi being the i-th point of the chosen mesh.
In our numerical simulations, we consider the situation where the sought solution

is sparse and, therefore, the case p � 1 is of our interest. We stress the fact that
Eq. (14) holds true even for 1 < p < 2 whenever x ¤ 0: Using this fact, one can
prove that (16) holds true for these values of p; for instance, if g does not change
signal in ˝ (i.e., g > 0 or g < 0 in ˝) and the direction h is a bounded function
in this set. However, these strong hypotheses are very difficult to check, and even if
they are satisfied, we still expect having stability problems for inverting the matrix
F0 .g/ in (12) if the function g has a small value in some point of the mesh, because
the function in (14) satisfies � 00 .x/ ! 1 as x ! 0. In order to avoid this kind
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of problem in our numerical experiments, we have replaced the i-th element on the

diagonal of the matrix J0
p .g/ by max

n
.p � 1/ jg .xi/jp�2 ; 106

o
:

The second method that we used in our experiments was the well-known Alter-
nating Direction Method of Multipliers (ADMM), which has been implemented to
minimize the Tikhonov functional associated with the inverse problem Ax D yı,
where X D Y D R

n, A W Rn ! R
n, and f W Rn ! R is a nonsmooth function.

ADMM is an optimization scheme for solving linearly constrained programming
problems with decomposable structure [5], which goes back to the works of
Glowinski and Marrocco [8], and of Gabay and Mercier [7]. Specifically, this
algorithm solves problems in the form:

min
.x;z/

f'.x/ C �.z/ W Mx C Bz D dg; (17)

where ' W Rn ! R and � W Rm ! R are convex proper l.s.c. functions, M W Rn !
R

l and B W Rm ! R
l are linear operators, and d 2 R

l.
ADMM solves the coupled problem (17) performing a sequences of steps that

decouple functions ' and �, making it possible to exploit the individual structure
of these functions. It can be interpreted in terms of alternating minimization,
with respect to x and z, of the augmented Lagrangian function associated with
problem (17). Indeed, ADMM consists of the iterations

xkC1 D arg min
x

L
.x; zk; uk/

zkC1 D arg min
z

L
.xkC1; z; uk/

ukC1 D uk C 
.MxkC1 C BzkC1 � d/,

where 
 > 0 and L
 is the augmented Lagrangian function

L
.x; z; u/ WD '.x/ C �.z/ C hu; Mx C Bz � di C 


2
kMx C Bz � dk2

2 :

The convergence results for ADMM guarantee, under suitable assumptions, that
the sequences .xk/, .zk/ and .uk/, generated by the method, are such that Mxk C
Bzk � d ! 0, '.xk/ C �.zk/ ! s? and uk ! u?, where s? is the optimal value of
problem (17) and u? is a solution of the dual problem associated with (17).

For minimizing the Tikhonov functional using ADMM we introduce an addi-
tional decision variable z such that problem

min
x2X

Tı

�ı
k
.x/

is rewritten into the form of (17). The specific choice of the functions ', � and
the operators M and B is problem dependent. For a concrete example, please see
Sect. 5.2. This allows us to exploit the special form of the functional Tı

�ı
k

and pose

the problem in a more suitable manner to solve it numerically.
In our numerical simulations we stopped ADMM when kMxkk C Bzk � d was

less than a prefixed tolerance.
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5 Numerical Experiments

5.1 Deconvolution

The first application considered here is the deconvolution problem modeled by the
linear integral operator

A x WD
Z 1

0

K.s; t/ x.t/ dt D y.s/ ;

where the kernel K is the continuous function defined by

K.s; t/ D
�

49s.1 � t/ ; s � t
49t.1 � s/ ; s > t

:

This benchmark problem is considered in [10]. There, it is observed that A W
LpŒ0; 1� ! CŒ0; 1� is continuous and bounded for 1 � p � 1. Thus A W LpŒ0; 1� !
LrŒ0; 1� is compact, for 1 � r < 1.

In our experiment, A is replaced by the discrete operator Ad, where the above
integral is computed using a quadrature formula (trapezoidal rule) over an uniform
partition of the interval Œ0; 1� with 400 nodes.

The exact solution of the discrete problem is the vector x? 2 R
400 with x?.48/ D

2, x?.200/ D 1:5, x?.270/ D 1:75 and x?.i/ D 0, elsewhere.
We compute y D Adx?, the exact data, and add random Gaussian noise to y 2

R
400 to get the noisy data yı satisfying k y � yıkY � ı.
We follow [10] in the experimental setting and choose ı D 0:0005, 	 D 1:001

(discrepancy principle), and Y D L2. For the parameter space, two distinct choices
are considered, namely X D L1:001 and X D L2.

Numerical results are presented in Fig. 1.3 The following methods are imple-
mented:

– (Blue) L2-penalization, Geometric sequence;
– (Green) L2-penalization, Secant method;
– (Red) L1:001-penalization, Geometric sequence;
– (Pink) L1:001-penalization, Secant method;
– (Black) L1:001-penalization, Newton method.

The six pictures in Fig. 1 represent:

[Top] Iteration error in L2-norm (left)4; residual in L2-norm (right);
[Center] Number of linear systems/step (left); Lagrange multipliers (right);

3For simplicity, all legends in this figure refers to the space L1; however, we used p D 1:001 in the
computations.
4For the purpose of comparison, the iteration error is plotted in the in L2-norm for both choices of
the parameter space X D L2 and X D L1:001.



188 M. P. Machado et al.

0
5

10
15

20
25

10
−

1

10
0

N
um

be
r 

of
 it

er
at

io
ns

Iteration Error  || xk − x
+
 ||

L 2 −
 G

eo
m

et
ric

L 1 −
 G

eo
m

et
ric

L 1 −
 S

ec
an

t

L 2 −
 S

ec
an

t

L 1 −
 N

ew
to

n

0
5

10
15

20
25

10
−

6

10
−

4

10
−

2

10
0

N
um

be
r 

of
 it

er
at

io
ns

Residual  || A xk − yδ ||

L 2 −
 G

eo
m

et
ric

L 1 −
 G

eo
m

et
ric

L 1 −
 S

ec
an

t

L 2 −
 S

ec
an

t

L 1 −
 N

ew
to

n

0
5

10
15

20
25

0123

N
um

be
r 

of
 it

er
at

io
ns

# Linear Systems /Step

L 2 −
 G

eo
m

et
ric

L 1 −
 G

eo
m

et
ric

L 1 −
 S

ec
an

t

L 2 −
 S

ec
an

t

L 1 −
 N

ew
to

n

5
10

15
20

25
10

0

10
2

10
4

10
6

10
8

10
10

N
um

be
r 

of
 it

er
at

io
ns

Lagrange Multipliers

L 2 −
 G

eo
m

et
ric

L 1 −
 G

eo
m

et
ric

L 1 −
 S

ec
an

t

L 2 −
 S

ec
an

t

L 1 −
 N

ew
to

n

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0
0

0.
2

0.
4

0.
6

0.
81

Approximate Solution

x+
  −

 E
xa

ct
 s

ol
ut

io
n

x k* −
 L

2 −
 G

eo
m

et
ric

x k* −
 L

2 −
 S

ec
an

t

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0
0

0.
2

0.
4

0.
6

0.
81

Approximate Solution

x+
  −

 E
xa

ct
 s

ol
ut

io
n

x k* −
 L

1 −
 G

eo
m

et
ric

x k* −
 L

1 −
 S

ec
an

t

F
ig

.1
D

ec
on

vo
lu

ti
on

pr
ob

le
m

:n
um

er
ic

al
ex

pe
ri

m
en

ts



On Nonstationary Iterated Tikhonov Methods for Ill-Posed Equations in Banach Spaces 189

[Bottom] Exact solution and reconstructions with L2-penalization (left); exact
solution and reconstructions with L1:001-penalization (right).

5.2 Image Deblurring

The second application of the nIT method that we consider is the image deblurring
problem. This is a finite dimensional problem with spaces X D R

n 	 R
n and Y D

R
n 	 R

n. The vector x 2 X represents the pixel values of the original image to
be restored, and y 2 Y contains the pixel values of the observed blurred image.
In practice, only noisy blurred data yı 2 Y satisfying (1) is available. The linear
transformation A represents some blurring operator.

For our numerical simulations we consider the situation where the blur of the
image is modeled by a space invariant point spread function (PSF). We use the
256 	 256 Cameraman test image, and yı is obtained adding artificial noise to the
exact data Ax D y (here A is the convolution operator corresponding to the PSF).

For this problem we implemented the nIT method with two different penalization
terms, namely f .x/ D kxk2

2 (L2 penalization) and f .x/ D �

2
kxk2

2 C TV.x/ (L2 C TV
penalization). Here � > 0 is a regularization parameter and TV.x/ D krxk1 is the
total variation norm of x, where r W R

n 	 R
n ! .Rn 	 R

n/ 	 .Rn 	 R
n/ is the

discrete gradient operator.
We minimize the Tikhonov functional associated with the L2 C TV penalization

term using the ADMM described in Sect. 4. Specifically, if f .x/ D �

2
kxk2

2 C krxk1,
then on each iteration we need to solve

min
x2X

�ı
k

2

��Ax � yı
��2 C �

2
kx � xı

k�1k2 C krxk1 � krxı
k�1k1 � ˝

�ı
k�1; x � xı

k�1

˛
:

To use ADMM we sate this problem into the form of problem (17) defining z D rx,

'.x/ WD �ı
k

2
kAx � yık2 C �

2
kx � xı

k�1k2 � ˝
�ı

k�1; x � xı
k�1

˛
, �.z/ D kzk1 � krxı

k�1k1,
M D �r, B D I and d D 0.

In the experiments we choose � D 10�4, ı D 0:00001 and 	 D 1:5. Moreover,
we take as initial guesses x0 D yı and �0 D r�.sign.rx0//.

Figure 2 shows the recovered images using the two penalization terms, and the
different strategies we considered for choosing the Lagrange multipliers.

Figure 3 presents some numerical results. We implemented for this example the
following methods:

– (Blue) L2-penalization, Geometric sequence;
– (Red) L2 C TV-penalization, Geometric sequence;
– (Pink) L2 C TV-penalization, Secant method;
– (Green) L2 C TV-penalization, Adaptive method.
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Fig. 2 Image deblurring problem: (top left) Geometric sequence, L2 penalization; (top right)
Geometric sequence, L2 + TV penalization; (bottom left) Secant method, L2 + TV penalization;
(bottom right) Adaptive method, L2 + TV penalization

The four pictures in Fig. 3 represent:

[Top] Iteration error kx? � xı
kk;

[Center top] Residual kAxı
k � yık;

[Center bottom] Number of linear systems solved in each step;
[Bottom] Lagrange multiplier �ı

k.

6 Conclusions

In this chapter we propose a novel nonstationary iterated Tikhonov (nIT) type
method for obtaining stable approximate solutions to ill-posed operator equations
modeled by linear operators acting between Banach spaces.

The novelty of our approach consists in defining strategies for choosing a
sequence of regularization parameters (Lagrange multipliers) for the nIT method.

The Lagrange multipliers are chosen (a posteriori) in order to enforce a fast
decay of the residual functional (see Algorithm 1 and Sect. 4.1). The computation
of these multipliers is performed by means of three distinct methods: (1) a secant
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Fig. 3 Image deblurring problem: numerical experiments

type method; (2) a Newton type method; (3) an adaptive method using a geometric
sequence with non-constant growth rate, where the rate is updated after each step.

The computation of the iterative step of the nIT method requires the minimization
of a Tikhonov type Functional (see Sect. 4.2). This task is solved here using two
distinct methods: (1) in the case of smooth penalization and Banach parameter-
spaces the optimality condition (related to the Tikhonov functional) leads to a
nonlinear equation, which is solved using a Newton type method; (2) in the case of
nonsmooth penalization and Hilbert parameter-space, the ADMM method is used
for minimizing the Tikhonov functional.
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What concerns the Deconvolution problem in Sect. 5.15:

– The secant and the Newton methods produce a sequence of multipliers with faster
growth, when compared to the geometric (a priori) choice of multipliers.

– The fact above is observed in both parameter spaces L2 and L1:001.
– The secant and the Newton methods converge within fewer iterations than the

geometric choice of multipliers.
– The numerical effort required by the secant type method is similar to the one

required by the geometric choice of multipliers.
– The Newton method requires the smallest amount of computational effort.
– As expected, the sparse solution x? is better approximated by the methods

operating in the L1:001 parameter-space.

What concerns the Deblurring problem in Sect. 5.26:

– The secant and the adaptive methods produce a sequence of multipliers with
faster growth, when compared to the geometric (a priori) choice of multipliers.

– The secant and the adaptive methods converge within fewer iterations.
– The numerical effort required by the secant type method is similar to the one

required by the geometric choice of multipliers.
– The adaptive method requires the smallest amount of computational effort.
– The first reconstructed image (L2 penalization) differs from the other three

reconstructions (L2 + TV penalization), which produce images with sharper
edges and better defined contours.
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