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Abstract. We investigate the use of a functional analytical version of the Backus—Gilbert
method as a reconstruction strategy to obtain specific information on the solution of linear and
slightly nonlinear systems with Freghderivable operators. Sonaepriori error estimates are
shown and tested for two classes of problems: a nonlimeanent problenand a linear elliptic
Cauchy problem For this second class of problems a special version of the Green formula is
developed in order to analyse the involved adjoint equations.

1. Introduction

1.1. Main results

The functional analytical approach of the Backus—Gilbert method in section 1.3 has already
been used by other authors (see [Ch], [Ki] or [LM1,2]). In this paper we use the
differentiability of the involved nonlinear operator in order to develop the error estimates
(9) and (13) for this reconstruction scheme. If the operator is linear, we obtain the estimate
a.

In order to test this reconstruction strategy, we choose the same nonlinear operator in
section 3.1 as Louis does in [Lo]. The numerical tests in section 4.1 show that one can get
good results even for noisy data.

For the second test in section 3.2, we choose a linear operator, which is highly ill-
posed. The results are again satisfactory provided one uses apprapridteeisto define
the reconstruction strategy (see [Ch] or [Le]).

The results presented in this paper constitute part of the author's PhD research and they
can be found in more detail in [Le].

1.2. Historical overview

This reconstruction method was first proposed in 1967 by Backus and Gilbert [BG1, 02, 3].
They were interested in the pointwise reconstruction of a funcfianX = L?(R2), where

Q c R" is supposed to be open and bounded. The root of their problem was geophysical and
the mathematical problem involved in the model is known in the literature amtmeent
problem It can be formulated as follows: find a functighe X such that

/Ki(x)f(x)dx=g,- i=1...,N Q)
Q
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where the kernel&; are known real functions, which are well defined€atand the right-

hand sideg = {g;} ; € Y = R" corresponds to the measured data of the physical problem.
In order to determine the value of the solutighat some pointxg € 2, they suggest a
linear reconstruction scheme, which is defined by a functional of the right hand-side of the
linear system (1). One defines the linear functioRgl € Y’ by

N
Ry(8) = (¢. 8)y = /Q (Zw&-(@) F@)dv = (g, f)x )

i=1

N (x)

whereg € Y andg¢y € X. It is easy to observe thafy(xg) := Ry(g) will be a good
approximation forf (xp) if the conditiongy (-) >~ §(xo — -) is satisfied. The Backus—Gilbert
idea is to force this condition by defining the quadratic functional

J(¢) = / |xo — x[%¢?(x) dx ®3)
Q
on X and choosingy such that
J(¢n) = b Sn;;gm J(@). 4)

The linear constraint
[ocoax=1
Q

is imposed in order to avoid the trivial solution in (4). Once one has evaluated the function
on(x) =) ¢;K;(x), the approximationfy (xo) is determined by the inner product

Sn(xo) = {(dn, fix = {0, gy (%)

wherep = {¢;}" ;. One great advantage of using the Backus—Gilbert method which can be
recognized in (4) is that evaluation of the reconstruction operRjgr) does not depend

on the system data. For different sets of datiais possible to reconstruct the value of the
respectivef (xo) by only evaluating an inner product in.

1.3. Functional analytical formulation

LetV — X < V' be a Hilbert triple,Y a Hilbert spacey € Y andA : X — Y a bounded
linear operator. We analyse the problem of finding the véjuex*) for u € V', wherex*
is the generalized solution obtained by the Moore—Penrose inverse of
Ax = y. (6)

It is obvious that the expressigp, x*) does not need to be well defined, if we do not make
any further regularity assumptions abatit Depending on the physical situation involved,
it is possible to guarantee that the expressjenx*) is well defined for some. or even
thatx* € V. As we suppose is obtained by measurement, it is to be expected that only
ve With ||y — y.|ly < ¢ is available, withs > 0 small.

We use the Backus—Gilbert strategy and try to reconstruct the valae(u, x*) x using
a linear functional evaluated in.. For¢ € Y’ we definef; , := (¢, y.)y and estimate the
error | f — feol by

lf = fs,w| = {u, x*>X — (@, ye)vl
< Ko,y = ye)vl + i, x5 x — (@, Ax¥)y|
<ellelly + (i — A%, x*) x| (7
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whereA* : Y’ — X' is the adjoint operator of. If we succeed in finding a solutign € Y’
for the equatiomA*p = u we can write

f = (A*¢7X*>X =@, )y =A@, ye)y = fs,zp (8)
and the errolt f — f, ,| behaves likeO (¢). Another consequence is that the approximation
fe.o is exact if there are no errors in the measuremeyts=(y).

In the special case of andY being spaces of functions defined over a redinrthe
Backus-Gilbert strategy suggests a pointwise reconstructiari.ofn order to reconstruct
the value of f(-) at the pointt € 2 we should takeu(-) = §(t — -) in (8) and solve the
adjoint equationA*¢ = §1.

We may have difficulties i ¢ Rg(A*). In this case we can use the projectionsof
over KerA*)* instead ofs itself. This is equivalent to minimizing the errgid*p — 5|3,
or to finding a solutiornp € Y’ of the normal equation

(A A%g = AS.

Louis and Maass propose a similar approach in [LM2] and use the projectién of
over special Sobolev spaces of negative index. In [LM1] (see also [Lo]) the equation
(A A*)p = Aey, is considered where;, is amollifier, i.e. a smooth approximation for the
Dirac distributions.

An alternative for the casé ¢ Rg(A*) was proposed by Chavent in [Ch]. He tried to
regularize the normal equations using the Tikhonov strategis chosen as the minimum
over Y’ of the functional(||A*¢ — 8|12, + a||<p||§,), wherea > 0 is a small regularization
parameter.

2. Analysis of the method

We are interested in applying the Backus—Gilbert strategy for operators of the form
A = Ag+ YAy, whereAg € L(X,Y), A1 : X — Y is continuously differentiablein
X andy > 0 is a small number. Let € V' andy, € Y as beforg.

Lemma 1. If x° € V is an approximation to a solution* of (6), the expression
few = (@, ye)y gives an approximation fof := (u,x*)y and the error|f — f. .| is
estimated by
|f = fepl <@,y = Yelv| + 1@, Ax* — Ax® — dAGO) (" = x%))y]

+l(@, Ax® — dAE)xO) v + (DA ¢ — 1, x*)x. ©

Proof. Estimate (9) follows promptly from the following equality
|f = feol = s x¥)x = (@, Ye)y £ {9, ¥) £ (9, Ax® — dAGO) (¢ = x0). O
Before analysing the right-hand side of (9), let us discretize the spaces involved. We

define the finite-dimensional spa&g = Spary; }jN=1 by

Yy Clp € Y/{p, Ax° —dAG*)x%)y = O} (10)
Further, we letP, : Y — Y, be the orthogonal projector ovéf, and choose the finite-
dimensional spacg;, = Spar{xj};\’zl C D(A) NV such that the property

det(dA(v)* Py yi, xj))1<i j<n # 0 (11)
is satisfied.

1 The Hilbert space/ must be chosen, so thatbelongs toV’.
1 The Fechet derivative ofd; will be denoted by d;.
§ For convenience we will identify the spac&swith X’ andY with Y’.



1288 A Leitdo

Theorem 2. Defineyy, := Puy, Yo := Puye and f; o 1 = (@, yen)y. FOr everyp € Y the
following estimate holds

If = feoul <elPullllelly + vlely I PIIOIX* — x°1%)
+HdA* (xO) Pro — 11, x*)x]. (12)

Proof. By an argument analogous to that used in (9) we obtain that for @achy

|f = Fepl <N@llyllyn = yeully + v llyl PaArx* — PyA1x® — P dA1(xO)(x* = x|y
+(@, PrAX® — P dAGO)xO) y | + [(dA* (2O) P — p, x¥)x . (13)

The first term in (13) can be estimated by

lolly lyr — yerlly < ellPrllllelly.
For the second term we have
vielyl PrAx® — PyA1x® — P dA1(xO)(x* — xO) Iy < yllely I Pl O(Ix* — x°)I%).

The third term in (13) disappears because of our choic&,of Putting these inequalities
together we obtain (12). O

The last term in (12) gives us a rule for choosipng Y. This is actually
(dA* O Pro,x)x = (w,x)x  j=1...,N. (14)

This means we can evaluate the coefficientsPpp in Y, by solving the N-dimensional
linear system (14). Solving this system is a well defined problem, as can be seen from the
determinant condition (11).

Next, we interpret the system (14) in a different way. Let us assume that the space
X, can be written asB*Y,, where B is a linear bounded operat® : V' — Y with
B*: Y — V. We are then able to write (14) as

(dA*(xO)P]:‘gp —u, B*w)y =0 Yw € Y,

(BGro, w)y = (Bu, w)y Yw e Y, (15)

whereG), = dA*(x°) P}. If u =8 and in the special cage € Ker B, it follows from (15)
that

(BGMD, w)y =0 Yw €Y. (16)

Further, if it is possible to decompose the prod®ds, as a squaré3® of a symmetric
matrix B, it follows from (16) that|Be¢|2 = 0. Instead of solving system (16), we can
consider the minimization problem

1Benll” = min || Be||®
9EY),

under the linear constraintA*(x%)g¢;,, 1)x = 1.

The extralinear constraint is motivated by the original Backus—Gilbert formulation in
section 1.2 and introduced in order to avoid the trivial solution in the minimization problem.
The constrained minimization problem above can be interpreted as an extended Backus—
Gilbert method.

We proceed to develop an error estimate for the linear case when noisy data are
considered.
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Theorem 3. Let A be a linear operator. Tak&* = A* and X;, = A*Y),. If we choose
on € Y, to be the solution of (14), i.dA*¢, — u, w) = 0, Vw € X,, we obtain the error
estimate

|f = fepn] < dist(u, AYy)y (L+ [Py ) dist(x™, Xp)v + O(e). 17)

Proof. Using (7), for eachyp, = P,¢ € Y, we obtain the equality

|f = fepnl = O@e) + [(A"@p — p, x™)x|.

Definex;, := Pyx*, whereP, : X — X, is the orthogonal projector ovef,. Now choosing
on € Yy, as the solution of (14), for every € Y, we have

(Aop — p, x¥)x = (A% — A", x™ — xp)x + (A" — pu, x™ — xp)x. (18)

The first term on the right-hand side of (18) disappears by the definitiar),.ofFor the
second term we have

(A% — o x™ = xp) x| < NA™Yn — pllvllx™ = xally.

In order to estimatg|x* — x;||y we definex € X, as the solution of the minimization
problem

<2 : 2
lx* — %[5 = min [|x* — x]||7.
xeXy
From this definition follows

lx* = xplly < llx™ = Xlly + ¥ = Ppx™llv

dist(Xp, x*)v + |Pu(X — xH)|lv

(L + 1P ) dist(X,, x*)y

and the theorem is proven. O

<
<

It is easy to conclude from (17) that the error in the approximafion, will converge
to zero withs ande only when we haver € RgA*.

3. Applications

3.1. A nonlinear moment problem

We start this discussion with the special class of nonlinear moment problems. Quadratic
moment problems were also analysed by Louis in [Lo]. Bet= Y = L?(0,1) and
A : X — Y the operator defined by

(Ax)(®) = / x0(t — $)x(s) ds + v/ x(t —s)x(s)ds te[0,1] (19
0 0

where the kernek® of the linear component ofl is a L2(0, 1) function andv > 0 is a
small parameter, that controls the nonlinear componemt.oflust as in section 2 we will
analyse the systemx = (Ag + vA)x = y.

The right-hand side of this system consists of measured data, so we assume we know
only a finite number ofy;, = y(), t; € (0,1). If we define the projection operator
P,:Y — Y, =RV, itis possible to define a discrete versionAfin (19) by setting

L

(PLA)(x) :=[Ax ()] = [/lxo(ti —s)x(s)ds + v/ x(t; — $)x(s) ds] .
0 0
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If we further assume that our measurements are inexact, then we actuallyhaeeY,
with || Py — ynell < &, wheree > 0 is small. We will be interested in finding the solution
x* of the discrete nonlinear system

(P/,A)x* = Yhe-
We saw in section 2 that an approximation for the solutionis needed. For this

propose we choose the kernél in (19). We also need the operats dA and its adjoint
(P, dA)* : Y, — X. One can easily see that fgre L2(0, 1) andw € R" the equalities

(P, dAG))(f) = [ / " X0 — ) f(s) ds + 20 / i — 9 f6) ds}
0 0

1<i<N
and

N
(Py dAG)* (w) = Y wilx® — 5) + 2vx(t — )] x0.41(5)
i=1

are valid.

Now we have to choose the spa&g = Sparx; {Vzl. This choice must reflect the
expected regularity of the solutiori and should be such that the system in (14) has nice
properties. We choose a cubizspline basis forX,, for the numerical experiments. Given
w € X' we will have to solve the system

(P dAGO) e;, ) x]Y 2ol = [ x)) k]’ (20)
where the matrix of (20) will have almost upper triangular formxjf are B-splines.
We assume the points are uniformly placed on the interval ,[0] and define for
j=0,..., N —1 the cubicB-splines

(t —1;-2)° teti—a, tj_1]

s = L he+3h2(t —1;_1) + 3h(t —1;1)° =31t —1;-1)° 1 €[t 1,1]
(1) = —
! 4n3 | 13+ 321 — 1) + 3t — )% — 3(tj41 — 1)° t €[t tj41]

(tj12 — f)s t € [tjt1, tjy2].

In the formulation of our strategy we assume the spBgcesatisfies the condition in
(10). In order to rescue our choice 8f, we add to the system (20) the following linear
restriction ofgp

(9, P AL(x®) — dP, A1 (x%)x0)y = 0. (21)
Joining equations (20) and (21), we have an overdetermined systertWvitth) equations to
solve, in order to determine thé-coefficients ofp. We observe that the matrix coefficients
a; j of this system vanish for > j +2 andi # N + 1.

3.2. Alinear elliptic Cauchy problem
We begin with the definition of the linear operatér: HY3(I",) — HY?(I')

Aw =0 in Q A((p) = wlr,
w=¢ atT’,
w, =0 atl’y
w, =0 atl;
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where H*® are the Soblev spacesf indexs € R andw is the HX(Q2; A) solution of the
mixed boundary value problem on the left-hand side.

Note that solving the equationy = f is equivalent to finding the tracg = w, of
the H1(Q; A) solution of the following elliptic Cauchy problem

Aw =0 in Q
w=f atIy
w, =0 atly
w, =0 atT;.

Given a distributionu € H~Y/%(I",) we will use the Backus—Gilbert strategy to approximate
the value(u, ¢) by (¥, f), wherey is the solution of

A" = . (22)

We see, using integration by parts, that the adjoint operator of the restrictioh tof

Hy)(T',) is the operator? : Hy,*(I;) — Hyy’(T',) defined by

I

Av=0 in Q vy =Y v=0
v=20 atr,
v, =Y atIy
v, =0 atl;.
AN(Y) =y,
1/2 1/2

Fory € Hy“(Ty), if ¢ € HY?(T,)\Hyy“(T,), it is not true that

/r Ay dr = — /r o A*(y) dr.

To correct this problem we need the following theorem.

Theorem 4. For a,b € R let n,, € C*®(I,) be a function withy,,(P1) = a and
na.»(P2) = b, where P, and P, are the contact points betwedn and I';. If V,, is the
subspace oHY?(T",) defined by

Vay =g € HY2(T,) /0y — ¢ € Hyy (T}

then forgs, g2 € V,;, we have

/ Ap1yr dr+/ 1A%y dld =/ Aoy dF+/ 2 APy dI’
I, V]

. r,

for everyy in H=Y2(I")).

1 For details see [Ad] or [DaLli].
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A complete proof of this theorem can be found in [Le]. A direct consequence of
theorem 4 is that fot, b € R one can define ovel ~¥2(I";) the linear functional

Fap (W) = (Aflap, ¥) + (Nap, A*P)
and obtain
(Ap, V) = — (. A'Y) + rap ()

for everyp € V,, andy € H-Y2(I)).
If we are able to findy € H~Y2(I')) that solves the equation

—AY =p
we can solve our reconstruction problem as before, using
(1w, @) = —(A%Y, 9)
= (¥, Ap) —rap(¥)
=, f) —rap(¥).
We observe that, i € Hyy*(T',), thena = b = 0 andr,, = 0. In this case we have

(m, ) =, f).

4. Numerical results

4.1. The moment problem

In this section we study the operatar: L?(0, 1) — L?(0, 1) defined in (19) for®(r) = 1.
Let us start with the linear case, i.e. taking= 0 in (19).
We generate different right-hand sides by solving the direct problemAx for three

functions
t/2 r<1/2 2t r<1/2
Xq(t) = xp(t) =
t—1/4 t>1/2 2—2t t>1/2
and
1 1/4<r<3/4

cf) = .
xe(t) 0 otherwise.

Our grid is defined by; = j/N, 0 < j < N. For the space, we choose theB-spline
basis corresponding to this grid. Our objective is to reconstruct the values of the different
solutionsx,, x;, andx, at the grid pointg; and at the pointst; .1 +1¢)/2,0< j < N — 1.
In figure 1 we give the results fa¥ = 25 andN = 50, when the exact right-hand sige
is used.
In figure 2, we show the reconstruction results for the linear operator and perturbed
data. The system is solved for a right-hand sidgenerated by adding a 1% random noise
to the originaly, i.e. |y; — v ;| < (1/100)y;.
Next we analyse the reconstruction error at the poirt 1/2 for exact data and the
functions
5 2t t
Xa(t) = 2t W) =1,_, .
Analysing figure 3 we observe that the reconstruction is better for even valu¥s of
This can be explained by the existence oBapline centred at the point= 1/2 in the
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N=25 N=25 N =25
0.8 K 1 & L3
/ l .:o o’
4 0.8
0.6 ‘,‘. 0.8
f-j 0.6 0.6 : :
0.4 #
0-2 102 \ 0.2 | .
o o«’/ 0
0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1
N =50 N =50 N =50
0.8 ; 1 1 ; ]
0.6 / 0.8 0.8
’ 0.6 0.6
0.4
0.4 0.4
0.2 ; 0.2/ \ 0.2
0 X u
0/ 0 . .
0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1
Figure 1. Reconstruction results for a linear operator and exact data.
N=25 N=6 N=26
1.2 - 1 . 1 e
1 U N °
. 0.8 0.8
0.8 X %
0.6 00 \\ 0.6 |, .
o0 0.4
0.4 . / - 0.4
0.2 LT . 0.2 0.2,
0/ N 3 0/ \' O 1*
0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1

Figure 2. Reconstruction results for a linear operator and noisy data.

Xj-basis. A consequence of this is that the functidial- 1/2) will be better approximated
in X, if N is even.

Next we analyse the operatdrin (19) for small values of. We use the same grid as
before withN = 25 and try to reconstruct the polynomidl at the points; and(tj11+1t;)/2
using exact data. The results are shown in figure 4.

The next example in figure 5 shows a reconstructionvfer 0.01 and exact data of the
functions

/2 ) 1 1/4 <t < 3/4

® 2t <1
) =
b t>1/2 0 otherwise.

2—2t
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error forx, error forx
\
0.03 \\ g' 1‘21
0.025 ) .
o 02 | 0.1
‘ \ 0. 08—
0.015 0.06 .
0.01 0.04 L
0. 005 > 0.02 ea oo, T
0 * *%oe, leesssssnsi 0 B EEE M .‘.0.o.o‘ .o.o.o.o.o
0 10 20 30 40 50 0 10 20 30 40 50
Figure 3. Reconstruction error at= % for exact data.
v =0.01 v=0.1 v=1
1 .‘ 1 / 1
0.8 A 0.8 0.8
0.6 fj : 0.6 P 0.6 5
o“‘ 3
0. 4 /, 0. 4 0.4 7
4 4
0.2 /, . 0.2 e . 0.2 //
o — 0....-‘/ 0
0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1

Figure 4. Reconstruction results for different parameters of nonlinearity.

[
o

.

]
‘..
'P

K,
‘e

© © o o
o N b O @

© o oo
O N b OO O

i 4

0 0.20.40.60.8 1 0 0.20.40.60.8 1

Figure 5. Reconstruction results for a nonlinear operates 0.01 and exact data.

4.2. The elliptic Cauchy problem

We analyse the elliptic Cauchy problem in an anuwtiswith inner radius 12 and outer
radius 1. Let us take the linear operatbrdefined in section 3.2. The problem we want to
solve is, givenu € H~Y2(T,) to reconstruct the value ofu, ¢), wherep € HY3(T,)
is the solution of the equatiody = f. In order to generate consistent dafa we
solve the direct problems fap(t) = (t — 7/2)? and @o(t) = m — 2|t — m/2|, where
t € [0, n].

The formulation of this elliptic Cauchy problem @ involves an extra difficulty: we
are not able to characterize the sp&gA®). As we want to have an elemente Rg(A?),
we first solve the direct problem = A%y for ¢ € H~Y?(I';). For this proposal we choose
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¥ =1 to solve the mixed boundary value problem

Av =0 in Q
v=0 atr,
v, =Y atly
v, =0 atl;

and setu = v,, € H Y4(T,).

According to the Backus—Gilbert strategy discussed in section 3.2, the first thing to do
is to solve the equation-A*y = . To approximate the solutiott, we use the iterative
method described in [MaKo] (this iterative method is also extensively discussed in [Le]).
The approximationg, are shown in figure 6, wherk represents the iteration index. The
grid node 0O represents the poift —1) and the grid node 32 the poig®, 1) of T',.

k=10 k =50 k=10
1.5/ . . e
0;/ — \ 0.5 \ 0.5 \
o] | [ il
ool | 0 / \
OI’ l _0_5/ \ -0.5
Bl | y |
-1.5 1 |
0 5 10152025 30 0 5 101520 25 30 0 5 10 15 20 25 30

Figure 6. Approximationsy, obtained by alternative method to the solution-ad®y = p.

Next, we compare the valugg, ¢) with (Y, ) — r,»(¢). The results are shown in
table 1 (note that,, = 0 for ¢ = ¢y).

Table 1.

(s @) (¥, ) (¥, f) —rap(¥)  Relative error
¢o=¢1 399577 584496 3.89191 0.01776
¢ =¢> 052309 0.49903 0.49903 0.04599

Other numerical tests related to this specific Cauchy problem and to the validation of
theorem 4 can be found in [Le].

5. Final remarks and conclusions

(1) Numerical experiments show that one can obtain good approximations £08 in
Rg(dA*P;) if A is the integral operator defined in section 3.1 and the nonlinearity im
small. In the nonlinear case we can always improve our approximation by defining a new
%9 as theB-spline interpolation of the evaluated valueg;) and solving the new system

([dA* (X0 P, xj)x = (1, x))x.

Comparable and related results can be found in [Ch], [Hu], [Ki], [Lo], [LM1, 2], [ScBe]
and [Sn].
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(2) We observe an unwanted Gibb phenomenon in figures 1(a), 2(a) and 4. An
explanation for this fact is that() € H~Y?7¢ for ¢ > 0 but H([0,1]) ¢ H*([0, 1])
for s > 1/2. Thus, the inner product, x);> will be in duality only if the boundary
conditionsx(0) = x(1) = 0 are satisfied.

The same phenomenon can also be observed in figure 5 (right), where the lack of
regularity of the solutiorx, is responsible for the effect.

(3) If the operatorA is defined by the elliptic Cauchy problem in section 3.2, we do
not know, for an arbitrary se®, how to characterize the spa®e (A*). However, if some
argument guarantees that are in Rg(A"), we can proceed as in section 4.2 and solve the
Cauchy problemsi®y; = u; once for eachu;, in order to obtain th@bservations

(i, o) = (Vi f)

of ¢, each time we have a different set of dgtaSuchu; are also known in the literature
assentinels(see [Ch]).

(4) When we analysed the Cauchy problem, we tried first to evaluate the reconstruction
with u = § andp as aC*-mollifier. Using classical arguments (see [GiTr]) one can prove
that no analytical solution exists in such cases wkehas an analytical boundary. Our
numerical results show, that in this case the equatiéy = . has no solutions.

(5) It is important to point out here the ill-posed nature of the involved reconstruction
problems. Fredholm operators of the first kind are typically ill-posed [Gro]. Concerning
elliptic Cauchy problems, Hadamard elaborated an example with Cauchy data that converge
uniformly to zero but the respective solutions become unbounded. The example follows

Au; =0 (x,y)e=(,1) x (0,1
up(x,00=0 x €(0,1)
(0/0y)uk(x, 0) = @i (x) xe (01
whereg;, = (k) 1sin(rkx). The respective solutions are
ur(x, y) = (wk) "2 sinh(ky) sin(rkx).

(6) Our numerical experiments were realized on a IBM RISC 6000/250 workstation.
It took some seconds to generate and solve the systems in section 41 £060. To
evaluate the first 100 steps of the iterative method, in order to solve the Cauchy problem
in section 4.2, we needed about 30 min CPU time (we used the finite element method on a
grid with ~8000 nodes to solve each mixed BVP involved on the iterative method).
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