
AN ITERATIVE METHOD FOR SOLVINGELLIPTIC CAUCHY PROBLEMSA. Leit~aoDepartment of Mathemati
sFederal University of Santa CatarinaP.O. Box 476, 88010-970 Florian�opolis, BrazilAbstra
tWe investigate the Cau
hy problem for ellipti
 operators with C1{
oeÆ
ients at a regular set 
 � IR2, whi
h is a 
lassi
al example of anill-posed problem. The Cau
hy data are given at the subset � � �
 andour obje
tive is to re
onstru
t the tra
e of the H1(
) solution of an el-lipti
 equation at �
=�. The method des
ribed here is a generalizationof the algorithm developed by Maz'ya et al. [Ma℄ for the Lapla
e op-erator, who proposed a method based on solving su

essive well-posedmixed boundary value problems (BVP) using the given Cau
hy data aspart of the boundary data. We give an alternative 
onvergen
e proof forthe algorithm in the 
ase we have a linear ellipti
 operator with C1{
oeÆ
ients. We also present some numeri
al experiments for a spe
ialnon linear problem and the obtained results are very promisive.1 Introdu
tion1.1 Main resultsThe algorithm of Maz'ia et al. [Ma℄ is formulated here for general ellipti
 oper-ators. A new 
onvergen
e proof for this iterative algorithm using a fun
tionalanalyti
al approa
h is given in se
tion 2.1 (see Theorem 2.5), where we de-s
ribe the iteration using powers of an aÆne operator T . The key of the proofis to de�ne an alternative topology (see Lemma 2.1) for the spa
e H1=200 (�)0{ where the iteration is 
onsidered { and to prove that the linear part of Tsatis�es spe
ial properties (see Theorem 2.4). The 
onverse of Theorem 2.5is also proved, i.e. if the iteration 
onverges, it's limit is the solution of theCau
hy Problem. 1



Some properties of Tl (the linear part of T ) su
h as positiveness, self adjoint-ness and inje
tivity are veri�ed in se
tion 2.1 (see Theorem 2.3). In se
tion 2.2we prove a spe
tral property of Tl, that is atta
hed to the ill-posedness of theellipti
 Cau
hy Problem.In se
tion 2.3 we analyze the 
onvergen
e speed of the iteration for thespe
ial 
ase when the spe
tral de
omposition of Tl is known. The e�e
tivenessof two regularization s
hemas based on the spe
tral de
omposition of Tl (thelinear part of T ) is 
onsidered in se
tion 2.4.In se
tion 3 some numeri
al experiments are presented, where we test thealgorithm performan
e for linear 
onsistent, linear in
onsistent and non linearCau
hy problems.An analysis of iterative method in the spe
ial 
ase of a square region 
anbe found in [JoNa℄. The idea of this method is also applied to hyperboli
operators in [Bas℄ that uses semi-group theory in his approa
h.1.2 About Cau
hy problemsLet 
 � IR2 be an open, bounded and simply 
onne
ted set. As an ellipti
Cau
hy problem at 
 we 
onsider an (time independent) initial value problemfor an ellipti
 di�erential operator de�ned over 
, where the initial data isgiven at the manifold � � �
.The problem we analyze is to evaluate the tra
e of the solution of su
h aninitial value problem at the part of the boundary where no data was pres
ribed,a
tually at �
n�. As a solution of our Cau
hy problem we 
onsider a H1(
){distribution, whi
h solves the weak formulation of the ellipti
 equation in 
and also satis�es the Cau
hy data at � in the sense of the tra
e operator.It's well known that ellipti
 Cau
hy problems are ill{posed. A

ording tothe de�nition of Hadamard an initial value problem (IVP) or a BVP is said tobe well{posed, when the following three 
onditions are satis�ed:1 existen
e anduni
ity of solutions, and 
ontinuous dependen
e of the data. The next examplewas en
ountered by Hadamard himself [Had℄ and shows that the solution ofan ellipti
 Cau
hy problem may not depend 
ontinuously of the initial data.One analyzes the family of problems:8><>: �uk = 0 ; (x; y) 2 
 = (0; 1)� (0; 1)uk(x; 0) = 0 ; x 2 (0; 1)��yuk(x; 0) = 'k ; x 2 (0; 1)where 'k(x) = (�k)�1sin(�kx). The respe
tive solutionsuk(x; y) = (�k)�2sinh(�ky) sin(�kx)1More details in [Bau℄ or [Lo℄. 2



do exist for every k 2 IN and they are unique. The sequen
e f'kg 
onvergesuniformly to zero. Taking the limit k ! 1 we have a Cau
hy problem withhomogeneous data, whi
h admits only the trivial solution. But for every �xedy > 0 the solutions uk os
illate stronger and stronger and be
ome unboundedas k ! 1. Consequently the sequen
e uk does not 
onverge to zero in anyreasonable topology.If in this example one takes for Cau
hy data the C1{fun
tions (f; g) insteadof (0; 'k), it is possible to show (see [GiTr℄) that if f � 0, then g must beanalyti
al. This means that a 
lassi
al solution may not exist, even if one usessmooth fun
tions as Cau
hy data.The unique well-posedness 
ondition that is satis�ed for this problem is these
ond one. With adequate arguments it is possible to extend the Cau
hy{Kowalewsky and Holmgren Theorem to the H1{
ontext in order to guaranteeuniqueness of solutions also in weak sense (see Theorem D.3).1.3 Des
ription of the algorithmLet 
 be an open set in IR2 with smooth boundary �
, whi
h is divided intwo open and 
onne
ted 
omponents: �1 and �2, su
h that �1 \ �2 = ; and�1 [ �2 = �
. Let P be the se
ond order ellipti
 di�erential operator de�nedby: P (u) := � 2Xi;j=1 Di(ai;jDju) (1)where the real fun
tions ai;j satisfy8><>: � ai;j 2 L1(
);� the matrix A(x) := (ai;j)2i;j=1 satis�es: �tA(x) � > �jj�jj2;a.e. x 2 
; 8� 2 IR2 where � > 0 is given (independent of x): (2)Given the Cau
hy data (f; g) 2 H1=2(�1) � H1=200 (�1)0, we sear
h for a H1{solution of the problem2(CP ) 8><>: Pu = 0 ; in 
u = f ; at �1u�A = g ; at �1 :Our obje
tive is to re
onstru
t the tra
e of the solution u and it's 
onormalderivative at �2.3 Given the approximation '0 2 H1=200 (�2)0 for u�Aj�2 , we de�nethe sequen
e f'kgk2IN using the following iteration rule:2Details about the notation 
an be found in Appendix A.3Note that if we knew the 
onormal derivative at �2, u 
ould be evaluated as the solutionof a mixed BVP. 3



(IT ) 8>>>>>><>>>>>>: w 2 H1(
) solve: Pw = 0; wj�1 = f ; w�Aj�2 = 'k; k := wj�2 ;v 2 H1(
) solve: Pv = 0; v�Aj�1 = g; vj�2 =  k;'k+1 := v�Aj�2 :In (IT) two di�erential equations are solved and two tra
e operators are ap-plied. A
tually we generate two sequen
es: the �rst one of Diri
hlet tra
esand the se
ond one of Neumann tra
es, both de�ned at �2. As the fun
tionsw and v are both in H1(
;P ), one 
on
ludes from Theorems A.2 and A.4respe
tively that f'kg � H1=200 (�2)0 and f kg � H1=2(�2).Remark 1.1 If the Neumann data g of (CP) is a H�1=2(�2){distribution, oneproves using the Theorems of Appendix C that the sequen
e f'kg 
an be de�nedon the Sobolev spa
e H�1=2(�2).Remark 1.2 If one supposes �
 = �1[�2[�3 and wants to analyze a Cau
hyproblem with data given at �1 plus a further boundary 
ondition (Neumann,Diri
hlet, : : :) at �3, it is possible to adapt the iteration by adding this boundary
ondition at �3 to both BVP in (IT). This over{determination of boundary datadoes not a�e
t the analysis of the algorithm.1.4 Fun
tional{analyti
al approa
hThe main obje
tive in this se
tion is to represent the iteration (IT) using anoperator T : H1=200 (�2)0 ! H1=200 (�2)0. We de�ne the operators Ln : H1=200 (�2)0 !H1(
) and Ld : H1=2(�2)! H1(
) by:Ln(') := w 2 H1(
) and Ld( ) := v 2 H1(
);where the fun
tions w and v are respe
tively solutions of the BVP'sPw = 0 in 
; wj�1 = f ; w�Aj�2 = 'and Pv = 0 in 
; v�Aj�1 = g; vj�2 =  With the aid of the Neumann tra
e operator 
n : H1(
; P ) ! H1=200 (�2)0,
n(u) := u�Aj�2 and the Diri
hlet tra
e operator 
d : H1(
) ! H1=2(�2),
d(u) := uj�2 one 
an rewrite (IT) as( w = Ln('k);  k = 
d(w)v = Ld( k); 'k+1 = 
n(v) (3)If we de�ne T := 
n ÆLd Æ 
d ÆLn, we 
on
lude immediately that T is an aÆneoperator on H1=200 (�r)0, whi
h satis�es'k+1 = T ('k) = T k+1('0):4



That means we are able to des
ribe the iteration (IT) with powers of theoperator T . As Ln and Ld are both aÆne, we 
an writeLn(�) = Lln(�) + wf and Ld(�) = Lld(�) + vg;where the H1(
; P ){fun
tions wf and vg depend only of f and g respe
tively.With these de�nitions we have'k+1 = T ('k) = 
n Æ Lld Æ 
d Æ Lln('k)| {z }Tl('k) + 
n Æ Lld Æ 
d(wf) + 
n(vg)| {z }zf;g (4)= T k+1l ('0) + kXj=0T jl (zf;g):Remark 1.3 If we set ' = 
nu, where u is the solution of (CP), it followsfrom (IT) that T ' = '. Conversely, if ' is a �xed point of the operator T , thefun
tions w and v in (IT) have the same tra
es at �2. From the uniquenessTheorem D.3 follows w = v and they are both solutions of (CP).2 Analysis of the method2.1 Convergen
e proofIn order to study the iterative method proposed in se
tion 1.3, we begin withequipping the spa
e H1=200 (�2)0 with a new topology.Lemma 2.1 Let the 
oeÆ
ients of P satisfy the 
onditions in (2). The fun
-tional jj'jj� := �Z
 (rLln('))tA (rLln(')) dx�1=2de�nes on H1=200 (�2)0 a norm, that is equivalent to the usual Sobolev norm ofthis spa
e.Proof. Given ' 2 H1=200 (�2)0, the fun
tion u = Lln(') solves following BVP:8><>: P u = 0 ; in 
u = 0 ; at �1u�A = ' ; at �2From Theorem C.2 one 
on
ludes Lln(') is the unique solution in H10 (
 [ �2).In the same theorem the 
ontinuous dependen
e of the data is proved, andfrom this followsjj'jj� � 
1 jjLln(')jjH1(
) � 
2 jj'jjH1=200 (�2)0 ;5



where the �rst inequality follows from the norm equivalen
e between jj � jjH1(
)and hAr�;r�i1=2L2(
) at H10 (
 [ �2).The opposite inequality follows from the 
ontinuity of the Neumann tra
eoperator in Theorem A.4 and the norm equivalen
e used just above.Remark 2.2 A
tually one 
an prove that the norm jj'jj� is de�ned by aninner produ
t and the spa
e H1=200 (�2)0 is a Hilbert spa
e with the inner produ
th';  i� = Z
 (rLln('))tA (rLln( )) dx :In the next theorem we investigate some properties of the operator Tl,de�ned in se
tion 1.4, when we equip the spa
e H1=200 (�2)0 with the Hilbertspa
e stru
ture de�ned by h�; �i�.Theorem 2.3 Let Tl 2 L(H1=200 (�2)0) be the operator de�ned in (4). The fol-lowing assertions hold:i) Tl is positive;ii) 1 is not an eigenvalue of Tl;iii) Tl is self adjoint;iv) Tl is inje
tive.Proof. i) We de�ne the operator W : H1=200 (�2)0 ! H1(
) by W (') :=Lld Æ 
d Æ Lln('), where the operators Lld, Lln and 
d are the same as in se
tion1.4. From Theorems B.3 and B.4 follows for ';  2 H1=200 (�2)0Z
 �rLlnTl(')�rW (')�t A (rLln( )) dx = (5)= Z
 P �LlnTl(')�W (')�Lln( ) dx+ Z�1[�2 �LlnTl(')�W (')��A Lln( )d� = 0:From an analogous argument we haveZ
 �rW (')�rLln(')�tA(rW ( )) dx = 0: (6)If we denote by h�; �i the inner produ
t on L2(
), it follows from (5) and (6)hTl '; 'i� = hArLlnTl(');rLln(')i(5)= hArW (');rLln(')i(6)= hArW (');rW (')i� 
 jjW (')jj2H1(
);6



for every ' 2 H1=200 (�2)0.ii) Let us suppose there exists a ' 2 H1=200 (�2)0, su
h that Tl ' = '. De�new := Lln(') and v := Ld Æ 
d Æ Lln('). For the di�eren
e v � w we have:(v � w)j�2 = (v � w)�Aj�2 = 0:From the uni
ity Theorem D.3 we have v = w. The de�nition of w and vimply 0 = wj�l and 0 = v�Aj�1 = w�Aj�1 . Theorem D.3 now implies ' = 0.iii) analogous to (5) and (6) one proves that for ';  2 H1=200 (�2)0 theidentities hArLln(');rLlnTl( )i = hArLln(');rW ( )i (7)and hArW (');rW ( )i = hArW (');rLln( )i (8)hold. These last equations implyhTl ';  i� = h'; Tl  i�; 8 ';  2 H1=200 (�2)0:iv) Take '1, '2 in H1=200 (�2)0 with Tl '1 = Tl '2. De�ne now w := Lln('1 �'2) and v := Lld Æ 
d Æ Lln('1 � '2). We 
learly have v�Aj�1 = 0 and thehypothesis Tl('1 � '2) = 0 implies v�Aj�2 = 0. Sin
e v satis�es P v = 0, we
on
lude that v is 
onstant in 
. From vj�2 = wj�2 2 H1=200 (�2) follows v � 0.4Then we have w � 0 in 
 and the equality '1 = '2 follows.In the next theorem we verify two properties of Tl, that are needed in the
onvergen
e proof of the iterative method des
ribed in se
tion 1.3.Theorem 2.4 Let Tl 2 L(H1=200 (�2)0) be the operator de�ned in (4). The fol-lowing assertions are valid:i) Tl is regular asymptoti
 in H1=200 (�2)0, i.e. limk!1 jjT k+1l (')� T kl (')jj� =0; 8' 2 H1=200 (�2)0;ii) The operator Tl is non expansive, i.e. jjTljjL(H1=200 (�2)0) � 1.Proof. i) Be
ause of the identity (T k+1l (')� T kl (')) = T kl (Tl � I)('), it isenough to prove that T kl ('0)! 0 for every '0 2 Rg(Tl�I). Take  2 H1=200 (�2)0with (Tl � I) = '. Note that we 
an des
ribe the iteration T kl ( ) using thefun
tions ( wk( ) = Lln(
n(vk�1( ))); k � 1vk( ) = Lld(
d(wk( ))); k � 0 (9)4The unique 
onstant fun
tion in H1=200 (�l) is the null fun
tion.7



and w0( ) = Lln( ). From (9) follows wk = (vk)�A = 0 at �1, (wk)�A = (vk�1)�Aand vk = wk at �2. These identities and Theorem B.3 give usZ
 (rvk)tA (rvk) dx = Z�2 vk(vk)�A d�;Z
 (rwk)tA (rwk) dx = Z�2 wk(wk)�A d�;Z
 (rvk)tA (rwk) dx = Z�2 wk(vk)�A d�;Z
 (rvk�1)tA (rwk) dx = Z�2 wk(vk�1)�A d�:From these identities we obtainZ
r(wk � vk�1)tAr(wk � vk�1) dx = (10)= Z
 h(rvk�1)tA (rvk�1) � (rwk)tA (rwk)i dxand Z
r(vk � wk)tAr(vk � wk) dx = (11)= Z
 h(rwk)tA (rwk) � (rvk)tA (rvk)i dx:Note that the de�nition of ' and  imply wk(') = wk+1( )�wk( ). Equations(10) and (11) now implyZ
 (rwk('))tA (rwk(')) dx �� 2 Z
 h(rwk( ))tA (rwk( )) � (rwk+1( ))tA (rwk+1( ))i dx:From this last equation we obtainjjT kl (')jj2� � 2 �jjT kl ( )jj2� � jjT k+1l ( )jj2�� : (12)Another 
onsequen
e of (10) and (11) is the inequalityZ
 (rwk)tA(rwk) dx � Z
 (rwk+1)tA(rwk+1) dx � 0;for every k, i.e. the sequen
e fjjT kl ( )jj�g does not in
rease. Now from (12)follows limk!1 jjT kl (')jj� = 0:ii) For ' 2 H1=200 (�r)0 de�ne w := Lln(') and v := Lld Æ
d ÆLln('). We 
laimthat the inequality hTl('); Tl(')i� � Z
 (rv)tA (rv) dx (13)8



holds. Indeed, as Tl(') = 
nv we havehTl('); Tl(')i� = Z
 (rLln(
nv))tA (rLln(
nv)) dx= Z�1[�2 (Lln(
nv))�ALln(
nv) d�+ Z
 Lln(
nv)P (Lln(
nv)) dx= Z�1[�2 v�A Lln(
nv) d� + Z
 P (v)Lln(
nv) dx= Z
 (rv)tA (rLln(
nv)) dx� �Z
 (rv)tA (rv) dx�1=2 hTl('); Tl(')i1=2� ;proving (13). Now from the de�nition of v and w followsZ
 (rv)tA (rv) dx = Z�2 v�A v d� = Z�1[�2 v�A w d� = Z
 (rv)tA (rw) dx� �Z
 (rv)tA (rv) dx�1=2 �Z
 (rw)tA (rw) dx�1=2 :Putting all together we havejjTl(')jj� � �Z
 (rw)tA (rw) dx�1=2 = h'; 'i1=2� = jj'jj�;proving (ii).The next theorem guarantees the 
onvergen
e of the iterative algorithm.Theorem 2.5 Let T and Tl be the operators de�ned in se
tion 1.4. If we have
onsistent Cau
hy{data (f; g), then the sequen
e 'k = T k'0 
onverges to theNeumann{tra
e at �2 of the solution of (CP) for every '0 2 H1=200 (�2)0.Proof. It is enough to prove that T k'0 
onverges to the �xed point ' of T .If we de�ne "k = 'k � ' we have"k+1 = 'k+1 � '= T ('k)� T (')= Tl('k) + zf;g � Tl(')� zf;g= Tl("k) :Theorems 2.3 and 2.4 imply "k ! 0.The 
onverse of Theorem 2.5 is valid, i.e. when the sequen
e 'k = T k'0
onverges, the asso
iated Cau
hy problem is 
onsistent and ' := lim'k is theNeumann{tra
e of the problem's solution. This result 
an also be understoodas an existen
e 
riterion for Cau
hy problems.9



Theorem 2.6 Given the Cau
hy data (f; g) 2 H1=2(�1)�H1=200 (�1)0, we denoteby f'kg the sequen
e generated by the iteration (IT). If f'kg 
onverges inH1=200 (�2)0, the Cau
hy problem (CP) has a solution u in H1(
;P ) and u�Aj�2 =limk 'k.Proof. If we de�ne ' = limk 'k 2 H1=200 (�2)0, we haveT ' = T ( limk!1'k) = limk!1'k+1 = ' :Therefore ' is a �xed point of T . The argument of Remark 1.3 implies theexisten
e of a solution for (CP) and the theorem follows.2.2 A spe
tral property of TlBefore going any further with the analysis of the iterative algorithm, we dis
ussan important spe
tral property of Tl. We have already proved in Theorem 2.3that Tl is positive, self adjoint and it's spe
trum belongs to [0; 1℄. Now weverify that 1 belongs to �(Tl).Theorem 2.7 Let Tl be the operator de�ned in se
tion 1.4. If there exists(f; g) 2 H1=2(�1)�H1=200 (�1)0 su
h that the Cau
hy problem (CP) is in
onsistentfor the data (f; g), then 1 belongs to the 
ontinuous spe
trum �
(Tl) of Tl.Proof. Let fE�g�2IR be the spe
tral family for Tl and denote by I be theidentity operator in H1=200 (�2)0. From Theorem 2.3 we 
on
lude that E� = Ifor � � 1. It's enough to prove that given Æ 2 (0; 1) there exists an eigenvalue�0 of Tl in the interval (Æ; 1).If this 
ondition were not satis�ed the point spe
trum �p(Tl) would be asubset of [0; Æ℄ and Tl would be 
ontra
tive with norm jjTljj � Æ. An immediate
onsequen
e of this is the 
onvergen
e of the sequen
e 'k = T k'0, whereT = Tl + zf;g. Now Theorem 2.6 would imply the existen
e of a solution forthe Cau
hy problem (CP) with data (f; g), 
ontradi
ting the hypothesis of(f; g) being in
onsistent Cau
hy data.Corollary 2.8 From Theorems 2.3 and 2.7 follows jjTljj = 1.2.3 Error estimationFor simpli
ity we investigate in this se
tion the iteration (IT) for the operatorP = �� in two spe
ial domains. Analog results 
an be obtained for generaloperators of the form (1) every time the spe
tral de
omposition of the operatoris known. 10



In the �rst problem we take 
 = (��; �) � (��; �), �1 = f(x; 0); x 2(��; �)g, �2 = f(x; �); x 2 (��; �)g and want to solve the problem(CP 1) 8>>><>>>: �u = 0; in 
u = f; at �1u� = g; at �1u(x;��) = 0; x 2 (��; �)In the se
ond problem 
 is the ring 
entered at the origin with inner and outerradius respe
tively r0 and 1, �1 = f(1; �); � 2 (��; �)g, �2 = f(r0; �); � 2(��; �)g. The problem to be solved is(CP 2) 8><>: �u = 0; in 
u = f; at �1u� = g; at �1As we are working on spe
ial domains, it is possible to des
ribe the a
tionof the operator Tl expli
itly. If '0 = P'0;j sin(jy) is given in the Sobolevspa
e of periodi
 fun
tions5 H�1=2per (�2), we have for (CP 1)(T kl '0)(x) = 1Xj=1�2kj '0;j sin(jx); (14)where �j = sinh(2j�)=
osh(2j�); j 2 IN. As we intend to measure how fastthe error "k := 'k � ' 
onverges to zero, we dedu
e from (14) and from theequality "k+1 = Tl "k the estimatejj"kjj2H�1=2per (�2) � Xj�1 j�1 ��kj "0;j�2 : (15)If the initial error "0 has the ni
e property of 
onsisting only of the lowerfrequen
ies j � J , equation (15) simpli�es tojj"kjj2H�1=2per (�2) � �2kj jj"0jj2H�1=2per (�2) :In the very spe
ial 
ase J = 1 and "0 = "0;j sin(x) one 
al
ulates for k = 105the power of the �rst eigenvalue �2k1 = 0:061. Therefore we must evaluate 105iteration steps to redu
e the error to 6% of the initial error.Next we analyze a more realisti
 situation, in whi
h the initial error "0 ='0 � ' has more regularity than a H�1=2per (�2) distribution. We assume thatthere exists a monotone sequen
e of positive real numbers f
jg su
h thatlimj!1 
j = 1 and Xj�1 j�1 
2j "20;j = M < 1 :5For s 2 IR one de�nes Hsper((��; �)) := f'(y) = Pk2ZZ 
k eiky j Pk2ZZ (1 + k2)s
2k < 1g.11
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Figure 1: Eigenvalues of Tl in di�erent domainsIn this 
ase the error at the kth{iteration step 
an be estimated byjj"kjj2H�1=2per (�2) � �2kJ �
J
1 �2 Xj�J j�1 "20;j + 1
2J Xj>J j�1 
2j �2kj "20;j� �2kJ �
J
1 �2 jj"0jj2H�1=2per (�2) + M
2J : (16)For the Cau
hy problem (CP 2) we have an analogous result. If the iterationis again formulated at H�1=2per (�2) one obtains for the operator Tl the eigenfun
-tions sin(j�), 
os(j�) with 
orresponding eigenvalues�j = [(r�(j+1)0 � rj�10 )(r�j0 � rj0)℄ = [(r�(j+1)0 + rj�10 )(r�j0 + rj0)℄ :In Figure 1 we show a qualitative 
omparison between the eigenvalues of Tl inthe di�erent domains 
onsidered in this se
tion.2.4 RegularizationThe obje
tive of regularizing the iteration (IT) is to 
hoose an operator Tregsu
h that the regularized sequen
e ~'k := T kreg '0 + Pj<k T jreg zf;g 
onvergesfaster than the original sequen
e 'k := T kl '0 +Pj<k T jl zf;g. We also have toassure that the di�eren
e k lim ~'k � lim'kk remains small.We start with the a priori assumption that the Cau
hy data of (CP) satis�es(f; g) 2 Hr(�1)�H1=200 (�1)0, with r > 1=2.Given the measured data (f"; g") in L2(�1)�H1=200 (�1)0, we 
laim that using asmoothing operator S : L2 ! H1=2 it is possible to generate a ~f" := Sf" 2 H1=2satisfying kf � ~f"k1=2 � "0. Indeed this is a 
onsequen
e ofLemma 2.9 Let f 2 Hr, r > s > 0. There exists a smoothing operatorS : L2 ! Hs and a positive fun
tion 
 with limx#0 
(x) = 0, su
h that for" > 0 and f" 2 L2 with kf � f"kL2 � ", we have kf � Sf"ks � 
(").12



Proof. This lemma des
ribes a standard pro
edure in inverse problems. A
omplete proof 
an be found in [BaLe℄.After smoothing the data f", we obtain a 
orresponding z" 2 H1=2(�l)0 su
hthat jjzf;g � z"jjH1=2(�l)0 < ".We analyze the 
hoi
e of two di�erent regularization strategies. The �rstone is a 
ut{o� method, where we 
onsider only the eigenvalues of Tl lowerthan 1 � 1=n.6 In the se
ond method we use powers of Tl to de�ne Treg. Forn � 2 we setAn := Z 1� 1n0 � dE� and Bn := Z 10 (�� �n) dE� ; (17)where E� is the spe
tral family of Tl. Both operators An and Bn are positive,self adjoint and 
ontra
tive. Let T (n)reg represent one of the families de�ned in(17) and de�ne ' and '(n) as the �xed points of' = Tl '+ zf;g and '(n) = T (n)reg '(n) + z"respe
tively. '(n) will exist, as T (n)reg is 
ontra
tive. We have nowjj'(n) � 'jj = jjTl '+ zf;g � T (n)reg '(n) � z"jj= jjT (n)reg ('(n) � ') + �T (n)reg � Tl� '� zf;g + z"jj� jj �I � T (n)reg ��1 �T (n)reg � Tl� 'jj + " jj �I � T (n)reg ��1 jj:(18)In next theorem we analyze the estimate (18) for the operators An and Bn.Theorem 2.10 If we de�ne the family of operators T (n)reg using one of the fam-ilies in (17) we havejj �I � T (n)reg ��1 �T (n)reg � Tl� 'jj ! 0 and jj �I � T (n)reg ��1 jj ! 1: (19)Proof. i) We analyze the 
ase T (n)reg = An �rst. From the spe
tral de
ompo-sition of Tl follows(I�An) = Z 1� 1n0 (1� �) dE�+Z 11� 1n dE� and (An�Tl) = � Z 11� 1n � dE�:Now these equalities imply jj(I � An)'jj � 1=n jj'jj, and the operator (I �An) has an inverse. We also know that (I � An) is the identity operator onRg(An � Tl). From this follows(I � An)�1(An � Tl) = � Z 11� 1n � dE�; (20)6We may suppose the real numbers 1� 1=n are not eigenvalues of Tl.13



and we 
an estimate the �rst term in (19) byjj(I � An)�1(An � Tl)'jj2 � Z 11� 1n dhE� '; 'i ! 0for n!1. For the se
ond term in (19) we use the identityjj(I � An)�1jj = (1� �(n))�1 ! 1 (21)for n ! 1, where �(n) is the largest eigenvalue of Tl, whi
h is smaller than(1� 1=n).ii) For the 
ase T (n)reg = Bn we have (Bn�Tl) = �T nl and from the spe
tralde
omposition of Tl follows(I � Bn)�1(Bn � Tl) = Z 10 �n(1 + �n � �)dE�:If we de�ne the fun
tions �(n) := n( 11�n ) and Æ(n) := 1 � �(n) we 
ande
ompose the operator (I �Bn)�1(Bn � Tl) in Qn +Rn whereQn = Z 1�Æ(n)0 �n(1 + �n � �) dE� and Rn = Z 11�Æ(n) �n(1 + �n � �) dE� :From the 
onvergen
e �n(n) (1 + �n(n) � �(n))�1 ! 0 for n ! 1 followslim jjQnjj = 0. The 
onvergen
e jjRnjj ! 0 follows from inequality 0 < �n (1+�n � �)�1 � 1; 8 � 2 [1� Æ(n); 1℄; 8n � 2. With this we have provedlimn!1 jj(I �Bn)�1(Bn � Tl)'jj = 0:To obtain the se
ond limit in (19) we dedu
e from the spe
tral de
ompositionof (I �Bn)�1 the equalityjj(I � Bn)�1jj = (1 + �n(n)� �(n))�1 ! 1for n ! 1, where �(n) is the largest eigenvalue of Tl, whi
h is smaller than�(n).Our next step it to use a priori information about the solution ' of the�xed point equation T ' = ' in order to �nd an optimal regularization strategy.Let's suppose there exists a fun
tion G with8>>>>>>>><>>>>>>>>: G : [0; 1) 7! IR+ is 
ontinuous and monotone in
reasing;lim�!1�G(�) = 1;Z 10 G2(�) dhE� '; 'i =M2 < 1: (22)In the next theorem we analyze how the regularity 
ondition in (22) 
an beused to balan
e the approximation and regularization errors.14



Theorem 2.11 Let G be a fun
tion whi
h satisfy (22) and Æ, �, �, � bethe fun
tions used in the proof of Theorem 2.10. For the two regularizationstrategies in (17) there exists nopt 2 IN, su
h thatjj'(nopt) � 'jj � jj'(n) � 'jj;for every n 2 IN. Further nopt is obtained by solving the minimization problemminn�2 ( MG(1� 1n) + "(1� �(n)))for the regularization strategy using An. For the Bn regularization strategy noptis obtained as the solution of the minimization problemminn�2 ( �n(n) jj'jj1 + �n(n)� �(n) + MG(�(n))! + "(1 + �n(n)� �(n))) :Proof. We show here only the proof for the regularization strategy An, these
ond 
ase being analog. From (20) and (22) followsjj(I � An)�1(An � Tl)'jj2 = Z 11� 1n �2 dhE� '; 'i� 1G2(1� 1n) Z 11� 1n G2(�) dhE� '; 'i� M2G2(1� 1n) :Now inequality (18) and (21) implyjj'(n) � 'jj � MG(1� 1n) + "(1� �(n)) ;and the assertion follows.Remark 2.12 One 
an interpret the regularity 
ondition in (22) as follows:With the aid of the fun
tion G one 
an de�ne the unbounded operatorG = Z 10 G(�) dE�on H1=200 (�2)0. The existen
e of the integral in (22) is equivalent to the assump-tion that ' belongs to D(G), the domain of G de�ned byD(G) := n' 2 H1=200 (�2)0 j G(') 2 H1=200 (�2)0o :15



3 Numeri
al experimentsIn this se
tion we present some results obtained by the numeri
al implemen-tation of the iterative algorithm. In the �rst two examples in se
tions 3.1 and3.2 respe
tively we solve linear 
onsistent problems in a square and in a an-nular domain. In se
tion 3.3 we exhibit a linear in
onsistent problem and inse
tion 3.4 we analyze a non linear 
onsistent problem.The 
omputation was performed on the IBM{RISC/6000 ma
hines at theFederal University of Santa Catarina. The ellipti
 mixed boundary value prob-lems that appear in the iteration were solved using the PLTMG pa
kage (see[Ban℄).3.1 A linear problem in a square domainIn this example we take 
 = (0; 1)� (0; 3=4) and de
ompose the boundary �
in �1 [ �2 [ �3 [ �4, where�1 := f(x; 0); x 2 (0; 1)g ; �2 := f(x; 3=4); x 2 (0; 1)g ;�3 := f(0; y); y 2 (0; 3=4)g ; �4 := f(1; y); y 2 (0; 3=4)g :Given the Cau
hy data f(x) = sin(�x) and g(x) = 0 at �1 we re
onstru
tthe (Diri
hlet) tra
e at �2 of the solution of following Cau
hy Problem:8>>><>>>: � u = 0 ; in 
u = f ; at �1u� = g ; at �1u = 0 ; at �3 [ �4 :The exa
t solution of this Cau
hy Problem is u�(x; y) = 
osh(�y) sin(�x).Ea
h mixed problem is solved using an uniform mesh with 262 913 nodesand linear elements. The tra
e at �2 of the sequen
e generated by (IT) isshown (solid line) after 10, 25, 50 and 100 steps at Figure 2. The dotted linerepresent the tra
e of the exa
t solution u� at �2.As a stopping 
riterion we 
hoose jj k+1� kjj1;�2 � 10�3. In this examplethe iterative sequen
e 
onverges extremely fast. We observe a slower rate of
onvergen
e when the mesh is re�ned, but the approximation obtained withthe same stopping 
riterion is more a

urate.3.2 A linear problem in an annular domainIn this se
ond example 
 is an annulus 
entered at the origin with inner andouter radius respe
tively 1 and 7. Given the Cau
hy data f(�) = sin(�) and16
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Figure 2: Iterated sequen
e at the unknown boundary for a linear Cau
hyproblem at the domain 
 = (0; 1)� (0; 3=4)
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Figure 3: Iterated sequen
e at the unknown boundary for a linear Cau
hyproblem at a ring domain with inner and outer radius respe
tively 1 and 7g(�) = 0 at the inner boundary �1, we re
onstru
t at the outer boundary �2the tra
e of the solution of following problem:8><>: � u = 0 ; in 
u = f ; at �1u� = g ; at �1 :The exa
t solution of this problem is u�(x; y) = (r + 1=r) sin(�)=2. We useda �nite element mesh with 61 824 nodes, linear elements and the stopping
riterion jj k+1 �  kjj1;�2 � 10�4. The dotted line in Figure 3 represents theexa
t solution (note that the x{axis is parameterized from zero to 2�) and thesolid line represents the sequen
e  k generated by (IT).The iteration gives for this Cau
hy problem a better approximation thanit does in se
tion 3.1. The reason for this behavior is that the eigenvalues ofthe operator Tl (de�ned in (4)) 
onverge to one slower, i.e., they are smallerthan we estimated in se
tion 3.1 (see Figure 1).
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0 0.2 0.4 0.6 0.8 1Figure 4: Di�eren
e ('k � 'k�1) 
al
ulated for a linear in
onsistent Cau
hyproblem3.3 A linear in
onsistent problemIn this example we take 
 = (0; 1)�(0; 1=2) and de�ne the boundary segments:�1 := f(x; 0); x 2 (0; 1)g ; �2 := f(x; 1=2); x 2 (0; 1)�3 := f(0; y); y 2 (0; 1=2)g ; �4 := f(1; y); y 2 (0; 1=2)g:For n 2 IN we de�ne at �1 the fun
tions:f(x) = 0 and g(x) = ( n� n2jx� �=2j ; jx� �=2j � 1=n0 ; otherwise :Using the re
e
tion prin
iple of S
hwartz (see [GiTr℄ or [Le℄) one proves thatthe Cau
hy problem 8><>: � u = 0 ; in 
u = f ; at �1u� = g ; at �1 ;has an analyti
al solution only if g is itself analyti
al. So with our 
hoi
e ofdata we know a priori that the respe
tive Cau
hy problem has no 
lassi
alsolution.We take n = 100 in the de�nition of g and add to the Cau
hy problemabove the over determinating 
ondition: u = 0 at �3 [ �4. The iteration isperformed as before over a 262 913 node mesh using linear elements and thesame stopping 
riterion as in se
tion 3.1. In Figure 4 the di�eren
e 'k � 'k�1is plotted for some values of k.The sequen
e 'k 
onverges in the jj � jj1 as fast as it does in se
tion 3.1,but this does not mean that it 
onverges to a solution of the Cau
hy problem(see Remark 4.2).Both sequen
es wk and vk of H1{fun
tions generated in (IT) 
onverge tothe solution of the Cau
hy problem, when this problem does have a solution18



(see Theorem 2.5). In this example, when we analyse the sequen
es wk andvk, we note that they are not 
onverging in H1(
) to the same limit. InFigures 5 (a) and 5 (b) we show the fun
tions w100 and v100 respe
tively.One observes that on �2 we have w100 ' v100 and (w100)� ' (v100)�. Thedi�eren
e wk � vk generates also a sequen
e of H1{fun
tions with vanishingCau
hy data at �2 but that does not 
onverge to zero at 
. Su
h examplesare known to exist due to Hadamard (see se
tion 1.2).

(a) (b)Figure 5: Fun
tions wk and vk { at (a) and (b) respe
tively { after 100 stepsfor a linear in
onsistent Cau
hy problem3.4 A non linear problemTake 
 the annulus 
entered at the origin with inner and outer radius re-spe
tively 1/2 and 1. This time we de
ompose the outer 
omponent of theboundary in two di�erent ways: �
 = �1 [ �2 = ~�1 [ ~�2 where�1 := f(x; y) j x2 + y2 = 1; x < 0g; �2 := f(x; y) j x2 + y2 = 1; x > 0gand~�1 := f(x; y) j x2+y2 = 1; x < p2=2g; ~�2 := f(x; y) j x2+y2 = 1; x > p2=2g:The inner 
omponent of �
 is 
alled �i := f(x; y); x2 + y2 = 1=4g.19



Given the Cau
hy data f(�) = sin(�) and g(�) = 0 on �1 (respe
tively ~�1) were
onstru
t on �2 (respe
tively ~�2) the tra
e of the solution of the non linearCau
hy problems:8>>><>>>: � u+ u3 = [ (r + 1=r) sin(�)=2 ℄3 ; in 
u = f ; at �u� = g ; at �u = 54 sin(�) ; at �i ;where � stands for both �1 and ~�1. Both problems have the same solutionu�(x; y) = (r + 1=r) sin(�)=2.A mesh with 82 688 nodes and linear elements is used, the stopping 
riterionbeing the same as in se
tion 3.1. In Figure 6 (a) and 6 (b) one 
an see theexa
t solution (dotted line) and the iterated sequen
e  k (solid line) for theCau
hy problems with data given on �1 and ~�1 respe
tively. (note that thex{axis is parameterized from 0 to � in Figure 6 (a) and from �=4 to 3�=4 inFigure 6 (b))
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e of the iteration for a non linear Cau
hy problem at the annuluswith inner and outer radius respe
tively 1=2 and 1Both iterations begin with  0 � 0. As it happens in the linear 
ase, thelimit of the sequen
e  k does not depend on the 
hoi
e of the initial data  0,but the 
onvergen
e of the iteration is slower for this non linear operator.Comparing the iteration for both Cau
hy problems with data at �1 and~�1 is 
lear that the amount of known information one has, determines bothvelo
ity of 
onvergen
e and pre
ision of the re
onstru
tion.4 Con
luding RemarksRemark 4.1 The 
lassi
al problem of Hadamard in se
tion 3.1 is numeri
allytreated in [FaMo℄. They propose a dire
t method to solve the Cau
hy problem20



on the square (0; 1)� (0; 1) and obtained a re
onstru
tion with approximately5% error in the L2(�2) norm, while our re
onstru
tion has an error of approx-imately 4% in this norm (see Figure 2 after 100 iterations).The Cau
hy problem in se
tion 3.2 is numeri
ally treated in [KuIs℄, whereboundary elements are used on the annulus with inner and outer radius 2 and6 respe
tively. The re
onstru
tion error in the L1(�2){norm has the order of10�2. The 
orresponding error after 100 iteration steps has the same order(see �gure 3).The diÆ
ulty in solving Cau
hy problems by using dire
t methods is thatthe ill-posedness of the resulting system in
reases as one tries to re�ne thenumeri
al model.Remark 4.2 A motivation for the 
onvergen
e of the iteration (in the L1{norm) even in the in
onsistent 
ase 
an be found on the fa
t that the numeri
aldis
retization Tl;h of the operator Tl we use to generate the sequen
e 'k is
ontra
tive. In fa
t, the �nite element method has the property that only thespa
es, and not the di�erential equation itself, are dis
retizated (see [Od℄).This implies that the eigenvalues of Tl;h are lower or equal to the respe
tiveeigenvalues of Tl. As the eigenfun
tions of Tl (de�ned at �2) 
annot be obtainedby taking tra
es of the linear �nite elements we are using, we 
on
lude that theeigenvalues7 of Tl;h are stri
t smaller than the respe
tive eigenvalues of Tl.Remark 4.3 Another dis
retization of the operator Tl was tested. We triedto solve the mixed problems on the square domain using �nite di�eren
es. Thishas the advantage of being faster (we must invert 2 sti�ness matri
es on
e, butea
h iteration is than evaluated as a simple matrix ve
tor produ
t) spe
ially ifthe number of iteration to be 
omputed is large. Our numeri
al experimentsshow that the eigenvalues of this se
ond dis
retization of Tl approximate the realeigenvalues better than the dis
retization by �nite elements does. As a dire
t
onsequen
e, the approximation obtained using a �nite di�eren
e dis
retization{with the same stopping 
riterion{ is better than the one obtained using �niteelements.Remark 4.4 If the di�erential operator P in (1) is non linear, the propertyT ' = ';where T is the operator de�ned in (4), will only hold if one 
an guarantees theuni
ity of solutions for the Cau
hy problem governed by P a priori. Even ifthis is the 
ase, one still have to make sure that ea
h mixed problem on theiteration is uniquely solvable.7Obviously there is only a �nite number of them.21



We does not prove these properties for the Cau
hy problem in se
tion 3.4,but the iteration was performed using di�erent analyti
al fun
tions as initialdata. The velo
ity of 
onvergen
e and the limit en
ountered is the same for allour tests.In spite of the fa
t that the 
onvergen
e of the iteration is mu
h slower inthe non linear 
ase, it 
an be again veri�ed that the �xed point of Th ' = 'approa
hes better the �xed point of T ' = ', if the pre
ision h of the dis
retiza-tion in
reases.A Sobolev spa
es and tra
e TheoremsLet 
 2 IR2 be an open, bounded, regular8 set with C1{boundary �
, whi
his splited in �
 = [Nj=1�j, the subsets �j being open, 
onne
ted and satisfying�i\�j = ; for 1 � i 6= j � N . We denote by 
j the tra
e operator with domainC1(
) and range C1(�j). With �j we represent the ve
tor �eld normal to �j.Given the se
ond order ellipti
 operatorP (u) := � 2Xi;j=1 Di(ai;jDju) + 2Xi=1 aiDiu + a0 u;we represent the 
o-normal derivative of a fun
tion u respe
tive to P byu�A = �u��A := 2Xi;j=1 ai;j �i (Dju)where A represent the 2� 2 matrix (ai;j).We introdu
e now the Sobolev spa
es used in this arti
le. For s = k + � 2IR+ with k 2 IN0 and � 2 [0; 1), we de�neHs(
) := C1(
)jj�jjs;
; Hs0(
) := C10 (
)jj�jjs;
; Hs0(
 [ �) := C10 (
 [ �)jj�jjs;
;where the fun
tional jj � jjs;
 is de�ned byjjujj2s;
 := Xj�j�k jjD�ujj2L2(
) + Xj�j=k ZZ
�
 jD�u(x)�D�u(y)j2jx� yjn+2� dx dy :For s > 0 we de�ne the spa
e H�s(
) by dualityH�s(
) = fu 2 D0(
) = < u; � >L2(
) 2 Hs0(
)0g :Given the di�erential operator P as above, we de�ne the spa
e H1(
;P ) asthe spa
e of distributions withfu 2 H1(
) = P u 2 L2(
)g :8We mean 
 is lo
ally at one side of �
.22



The last spa
e we need is Hs00(
); s 2 IR+. If s = k + � with k 2 IN0 and� 2 [0; 1) we de�ne the fun
tionaljjujjs;00;
 := 8<:jjujj2s;
 + Xj�j=k Z
 jD�u(x)j2 d�2�(x; �
) dx9=;1=2 ;where d(x; �
) is the Eu
lidean distan
e between x 2 IRn and �
. Now wede�ne Hs00(
) as the 
losure of C10 (
) with respe
t to jj � jjs;00;
.The next theorems 
an be found in [DaLi℄ or [Gr1,2℄ and will be needed inthe study of weak solutions of mixed boundary value problems.Theorem A.1 (Neumann tra
e of a H1(
;P ) distribution) The opera-tor ��A : u 7�! 
 �u��Ade�ned on C1(
) has only one 
ontinuous extension de�ned at~�� : H1(
;P ) �! H�1=2(�
) :Theorem A.2 (Diri
hlet tra
e on 
j) Let m 2 IN. The operatoru 7�! (
ju; 
j �u��j ; : : : ; 
j �m�1u��m�1j )de�ned for every j = 1; : : : ; m at C1(
) has only one 
ontinuous extensionfrom Hm(
) onto m�1Yi=0 Hm�i� 12 (�j) :Remark A.3 The tra
e operator in Theorem A.2 has a 
ontinuous right in-verse. This fa
t follows from the existen
e of a prolongation operator ! 2L(Hs(�j); Hs(�
)), s � 0, that is the 
ontinuous right inverse of the restri
-tion operator � 2 L(Hs(�
); Hs(�j)). For details see [Au℄ pp. 187-194.Theorem A.4 (Neumann tra
e on 
j) The Neumann tra
e operator de-�ned on C1(
) with range in C1(�j) has only one 
ontinuous extension asan operator from H1(
;P ) into H1=200 (�j)0;for j = 1; : : : ; N: 23



B Green's formulaIn the analysis of the mixed boundary value problems that appear in the it-erative pro
edure (IT), we make use of a spe
ial version of the (�rst) Greenformula. The results presented here are still valid if �
 only Lips
hitz 
ontin-uous and they 
an be found in [Au℄, [DaLi℄, [Gr1℄, [Le℄, [LiMa℄ or [Tr℄.Theorem B.1 If (u; v) is a pair of fun
tions in H2(
)�H1(
), then we haveZ
 Pu v dx = Z�
 u�A v d� � Z
 (rv)tAru dx : (23)Equation (23) is still valid if (u; v) 2 H1(
;P )�H1(
).9In next theorem the boundary integral in (23) is repla
ed by a sum ofintegrals over ea
h 
j.Theorem B.2 Given fun
tions u in H2(
) and v in H1(
) we haveZ
 Pu v dx = NXj=1 Z�j u�A v d� � Z
 (rv)tAru dx: (24)This theorem is a 
onsequen
e of the tra
e Theorem A.2, that guaranteesthe boundedness of the inner produ
ts in (24) in the sense of L2(�j). Theo-rem B.2 still holds if �
 is a C1;1 polygon. In the next theorem (see [Le℄) weformulate Green's formula in the exa
t 
ontext needed in this paper.Theorem B.3 Given u 2 H1(
;P ) and v 2 fv 2 H1(
) j 
j v 2 H1=200 (�j),j = 1; : : : ; Ng we haveZ
 Pu v dx = NXj=1 Z�j u�A v d� � Z
 (rv)tAru dx:The next two theorems des
ribe some 
hara
teristi
s of the tra
e of H1{fun
tions, that are needed in the formulation of the iterative pro
edure (IT).Theorem B.4 Let N = 2, i.e. �
 = �1 [ �2 and u 2 H1(
). If 
1 u is aH1=200 (�1) distribution, then 
2 u is a H1=200 (�2) distribution.Theorem B.5 Let N = 2, i.e. �
 = �1[�2 and u be a P{harmoni
 fun
tionin H1(
). If 
1 �u��A belongs to H�1=2(�1), than 
2 �u��A belongs to H�1=2(�2). 109The last assertion follows from the density of the embedding of C1(
) into H1(
;�)together with Theorem A.1.10One should note that H�1=2(�2) = H1=2(�2)0, be
ause of the identity H1=20 (�2) =H1=2(�2). 24



C Mixed boundary value problemsFor the analysis of mixed problems we need a type of Poin
ar�e inequality onthe spa
e H10 (
 [ �j). This is obtained with theoremTheorem C.1 Given a fun
tion u 2 H10 (
 [ �j) we havejjujjL2(
) � 
 jjrujjL2(
);where the 
onstant 
 depends only on 
.11We analyze the following mixed problem problem at 
. Given the fun
tionsf 2 H1=2(�1) and g 2 H1=200 (�2)0, �nd a H1{solution of(GP ) 8><>: �u = 0 ; in 
u = f ; at �1u� = g ; at �2 :Existen
e, uni
ity and 
ontinuous dependen
y of the data for (GP) are givenby the following theorem of Lax{Milgramm type.Theorem C.2 For every pair of data (f; g) 2 H1=2(�1)�H1=200 (�2)0 the prob-lem (GP) has a unique solution u 2 H1(
). Further it holdsjjujjH1(
) � 
�jjf jjH1=2(�1) + jjgjjH1=200 (�2)0� : (25)The next theorem investigates the regularity of the H1{solution of (GP).For a detailed proof see [Gr1,2℄ or [Wn℄.Theorem C.3 For boundary data f 2 H3=2(�1) and g 2 H1=2(�2), the H1{solution u of (GP ) 
an be written asu = h + 2Xi=1 �i ui ; (26)where h 2 H2(
), �i 2 IR and ui are the singular H1{fun
tionsui(r; �) = r1=2i sin �i2 :Here r1 (respe
tively r2) is the distan
e from z = (r; �) 2 
 to the 
onta
t pointpa between �1 and �2 (respe
tively pb between �2 and �1); �1 (respe
tively �2)is the angle between z� pa (respe
tively z� pb) and the line tangent to �
 atpa (respe
tively at pb) in the dire
tion of �1.11For a detailed proof see [Tr℄ pp. 69. 25



D Uni
ity results for Cau
hy problemsWhat we present now is a generalisation of some 
lassi
al results 
on
erningthe theory of diferential operators with analyti
al 
oeÆ
ients. We use theCau
hy{Kowalewsky and Holmgren theorems12 together with a regularity the-orem for weak solutions of ellipti
 equations, to guarantee the uniqueness ofH1{solutions of Cau
hy problems.13Theorem D.1 Let L be a linear di�erential operator of order 2 with C1(
){
oeÆ
ients, where 
 � IRn is an open regular set. De�ne a(�; �) the respe
tivebilinear form, whi
h is supposed to be strong 
oer
ive. If the distribution u isa solution of Lu =  with  2 Hklo
(
); k 2 IN, then u 2 Hk+2lo
 (
).14Remark D.2 Under the same assumptions as in Theorem D.1 it follows fromthe assumption  2 C1(
) that u belongs to C1(
).We 
an now state the uniqueness result for Cau
hy problems.Theorem D.3 Let 
 be an open, bounded and simply 
onne
ted set of IR2with analyti
al boundary �
. Let � be an open simply 
onne
ted subset of �
and the di�erential operator L de�ned as in Theorem D.1. Then the Cau
hy{Problem 8><>: Lu =  ; in 
u = f ; at �u� = g ; at �has for  2 L2(
), f 2 H1=2(�) and g 2 H1=200 (�)0 at most one solution inH1(
).For the spe
ial 
ase L = �, the Lapla
e operator, the assumptions relativeto 
 
an be weakened. For this operator Theorem D.3 still holds even if 
 isnot supposed to be simply 
onne
ted.A
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