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AbstratWe investigate the iterative methods proposed by Maz'ya and Ko-zlov (see [3℄, [4℄) for solving ill-posed reonstrution problems modeledby PDE's. We onsider linear time dependent problems of ellipti, hy-perboli and paraboli types. Eah iteration of the analyzed methodsonsists on the solution of a well posed boundary (or initial) value prob-lem. The iterations are desribed as powers of aÆne operators, as in [4℄.We give alternative onvergene proofs for the algorithms, using spetraltheory and some funtional analytial results (see [5℄, [6℄).ResumoInvestigamos neste artigo os m�etodos propostos em [3℄ e [4℄ para resolver proble-mas mal postos de reonstru�~ao. Consideramos problemas modelados por equa�~oeseliptias, hiperb�olias e parab�olias. Cada itera�~ao dos m�etodos propostos se onsistena solu�~ao de um problema bem posto. Apresentamos demonstra�~oes alternativas asoriginais, utilizando argumentos de an�alise funional e teoria spetral (veja [5℄, [6℄).1. Introdution1.1. Main resultsWe present new onvergene proofs for iterative algorithms in [KM2℄ using afuntional analytial approah, where eah iteration is desribed using powersof an aÆne operator T . The key of the proof is to hoose a orret topologyfor the Hilbert spae where the iteration takes plae, and to prove that Tl, thelinear omponent of T , is a regular asymptoti, non expansive operator.Other properties of Tl suh as positiveness, self-adjointness and injetivityare also veri�ed. The ill-posed problems are presented in Setion 2. In Setion 3�Researh partially supported by a researh grant from CNPq{GMD,AMS Subjet Classi�ation: Primary 65J20, Seondary 65L10, 65P05.Key words and frases: Inverse problems, Reonstrution of boundary data, PDE's.



2 A. LEIT~AOwe desribe the iterative methods for eah problem. The results onerning theanalysis of the methods are summarized in Setion 4. Some numerial resultsare disussed in Setion 5.The iterative proedures disussed in this paper were �rst presented in[KM2℄ and also treated in [Bas℄. The iterative proedure for ellipti (station-ary) Cauhy problems is disussed in [KM1℄, [Le1,2℄ and [JoNa℄. The iterativeproedure onerning paraboli problems is also treated in [Va℄.1.2. PreliminariesLet H be a separable Hilbert spae endowed with inner produt h�; �i and normk � k. The operator T : H ! H is said to be regular asymptoti in x 2 Hif kT k+1(x) � T k(x)k ! 0 as k ! 1. If the above property holds for everyx 2 H, we say that T is regular asymptoti in H. The operator T is allednon expansive if kTk � 1. The next lemma is the key of the onvergene proofspresented in this artile.1Lemma 1 Let T : H ! H be a linear non expansive operator. With � wedenote the orthogonal projetor de�ned on H onto ker(I � T ). The followingassertions are equivalent:a) T is regular asymptoti in H;b) limk!1T kx = �x.Let 
 � IRn be an open, bounded set with smooth boundary and A bea positive, self-adjoint, unbounded operator (with disrete spetrum) denselyde�ned on the Hilbert spae H := L2(
). Let E�, � 2 IR, denote the resolutionof the identity assoiated to A. We onstrut the family of Hilbert spaesHs(
),s � 0 as the domain of de�nition of the powers of AHs(
) := f' 2 H j k'ks := �Z 10 (1 + �2)sdhE�'; 'i�1=2 <1g: (1)1A omplete proof an be found in [Le1℄.



ON INVERSE PROBLEMS MODELED BY PDE'S 3The Hilbert spaes H�s(
) (with s > 0) are de�ned by duality:2 H�s := (Hs)0.It follows diretly from the de�nition that H0(
) = H.An interesting ase ours when A = (��)1=2, where � is the Laplae{Beltrami operator on 
. In this partiular ase the identity Hs(
) = H2s0 (
)holds, where Hs0(
) is the Sobolev spae of index s aording to Lions andMagenes (see [LiMa℄ pp. 54).Given T > 0 we de�ne the spaes L2(0; T ;Hs(
)) and C(0; T ;Hs(
)) offuntions u : [0; T ℄ 3 t 7! u(t) 2 Hs(
). These are normed spaes if onsideredrespetively with the normskuk2;0;T ;s := �Z T0 ku(t)k2s dt�1=2 and kuk1;0;T ;s := supt2[0;T ℄ ku(t)ks:2. The ill-posed problems2.1. An ellipti problemGiven funtions (f; g) 2 H1=2(
)�H�1=2(
), �nd u 2 (Ve; k � kVe), whereVe := fv 2 L2(0; T ;H1(
)) j (�2t � A2)u = 0 in (0; T )� 
gkukVe := �Z T0 (ku(t)k21 + k�tu(t)k20) dt�1=2 ;that satis�es(Pe) � (�2t � A2)u = 0 ; in (0; T )� 
u(0) = f ; �tu(0) = g :Note that if u 2 Ve, then �tu 2 L2(0; T ;H) and adequate trae theorems (see[LiMa℄) guarantee that u(0); u(T ) 2 H1=2(
) and �tu(0); �tu(T ) 2 H�1=2(
).The ill-posedness of problem (Pe) an be easily veri�ed from the expliit repre-sentation of it's solution:u(t; x) = osh(At)f(x) + sinh(At)A�1g(x): (2)2Alternatively one an de�ne H�s(
) as the ompletion of H in the (-s)-norm de�ned in(1).



4 A. LEIT~AO2.2. A hyperboli problemGiven funtions f; g 2 H1(
) �nd u 2 (Vh; k � kVh), whereVh := fv 2 C(0; T ;H1(
)) j �tu 2 C(0; T ;H) and (�2t + A2)u = 0gkukVh := supt2[0;T ℄ �ku(t)k21 + k�tu(t)k20�1=2 ;that satis�es(Ph) � (�2t + A2)u = 0 ; in (0; T )� 
u(0) = f ; u(T ) = g :Note that if u 2 Vh, then u(0); u(T ) 2 H1(
) and �tu(0); �tu(T ) 2 H. Weassume further the numbers k�=T , k = 1; 2; : : : are not eigenvalues of A.3 Thishyperboli (Dirihlet) boundary value problem is ill-posed if the distane fromthe set M := fk�=T ; k 2 INg to �(A) (the spetrum of A) is zero. This followsfrom the expliit representation of the solution of (Ph)u(t; x) = sin(A(T � t)) sin(AT )�1f(x) + sin(At) sin(AT )�1g(x): (3)2.1. A paraboli problemGiven a funtion f 2 H = L2(
) �nd u 2 (Vp; k � kVp), whereVp := fv 2 L2(0; T ;H1(
)) j (�t + A2)u = 0 in (0; T )� 
gkukVp := �Z T0 (ku(t)k21 + k�tu(t)k2�1) dt�1=2 ;that satis�es(Pp) � (�t + A2)u = 0 ; in (0; T )� 
u(T ) = f :Note that if u 2 Vp, then u(0); u(T ) 2 H. This orresponds to the well knownproblem of inverse heat transport, whih is known to be severely ill-posed. Thesolution of (Pp) has the expliit representationu(t; x) = exp(A2(T � t))f(x): (4)3If this ondition is not satis�ed, one an easily see that problem (Ph) is not uniquelysolvable.



ON INVERSE PROBLEMS MODELED BY PDE'S 53. Desription of the Methods3.1. An iterative proedure for the ellipti problemConsider problem (Pe) with data (f; g) 2 H1=2(
)�H�1=2(
). Given any initialguess '0 2 H�1=2(
) for �tu(T ) we try to improve it by solving the followingmixed boundary value problems (BVP) of ellipti type� (�2t � A2)v = 0 ; in (0; T )� 
v(0) = f ; �tv(T ) = ' � (�2t � A2)w = 0 ; in (0; T )� 
�tw(0) = g ; w(T ) = v(T )and de�ning '1 := �tw(T ). Eah one of the mixed BVP's above has a solution inVe and onsequently '1 2 H�1=2(
). Repeating this proedure we an onstruta sequene f'kg in H�1=2(
). Using the expliit representation of the solutionsv and w of the above problems, one obtains'1(x) = tanh(AT )2'(x) + sinh(At) osh(AT )�2Af(x) + osh(AT )�1 g(x):De�ning the aÆne operator Te : H�1=2 ! H�1=2, Te(') := tanh(AT )2' + hf;g,where hf;g := sinh(At) osh(AT )�2Af + osh(AT )�1g, the iterative algorithman be rewritten as'k = Te('k�1) = T ke ('0) = tanh(AT )2k'0 + k�1Xj=0 tanh(AT )2jhf;g: (5)3.2. An iterative proedure for the hyperboli problemLet's now onsider problem (Ph) with data f; g 2 H1(
). Given any initialguess '0 2 H for �tu(0) we try to improve it by solving the following initialvalue problems (IVP) of hyperboli type4� (�2t + A2)v = 0 ; in (0; T )� 
v(0) = f ; �tv(0) = ' � (�2t + A2)w = 0 ; in (0; T )� 
w(T ) = g ; �tw(T ) = �tv(T )and de�ning '1 := �tw(0). Eah one of the IVP's above has a solution in Vh andonsequently '1 2 H. Repeating this proedure we an onstrut a sequene4The seond problem is onsidered with reversed time.



6 A. LEIT~AOf'kg in H. Determining the solutions v and w of the above problems, oneobtains'1(x) = �tw(0; x) = os(AT )2'(x)� os(AT ) sin(AT )Af(x) + sin(AT ) g(x):Now de�ning the aÆne operator Th : H ! H, Th(') := os(AT )2' + hf;g,where hf;g := � os(AT ) sin(AT )Af +sin(AT )g, the iteration an be written as'k = Th('k�1) = T kh ('0) = os(AT )2k'0 + k�1Xj=0 os(AT )2jhf;g: (6)3.3. An iterative proedure for the paraboli problemWe onsider problem (Pp) with data f 2 H. Let '0 2 H be an initial guess foru(0) and de�ne �� := inff�;� 2 �(A)g. Now hoose a positive parameter  suhthat  < 2 exp(��2T ). The method onsists in solving the initial value problemsof paraboli type� (�t + A2)v0 = 0 ; in (0; T )� 
v0(0) = '0 � (�t + A2)vk = 0 ; in (0; T )� 
vk(0) = vk�1(0)� (vk�1(T )� f)for k � 1. The sequene f'kg is now de�ned by 'k := vk(0) 2 H. De-termining the solutions vk of the above problems, we have 'k+1(x) = (I � exp(�A2T ))'k(x) + f(x). De�ne the aÆne operator Tp : H ! H, Tp(') :=(I �  exp(�A2T ))' + hf , where hf := f , we an write the iteration as'k = Tp('k�1) = T kp ('0)= (I �  exp(�A2T ))k'0 + k�1Xj=0(I �  exp(�A2T ))jhf : (7)4. Analysis of the Methods4.1. The ellipti aseWe start presenting a result, whih is a generalization of the Cauhy{Kowalews-ki theorem. A omplete proof an be found in [Le1℄.



ON INVERSE PROBLEMS MODELED BY PDE'S 7Lemma 2 Given (f; g) 2 H1=2 � H�1=2, the problem (Pe) has at most onesolution in Ve.In the next theorem we verify some properties of the operator Tl;e, that willbe needed for the onvergene proof of the algorithm.Theorem 3 The linear operator Tl;e is positive, self-adjoint, injetive, regularasymptoti, non-expansive and 1 62 �p(Tl;e).Proof. The injetivity follows from Lemma 2. The properties: positiveness, self-adjointness and 1 62 �p(Tl;e) follow from the assumptions on A. The last twoproperties follow from the inequalityk(I � Tl;e)xk2 � (kxk2 � kTl;exk2); 8x 2 H�1=2: (8)
Theorem 4 If problem (Pe) is onsistent for the data (f; g), then the sequene'k onverges to �tu(T ) in the norm of H�1=2(
).Proof. Follows from Theorem 3 and Lemma 1.The onverse of Theorem 4 is also true. This is disussed inTheorem 5 If the sequene 'k onverges, say to �', then problem (Pe) is on-sistent for the data (f; g) and it's solution u 2 Ve satis�es �tu(T ) = �'.Proof. Follows from Lemma 2 and the de�nition of Te.4.2. The hyperboli aseTheorem 6 The linear operator Tl;h : H ! H is positive, self-adjoint, inje-tive, non-expansive, regular asymptoti and 1 is not an eigenvalue of Tl;h.Proof. Analog to the proof of Theorem 3.Theorem 7 If problem (Ph) is onsistent for the data (f; g), then the sequene'k onverges to �tu(0) in the norm of H.Proof. Follows from Theorem 6 and Lemma 1.



8 A. LEIT~AOTheorem 8 If the sequene 'k onverges, say to �', then problem (Ph) is on-sistent for the Cauhy data (f; g) and it's solution u 2 Vh satis�es �tu(0) = �'.Proof. Analog to the proof of Theorem 5.4.3. The paraboli aseLemma 9 Given f 2 H, the problem (Pp) has exatly one solution in Vp.Proof. This result is suggested by the general representation of the solution givenin (4). A omplete proof an be found in [LiMa℄, Chapter 3.Theorem 10 The linear operator Tl;p : H ! H is self-adjoint, non-expansive,regular asymptoti and 1 is not an eigenvalue of Tl;p. Further, if it is possible tohoose  < 2 exp(~�2T ), where ~� := (��2� T�1 ln 2)1=2, then Tl;p is also injetive.Proof. Analog to the proof of Theorem 3. The injetivity under the extra as-sumption on  follows from an inequality similar to (8).Theorem 11 Given f 2 H, let u 2 Vp be the uniquely determined solution ofproblem (Pp). Then the sequene 'k onverges to u(0) in the norm of H.Proof. Follows from Theorem 10 and Lemma 1.5. Numerial resultsExample 12 Consider the problem of �nding u(0) 2 L2(
), where u solves� a2 �tu � �u = 0u(T ) = fIn this example 
 = [0; 1℄ � [0; 1℄, a2 = 2 and the �nal time is T = 0:625.We hoose the parameter  = 2 for the iteration. In Figure 1 one an see theproblem data f and the orresponding solution u(0).In Figure 2 the error j'k � u(0)j is is shown after 10, 104, 105 and 106iterations. One should note that the reonstrution error is smaller at the partof the domain where u(0) is smooth. In Table 1 the evolution of the relativeerror in the L2{norm of the iteration is shown. Note that the onvergene speeddeays exponentially as we iterate.
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Figure 1: Problem data u(T ) = f and orresponding u(0).
5

10

15

20

25

30 5
10

15
20

25
30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 steps

5

10

15

20

25

30 5
10

15
20

25
30

0

0.1

0.2

0.3

0.4

0.5

0.6

10^4 steps

5

10

15

20

25

30 5
10

15
20

25
30

0

0.1

0.2

0.3

0.4

0.5

10^5 steps

5

10

15

20

25

30 5
10

15
20

25
30

0

0.1

0.2

0.3

0.4

0.5

10^6 steps

Figure 2: Evolution of the error j'k � u(0)j.



10 A. LEIT~AO10 steps 103 steps 104 steps 105 steps 106 steps49.8% 42.2% 40.1% 36.2% 31.4%Table 1: Evolution of the relative error in the L2{norm.Example 13 Consider the problem of �nding w(0) 2 L2(
), where w solves:� �tw � �w = 0w(T ) = fThe set 
 is the same as in the previous example, the �nal time is T = 0:625and we hose the parameter  = 2 for the iteration. We solve the diret Cauhy-problem for two di�erent initial onditions, whih are shown in Figures 3 and4 respetively.
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Figure 3: First hoie of f = u(T ) and orresponding u(0).
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Figure 4: Seond hoie of f = v(T ) and orresponding v(0).In Figure 5 the evolution of the iteration error for both problems is shown after10, 103 and 105 steps.
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Figure 5: Evolution of the error for the boundary onditions u(T ) and v(T )respetively.In Table 2 we present the evolution of the relative error in the L2{norm for bothboundary onditions u(T ) and v(T ).



12 A. LEIT~AO10 steps 102 steps 103 steps 104 steps 105 stepsf = u(T ) 53.5% 37.9% 15.0% 12.1% 6.6%f = v(T ) 46.1% 32.2% 10.6% 9.1% 6.7%Table 2: Evolution of the relative error in the L2{norm.Referenes[1℄ G. Bastay, Iterative Methods for Ill-Posed Boundary value Problems, Lin-k�oping Studies in Siene and Tehnology, Dissertations n. 392, Link�o-ping, 1995[2℄ M. Jourhmane and A. Nahaoui, A Relaxation Algorithm for Solving aCauhy{Problem, Preliminary Proeedings{Vol 2, 2nd Intern. Confer. onInverse Problems in Engineering: Theory and Pratie, Le Croisi, 1996[3℄ V.A. Kozlov, V.G. Maz'ya and A.V. Fomin, An iterative method forsolving the Cauhy problem for ellipti equations, Comput. Math. Phys.,31 (1991), no. 1, 45 { 52[4℄ V.A. Kozlov and V.G. Maz'ya, On iterative proedures for solving ill-posed boundary value problems that preserve di�erential equations, Lenin-grad Math. J., 1 (1990), no. 5, 1207 { 1228[5℄ A. Leit~ao, Ein Iterationsverfahren f�ur elliptishe Cauhy{Probleme unddie Verkn�upfung mit der Bakus{Gilbert Methode, Dissertation, FB Math-ematik, J.W. Goethe{Universit�at, Frankfurt am Main, 1996[6℄ A. Leit~ao, An Iterative Method for Solving Ellipti Cauhy Problems,Numer. Funt. Anal. Optimization, 21 (2000), no. 5{6, 715 { 742[7℄ G.M. Vainikko, Regularisierung nihkorrekter Aufgaben, Preprint n. 200,Universit�at Kaiserslautern, 1991
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