
AN ITERATIVE METHOD FOR SOLVINGELLIPTIC CAUCHY PROBLEMSA. Leit~aoDepartment of MathematisFederal University of Santa CatarinaP.O. Box 476, 88010-970 Florian�opolis, BrazilAbstratWe investigate the Cauhy problem for ellipti operators with C1{oeÆients at a regular set 
 � IR2, whih is a lassial example of anill-posed problem. The Cauhy data are given at the subset � � �
 andour objetive is to reonstrut the trae of the H1(
) solution of an el-lipti equation at �
=�. The method desribed here is a generalizationof the algorithm developed by Maz'ya et al. [Ma℄ for the Laplae op-erator, who proposed a method based on solving suessive well-posedmixed boundary value problems (BVP) using the given Cauhy data aspart of the boundary data. We give an alternative onvergene proof forthe algorithm in the ase we have a linear ellipti operator with C1{oeÆients. We also present some numerial experiments for a speialnon linear problem and the obtained results are very promisive.1 Introdution1.1 Main resultsThe algorithm of Maz'ia et al. [Ma℄ is formulated here for general ellipti oper-ators. A new onvergene proof for this iterative algorithm using a funtionalanalytial approah is given in setion 2.1 (see Theorem 2.5), where we de-sribe the iteration using powers of an aÆne operator T . The key of the proofis to de�ne an alternative topology (see Lemma 2.1) for the spae H1=200 (�)0{ where the iteration is onsidered { and to prove that the linear part of Tsatis�es speial properties (see Theorem 2.4). The onverse of Theorem 2.5is also proved, i.e. if the iteration onverges, it's limit is the solution of theCauhy Problem. 1



Some properties of Tl (the linear part of T ) suh as positiveness, self adjoint-ness and injetivity are veri�ed in setion 2.1 (see Theorem 2.3). In setion 2.2we prove a spetral property of Tl, that is attahed to the ill-posedness of theellipti Cauhy Problem.In setion 2.3 we analyze the onvergene speed of the iteration for thespeial ase when the spetral deomposition of Tl is known. The e�etivenessof two regularization shemas based on the spetral deomposition of Tl (thelinear part of T ) is onsidered in setion 2.4.In setion 3 some numerial experiments are presented, where we test thealgorithm performane for linear onsistent, linear inonsistent and non linearCauhy problems.An analysis of iterative method in the speial ase of a square region anbe found in [JoNa℄. The idea of this method is also applied to hyperbolioperators in [Bas℄ that uses semi-group theory in his approah.1.2 About Cauhy problemsLet 
 � IR2 be an open, bounded and simply onneted set. As an elliptiCauhy problem at 
 we onsider an (time independent) initial value problemfor an ellipti di�erential operator de�ned over 
, where the initial data isgiven at the manifold � � �
.The problem we analyze is to evaluate the trae of the solution of suh aninitial value problem at the part of the boundary where no data was presribed,atually at �
n�. As a solution of our Cauhy problem we onsider a H1(
){distribution, whih solves the weak formulation of the ellipti equation in 
and also satis�es the Cauhy data at � in the sense of the trae operator.It's well known that ellipti Cauhy problems are ill{posed. Aording tothe de�nition of Hadamard an initial value problem (IVP) or a BVP is said tobe well{posed, when the following three onditions are satis�ed:1 existene anduniity of solutions, and ontinuous dependene of the data. The next examplewas enountered by Hadamard himself [Had℄ and shows that the solution ofan ellipti Cauhy problem may not depend ontinuously of the initial data.One analyzes the family of problems:8><>: �uk = 0 ; (x; y) 2 
 = (0; 1)� (0; 1)uk(x; 0) = 0 ; x 2 (0; 1)��yuk(x; 0) = 'k ; x 2 (0; 1)where 'k(x) = (�k)�1sin(�kx). The respetive solutionsuk(x; y) = (�k)�2sinh(�ky) sin(�kx)1More details in [Bau℄ or [Lo℄. 2



do exist for every k 2 IN and they are unique. The sequene f'kg onvergesuniformly to zero. Taking the limit k ! 1 we have a Cauhy problem withhomogeneous data, whih admits only the trivial solution. But for every �xedy > 0 the solutions uk osillate stronger and stronger and beome unboundedas k ! 1. Consequently the sequene uk does not onverge to zero in anyreasonable topology.If in this example one takes for Cauhy data the C1{funtions (f; g) insteadof (0; 'k), it is possible to show (see [GiTr℄) that if f � 0, then g must beanalytial. This means that a lassial solution may not exist, even if one usessmooth funtions as Cauhy data.The unique well-posedness ondition that is satis�ed for this problem is theseond one. With adequate arguments it is possible to extend the Cauhy{Kowalewsky and Holmgren Theorem to the H1{ontext in order to guaranteeuniqueness of solutions also in weak sense (see Theorem D.3).1.3 Desription of the algorithmLet 
 be an open set in IR2 with smooth boundary �
, whih is divided intwo open and onneted omponents: �1 and �2, suh that �1 \ �2 = ; and�1 [ �2 = �
. Let P be the seond order ellipti di�erential operator de�nedby: P (u) := � 2Xi;j=1 Di(ai;jDju) (1)where the real funtions ai;j satisfy8><>: � ai;j 2 L1(
);� the matrix A(x) := (ai;j)2i;j=1 satis�es: �tA(x) � > �jj�jj2;a.e. x 2 
; 8� 2 IR2 where � > 0 is given (independent of x): (2)Given the Cauhy data (f; g) 2 H1=2(�1) � H1=200 (�1)0, we searh for a H1{solution of the problem2(CP ) 8><>: Pu = 0 ; in 
u = f ; at �1u�A = g ; at �1 :Our objetive is to reonstrut the trae of the solution u and it's onormalderivative at �2.3 Given the approximation '0 2 H1=200 (�2)0 for u�Aj�2 , we de�nethe sequene f'kgk2IN using the following iteration rule:2Details about the notation an be found in Appendix A.3Note that if we knew the onormal derivative at �2, u ould be evaluated as the solutionof a mixed BVP. 3



(IT ) 8>>>>>><>>>>>>: w 2 H1(
) solve: Pw = 0; wj�1 = f ; w�Aj�2 = 'k; k := wj�2 ;v 2 H1(
) solve: Pv = 0; v�Aj�1 = g; vj�2 =  k;'k+1 := v�Aj�2 :In (IT) two di�erential equations are solved and two trae operators are ap-plied. Atually we generate two sequenes: the �rst one of Dirihlet traesand the seond one of Neumann traes, both de�ned at �2. As the funtionsw and v are both in H1(
;P ), one onludes from Theorems A.2 and A.4respetively that f'kg � H1=200 (�2)0 and f kg � H1=2(�2).Remark 1.1 If the Neumann data g of (CP) is a H�1=2(�2){distribution, oneproves using the Theorems of Appendix C that the sequene f'kg an be de�nedon the Sobolev spae H�1=2(�2).Remark 1.2 If one supposes �
 = �1[�2[�3 and wants to analyze a Cauhyproblem with data given at �1 plus a further boundary ondition (Neumann,Dirihlet, : : :) at �3, it is possible to adapt the iteration by adding this boundaryondition at �3 to both BVP in (IT). This over{determination of boundary datadoes not a�et the analysis of the algorithm.1.4 Funtional{analytial approahThe main objetive in this setion is to represent the iteration (IT) using anoperator T : H1=200 (�2)0 ! H1=200 (�2)0. We de�ne the operators Ln : H1=200 (�2)0 !H1(
) and Ld : H1=2(�2)! H1(
) by:Ln(') := w 2 H1(
) and Ld( ) := v 2 H1(
);where the funtions w and v are respetively solutions of the BVP'sPw = 0 in 
; wj�1 = f ; w�Aj�2 = 'and Pv = 0 in 
; v�Aj�1 = g; vj�2 =  With the aid of the Neumann trae operator n : H1(
; P ) ! H1=200 (�2)0,n(u) := u�Aj�2 and the Dirihlet trae operator d : H1(
) ! H1=2(�2),d(u) := uj�2 one an rewrite (IT) as( w = Ln('k);  k = d(w)v = Ld( k); 'k+1 = n(v) (3)If we de�ne T := n ÆLd Æ d ÆLn, we onlude immediately that T is an aÆneoperator on H1=200 (�r)0, whih satis�es'k+1 = T ('k) = T k+1('0):4



That means we are able to desribe the iteration (IT) with powers of theoperator T . As Ln and Ld are both aÆne, we an writeLn(�) = Lln(�) + wf and Ld(�) = Lld(�) + vg;where the H1(
; P ){funtions wf and vg depend only of f and g respetively.With these de�nitions we have'k+1 = T ('k) = n Æ Lld Æ d Æ Lln('k)| {z }Tl('k) + n Æ Lld Æ d(wf) + n(vg)| {z }zf;g (4)= T k+1l ('0) + kXj=0T jl (zf;g):Remark 1.3 If we set ' = nu, where u is the solution of (CP), it followsfrom (IT) that T ' = '. Conversely, if ' is a �xed point of the operator T , thefuntions w and v in (IT) have the same traes at �2. From the uniquenessTheorem D.3 follows w = v and they are both solutions of (CP).2 Analysis of the method2.1 Convergene proofIn order to study the iterative method proposed in setion 1.3, we begin withequipping the spae H1=200 (�2)0 with a new topology.Lemma 2.1 Let the oeÆients of P satisfy the onditions in (2). The fun-tional jj'jj� := �Z
 (rLln('))tA (rLln(')) dx�1=2de�nes on H1=200 (�2)0 a norm, that is equivalent to the usual Sobolev norm ofthis spae.Proof. Given ' 2 H1=200 (�2)0, the funtion u = Lln(') solves following BVP:8><>: P u = 0 ; in 
u = 0 ; at �1u�A = ' ; at �2From Theorem C.2 one onludes Lln(') is the unique solution in H10 (
 [ �2).In the same theorem the ontinuous dependene of the data is proved, andfrom this followsjj'jj� � 1 jjLln(')jjH1(
) � 2 jj'jjH1=200 (�2)0 ;5



where the �rst inequality follows from the norm equivalene between jj � jjH1(
)and hAr�;r�i1=2L2(
) at H10 (
 [ �2).The opposite inequality follows from the ontinuity of the Neumann traeoperator in Theorem A.4 and the norm equivalene used just above.Remark 2.2 Atually one an prove that the norm jj'jj� is de�ned by aninner produt and the spae H1=200 (�2)0 is a Hilbert spae with the inner produth';  i� = Z
 (rLln('))tA (rLln( )) dx :In the next theorem we investigate some properties of the operator Tl,de�ned in setion 1.4, when we equip the spae H1=200 (�2)0 with the Hilbertspae struture de�ned by h�; �i�.Theorem 2.3 Let Tl 2 L(H1=200 (�2)0) be the operator de�ned in (4). The fol-lowing assertions hold:i) Tl is positive;ii) 1 is not an eigenvalue of Tl;iii) Tl is self adjoint;iv) Tl is injetive.Proof. i) We de�ne the operator W : H1=200 (�2)0 ! H1(
) by W (') :=Lld Æ d Æ Lln('), where the operators Lld, Lln and d are the same as in setion1.4. From Theorems B.3 and B.4 follows for ';  2 H1=200 (�2)0Z
 �rLlnTl(')�rW (')�t A (rLln( )) dx = (5)= Z
 P �LlnTl(')�W (')�Lln( ) dx+ Z�1[�2 �LlnTl(')�W (')��A Lln( )d� = 0:From an analogous argument we haveZ
 �rW (')�rLln(')�tA(rW ( )) dx = 0: (6)If we denote by h�; �i the inner produt on L2(
), it follows from (5) and (6)hTl '; 'i� = hArLlnTl(');rLln(')i(5)= hArW (');rLln(')i(6)= hArW (');rW (')i�  jjW (')jj2H1(
);6



for every ' 2 H1=200 (�2)0.ii) Let us suppose there exists a ' 2 H1=200 (�2)0, suh that Tl ' = '. De�new := Lln(') and v := Ld Æ d Æ Lln('). For the di�erene v � w we have:(v � w)j�2 = (v � w)�Aj�2 = 0:From the uniity Theorem D.3 we have v = w. The de�nition of w and vimply 0 = wj�l and 0 = v�Aj�1 = w�Aj�1 . Theorem D.3 now implies ' = 0.iii) analogous to (5) and (6) one proves that for ';  2 H1=200 (�2)0 theidentities hArLln(');rLlnTl( )i = hArLln(');rW ( )i (7)and hArW (');rW ( )i = hArW (');rLln( )i (8)hold. These last equations implyhTl ';  i� = h'; Tl  i�; 8 ';  2 H1=200 (�2)0:iv) Take '1, '2 in H1=200 (�2)0 with Tl '1 = Tl '2. De�ne now w := Lln('1 �'2) and v := Lld Æ d Æ Lln('1 � '2). We learly have v�Aj�1 = 0 and thehypothesis Tl('1 � '2) = 0 implies v�Aj�2 = 0. Sine v satis�es P v = 0, weonlude that v is onstant in 
. From vj�2 = wj�2 2 H1=200 (�2) follows v � 0.4Then we have w � 0 in 
 and the equality '1 = '2 follows.In the next theorem we verify two properties of Tl, that are needed in theonvergene proof of the iterative method desribed in setion 1.3.Theorem 2.4 Let Tl 2 L(H1=200 (�2)0) be the operator de�ned in (4). The fol-lowing assertions are valid:i) Tl is regular asymptoti in H1=200 (�2)0, i.e. limk!1 jjT k+1l (')� T kl (')jj� =0; 8' 2 H1=200 (�2)0;ii) The operator Tl is non expansive, i.e. jjTljjL(H1=200 (�2)0) � 1.Proof. i) Beause of the identity (T k+1l (')� T kl (')) = T kl (Tl � I)('), it isenough to prove that T kl ('0)! 0 for every '0 2 Rg(Tl�I). Take  2 H1=200 (�2)0with (Tl � I) = '. Note that we an desribe the iteration T kl ( ) using thefuntions ( wk( ) = Lln(n(vk�1( ))); k � 1vk( ) = Lld(d(wk( ))); k � 0 (9)4The unique onstant funtion in H1=200 (�l) is the null funtion.7



and w0( ) = Lln( ). From (9) follows wk = (vk)�A = 0 at �1, (wk)�A = (vk�1)�Aand vk = wk at �2. These identities and Theorem B.3 give usZ
 (rvk)tA (rvk) dx = Z�2 vk(vk)�A d�;Z
 (rwk)tA (rwk) dx = Z�2 wk(wk)�A d�;Z
 (rvk)tA (rwk) dx = Z�2 wk(vk)�A d�;Z
 (rvk�1)tA (rwk) dx = Z�2 wk(vk�1)�A d�:From these identities we obtainZ
r(wk � vk�1)tAr(wk � vk�1) dx = (10)= Z
 h(rvk�1)tA (rvk�1) � (rwk)tA (rwk)i dxand Z
r(vk � wk)tAr(vk � wk) dx = (11)= Z
 h(rwk)tA (rwk) � (rvk)tA (rvk)i dx:Note that the de�nition of ' and  imply wk(') = wk+1( )�wk( ). Equations(10) and (11) now implyZ
 (rwk('))tA (rwk(')) dx �� 2 Z
 h(rwk( ))tA (rwk( )) � (rwk+1( ))tA (rwk+1( ))i dx:From this last equation we obtainjjT kl (')jj2� � 2 �jjT kl ( )jj2� � jjT k+1l ( )jj2�� : (12)Another onsequene of (10) and (11) is the inequalityZ
 (rwk)tA(rwk) dx � Z
 (rwk+1)tA(rwk+1) dx � 0;for every k, i.e. the sequene fjjT kl ( )jj�g does not inrease. Now from (12)follows limk!1 jjT kl (')jj� = 0:ii) For ' 2 H1=200 (�r)0 de�ne w := Lln(') and v := Lld Æd ÆLln('). We laimthat the inequality hTl('); Tl(')i� � Z
 (rv)tA (rv) dx (13)8



holds. Indeed, as Tl(') = nv we havehTl('); Tl(')i� = Z
 (rLln(nv))tA (rLln(nv)) dx= Z�1[�2 (Lln(nv))�ALln(nv) d�+ Z
 Lln(nv)P (Lln(nv)) dx= Z�1[�2 v�A Lln(nv) d� + Z
 P (v)Lln(nv) dx= Z
 (rv)tA (rLln(nv)) dx� �Z
 (rv)tA (rv) dx�1=2 hTl('); Tl(')i1=2� ;proving (13). Now from the de�nition of v and w followsZ
 (rv)tA (rv) dx = Z�2 v�A v d� = Z�1[�2 v�A w d� = Z
 (rv)tA (rw) dx� �Z
 (rv)tA (rv) dx�1=2 �Z
 (rw)tA (rw) dx�1=2 :Putting all together we havejjTl(')jj� � �Z
 (rw)tA (rw) dx�1=2 = h'; 'i1=2� = jj'jj�;proving (ii).The next theorem guarantees the onvergene of the iterative algorithm.Theorem 2.5 Let T and Tl be the operators de�ned in setion 1.4. If we haveonsistent Cauhy{data (f; g), then the sequene 'k = T k'0 onverges to theNeumann{trae at �2 of the solution of (CP) for every '0 2 H1=200 (�2)0.Proof. It is enough to prove that T k'0 onverges to the �xed point ' of T .If we de�ne "k = 'k � ' we have"k+1 = 'k+1 � '= T ('k)� T (')= Tl('k) + zf;g � Tl(')� zf;g= Tl("k) :Theorems 2.3 and 2.4 imply "k ! 0.The onverse of Theorem 2.5 is valid, i.e. when the sequene 'k = T k'0onverges, the assoiated Cauhy problem is onsistent and ' := lim'k is theNeumann{trae of the problem's solution. This result an also be understoodas an existene riterion for Cauhy problems.9



Theorem 2.6 Given the Cauhy data (f; g) 2 H1=2(�1)�H1=200 (�1)0, we denoteby f'kg the sequene generated by the iteration (IT). If f'kg onverges inH1=200 (�2)0, the Cauhy problem (CP) has a solution u in H1(
;P ) and u�Aj�2 =limk 'k.Proof. If we de�ne ' = limk 'k 2 H1=200 (�2)0, we haveT ' = T ( limk!1'k) = limk!1'k+1 = ' :Therefore ' is a �xed point of T . The argument of Remark 1.3 implies theexistene of a solution for (CP) and the theorem follows.2.2 A spetral property of TlBefore going any further with the analysis of the iterative algorithm, we disussan important spetral property of Tl. We have already proved in Theorem 2.3that Tl is positive, self adjoint and it's spetrum belongs to [0; 1℄. Now weverify that 1 belongs to �(Tl).Theorem 2.7 Let Tl be the operator de�ned in setion 1.4. If there exists(f; g) 2 H1=2(�1)�H1=200 (�1)0 suh that the Cauhy problem (CP) is inonsistentfor the data (f; g), then 1 belongs to the ontinuous spetrum �(Tl) of Tl.Proof. Let fE�g�2IR be the spetral family for Tl and denote by I be theidentity operator in H1=200 (�2)0. From Theorem 2.3 we onlude that E� = Ifor � � 1. It's enough to prove that given Æ 2 (0; 1) there exists an eigenvalue�0 of Tl in the interval (Æ; 1).If this ondition were not satis�ed the point spetrum �p(Tl) would be asubset of [0; Æ℄ and Tl would be ontrative with norm jjTljj � Æ. An immediateonsequene of this is the onvergene of the sequene 'k = T k'0, whereT = Tl + zf;g. Now Theorem 2.6 would imply the existene of a solution forthe Cauhy problem (CP) with data (f; g), ontraditing the hypothesis of(f; g) being inonsistent Cauhy data.Corollary 2.8 From Theorems 2.3 and 2.7 follows jjTljj = 1.2.3 Error estimationFor simpliity we investigate in this setion the iteration (IT) for the operatorP = �� in two speial domains. Analog results an be obtained for generaloperators of the form (1) every time the spetral deomposition of the operatoris known. 10



In the �rst problem we take 
 = (��; �) � (��; �), �1 = f(x; 0); x 2(��; �)g, �2 = f(x; �); x 2 (��; �)g and want to solve the problem(CP 1) 8>>><>>>: �u = 0; in 
u = f; at �1u� = g; at �1u(x;��) = 0; x 2 (��; �)In the seond problem 
 is the ring entered at the origin with inner and outerradius respetively r0 and 1, �1 = f(1; �); � 2 (��; �)g, �2 = f(r0; �); � 2(��; �)g. The problem to be solved is(CP 2) 8><>: �u = 0; in 
u = f; at �1u� = g; at �1As we are working on speial domains, it is possible to desribe the ationof the operator Tl expliitly. If '0 = P'0;j sin(jy) is given in the Sobolevspae of periodi funtions5 H�1=2per (�2), we have for (CP 1)(T kl '0)(x) = 1Xj=1�2kj '0;j sin(jx); (14)where �j = sinh(2j�)=osh(2j�); j 2 IN. As we intend to measure how fastthe error "k := 'k � ' onverges to zero, we dedue from (14) and from theequality "k+1 = Tl "k the estimatejj"kjj2H�1=2per (�2) � Xj�1 j�1 ��kj "0;j�2 : (15)If the initial error "0 has the nie property of onsisting only of the lowerfrequenies j � J , equation (15) simpli�es tojj"kjj2H�1=2per (�2) � �2kj jj"0jj2H�1=2per (�2) :In the very speial ase J = 1 and "0 = "0;j sin(x) one alulates for k = 105the power of the �rst eigenvalue �2k1 = 0:061. Therefore we must evaluate 105iteration steps to redue the error to 6% of the initial error.Next we analyze a more realisti situation, in whih the initial error "0 ='0 � ' has more regularity than a H�1=2per (�2) distribution. We assume thatthere exists a monotone sequene of positive real numbers fjg suh thatlimj!1 j = 1 and Xj�1 j�1 2j "20;j = M < 1 :5For s 2 IR one de�nes Hsper((��; �)) := f'(y) = Pk2ZZ k eiky j Pk2ZZ (1 + k2)s2k < 1g.11
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Figure 1: Eigenvalues of Tl in di�erent domainsIn this ase the error at the kth{iteration step an be estimated byjj"kjj2H�1=2per (�2) � �2kJ �J1 �2 Xj�J j�1 "20;j + 12J Xj>J j�1 2j �2kj "20;j� �2kJ �J1 �2 jj"0jj2H�1=2per (�2) + M2J : (16)For the Cauhy problem (CP 2) we have an analogous result. If the iterationis again formulated at H�1=2per (�2) one obtains for the operator Tl the eigenfun-tions sin(j�), os(j�) with orresponding eigenvalues�j = [(r�(j+1)0 � rj�10 )(r�j0 � rj0)℄ = [(r�(j+1)0 + rj�10 )(r�j0 + rj0)℄ :In Figure 1 we show a qualitative omparison between the eigenvalues of Tl inthe di�erent domains onsidered in this setion.2.4 RegularizationThe objetive of regularizing the iteration (IT) is to hoose an operator Tregsuh that the regularized sequene ~'k := T kreg '0 + Pj<k T jreg zf;g onvergesfaster than the original sequene 'k := T kl '0 +Pj<k T jl zf;g. We also have toassure that the di�erene k lim ~'k � lim'kk remains small.We start with the a priori assumption that the Cauhy data of (CP) satis�es(f; g) 2 Hr(�1)�H1=200 (�1)0, with r > 1=2.Given the measured data (f"; g") in L2(�1)�H1=200 (�1)0, we laim that using asmoothing operator S : L2 ! H1=2 it is possible to generate a ~f" := Sf" 2 H1=2satisfying kf � ~f"k1=2 � "0. Indeed this is a onsequene ofLemma 2.9 Let f 2 Hr, r > s > 0. There exists a smoothing operatorS : L2 ! Hs and a positive funtion  with limx#0 (x) = 0, suh that for" > 0 and f" 2 L2 with kf � f"kL2 � ", we have kf � Sf"ks � (").12



Proof. This lemma desribes a standard proedure in inverse problems. Aomplete proof an be found in [BaLe℄.After smoothing the data f", we obtain a orresponding z" 2 H1=2(�l)0 suhthat jjzf;g � z"jjH1=2(�l)0 < ".We analyze the hoie of two di�erent regularization strategies. The �rstone is a ut{o� method, where we onsider only the eigenvalues of Tl lowerthan 1 � 1=n.6 In the seond method we use powers of Tl to de�ne Treg. Forn � 2 we setAn := Z 1� 1n0 � dE� and Bn := Z 10 (�� �n) dE� ; (17)where E� is the spetral family of Tl. Both operators An and Bn are positive,self adjoint and ontrative. Let T (n)reg represent one of the families de�ned in(17) and de�ne ' and '(n) as the �xed points of' = Tl '+ zf;g and '(n) = T (n)reg '(n) + z"respetively. '(n) will exist, as T (n)reg is ontrative. We have nowjj'(n) � 'jj = jjTl '+ zf;g � T (n)reg '(n) � z"jj= jjT (n)reg ('(n) � ') + �T (n)reg � Tl� '� zf;g + z"jj� jj �I � T (n)reg ��1 �T (n)reg � Tl� 'jj + " jj �I � T (n)reg ��1 jj:(18)In next theorem we analyze the estimate (18) for the operators An and Bn.Theorem 2.10 If we de�ne the family of operators T (n)reg using one of the fam-ilies in (17) we havejj �I � T (n)reg ��1 �T (n)reg � Tl� 'jj ! 0 and jj �I � T (n)reg ��1 jj ! 1: (19)Proof. i) We analyze the ase T (n)reg = An �rst. From the spetral deompo-sition of Tl follows(I�An) = Z 1� 1n0 (1� �) dE�+Z 11� 1n dE� and (An�Tl) = � Z 11� 1n � dE�:Now these equalities imply jj(I � An)'jj � 1=n jj'jj, and the operator (I �An) has an inverse. We also know that (I � An) is the identity operator onRg(An � Tl). From this follows(I � An)�1(An � Tl) = � Z 11� 1n � dE�; (20)6We may suppose the real numbers 1� 1=n are not eigenvalues of Tl.13



and we an estimate the �rst term in (19) byjj(I � An)�1(An � Tl)'jj2 � Z 11� 1n dhE� '; 'i ! 0for n!1. For the seond term in (19) we use the identityjj(I � An)�1jj = (1� �(n))�1 ! 1 (21)for n ! 1, where �(n) is the largest eigenvalue of Tl, whih is smaller than(1� 1=n).ii) For the ase T (n)reg = Bn we have (Bn�Tl) = �T nl and from the spetraldeomposition of Tl follows(I � Bn)�1(Bn � Tl) = Z 10 �n(1 + �n � �)dE�:If we de�ne the funtions �(n) := n( 11�n ) and Æ(n) := 1 � �(n) we andeompose the operator (I �Bn)�1(Bn � Tl) in Qn +Rn whereQn = Z 1�Æ(n)0 �n(1 + �n � �) dE� and Rn = Z 11�Æ(n) �n(1 + �n � �) dE� :From the onvergene �n(n) (1 + �n(n) � �(n))�1 ! 0 for n ! 1 followslim jjQnjj = 0. The onvergene jjRnjj ! 0 follows from inequality 0 < �n (1+�n � �)�1 � 1; 8 � 2 [1� Æ(n); 1℄; 8n � 2. With this we have provedlimn!1 jj(I �Bn)�1(Bn � Tl)'jj = 0:To obtain the seond limit in (19) we dedue from the spetral deompositionof (I �Bn)�1 the equalityjj(I � Bn)�1jj = (1 + �n(n)� �(n))�1 ! 1for n ! 1, where �(n) is the largest eigenvalue of Tl, whih is smaller than�(n).Our next step it to use a priori information about the solution ' of the�xed point equation T ' = ' in order to �nd an optimal regularization strategy.Let's suppose there exists a funtion G with8>>>>>>>><>>>>>>>>: G : [0; 1) 7! IR+ is ontinuous and monotone inreasing;lim�!1�G(�) = 1;Z 10 G2(�) dhE� '; 'i =M2 < 1: (22)In the next theorem we analyze how the regularity ondition in (22) an beused to balane the approximation and regularization errors.14



Theorem 2.11 Let G be a funtion whih satisfy (22) and Æ, �, �, � bethe funtions used in the proof of Theorem 2.10. For the two regularizationstrategies in (17) there exists nopt 2 IN, suh thatjj'(nopt) � 'jj � jj'(n) � 'jj;for every n 2 IN. Further nopt is obtained by solving the minimization problemminn�2 ( MG(1� 1n) + "(1� �(n)))for the regularization strategy using An. For the Bn regularization strategy noptis obtained as the solution of the minimization problemminn�2 ( �n(n) jj'jj1 + �n(n)� �(n) + MG(�(n))! + "(1 + �n(n)� �(n))) :Proof. We show here only the proof for the regularization strategy An, theseond ase being analog. From (20) and (22) followsjj(I � An)�1(An � Tl)'jj2 = Z 11� 1n �2 dhE� '; 'i� 1G2(1� 1n) Z 11� 1n G2(�) dhE� '; 'i� M2G2(1� 1n) :Now inequality (18) and (21) implyjj'(n) � 'jj � MG(1� 1n) + "(1� �(n)) ;and the assertion follows.Remark 2.12 One an interpret the regularity ondition in (22) as follows:With the aid of the funtion G one an de�ne the unbounded operatorG = Z 10 G(�) dE�on H1=200 (�2)0. The existene of the integral in (22) is equivalent to the assump-tion that ' belongs to D(G), the domain of G de�ned byD(G) := n' 2 H1=200 (�2)0 j G(') 2 H1=200 (�2)0o :15



3 Numerial experimentsIn this setion we present some results obtained by the numerial implemen-tation of the iterative algorithm. In the �rst two examples in setions 3.1 and3.2 respetively we solve linear onsistent problems in a square and in a an-nular domain. In setion 3.3 we exhibit a linear inonsistent problem and insetion 3.4 we analyze a non linear onsistent problem.The omputation was performed on the IBM{RISC/6000 mahines at theFederal University of Santa Catarina. The ellipti mixed boundary value prob-lems that appear in the iteration were solved using the PLTMG pakage (see[Ban℄).3.1 A linear problem in a square domainIn this example we take 
 = (0; 1)� (0; 3=4) and deompose the boundary �
in �1 [ �2 [ �3 [ �4, where�1 := f(x; 0); x 2 (0; 1)g ; �2 := f(x; 3=4); x 2 (0; 1)g ;�3 := f(0; y); y 2 (0; 3=4)g ; �4 := f(1; y); y 2 (0; 3=4)g :Given the Cauhy data f(x) = sin(�x) and g(x) = 0 at �1 we reonstrutthe (Dirihlet) trae at �2 of the solution of following Cauhy Problem:8>>><>>>: � u = 0 ; in 
u = f ; at �1u� = g ; at �1u = 0 ; at �3 [ �4 :The exat solution of this Cauhy Problem is u�(x; y) = osh(�y) sin(�x).Eah mixed problem is solved using an uniform mesh with 262 913 nodesand linear elements. The trae at �2 of the sequene generated by (IT) isshown (solid line) after 10, 25, 50 and 100 steps at Figure 2. The dotted linerepresent the trae of the exat solution u� at �2.As a stopping riterion we hoose jj k+1� kjj1;�2 � 10�3. In this examplethe iterative sequene onverges extremely fast. We observe a slower rate ofonvergene when the mesh is re�ned, but the approximation obtained withthe same stopping riterion is more aurate.3.2 A linear problem in an annular domainIn this seond example 
 is an annulus entered at the origin with inner andouter radius respetively 1 and 7. Given the Cauhy data f(�) = sin(�) and16
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Figure 2: Iterated sequene at the unknown boundary for a linear Cauhyproblem at the domain 
 = (0; 1)� (0; 3=4)
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Figure 3: Iterated sequene at the unknown boundary for a linear Cauhyproblem at a ring domain with inner and outer radius respetively 1 and 7g(�) = 0 at the inner boundary �1, we reonstrut at the outer boundary �2the trae of the solution of following problem:8><>: � u = 0 ; in 
u = f ; at �1u� = g ; at �1 :The exat solution of this problem is u�(x; y) = (r + 1=r) sin(�)=2. We useda �nite element mesh with 61 824 nodes, linear elements and the stoppingriterion jj k+1 �  kjj1;�2 � 10�4. The dotted line in Figure 3 represents theexat solution (note that the x{axis is parameterized from zero to 2�) and thesolid line represents the sequene  k generated by (IT).The iteration gives for this Cauhy problem a better approximation thanit does in setion 3.1. The reason for this behavior is that the eigenvalues ofthe operator Tl (de�ned in (4)) onverge to one slower, i.e., they are smallerthan we estimated in setion 3.1 (see Figure 1).
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u = f ; at �1u� = g ; at �1 ;has an analytial solution only if g is itself analytial. So with our hoie ofdata we know a priori that the respetive Cauhy problem has no lassialsolution.We take n = 100 in the de�nition of g and add to the Cauhy problemabove the over determinating ondition: u = 0 at �3 [ �4. The iteration isperformed as before over a 262 913 node mesh using linear elements and thesame stopping riterion as in setion 3.1. In Figure 4 the di�erene 'k � 'k�1is plotted for some values of k.The sequene 'k onverges in the jj � jj1 as fast as it does in setion 3.1,but this does not mean that it onverges to a solution of the Cauhy problem(see Remark 4.2).Both sequenes wk and vk of H1{funtions generated in (IT) onverge tothe solution of the Cauhy problem, when this problem does have a solution18



(see Theorem 2.5). In this example, when we analyse the sequenes wk andvk, we note that they are not onverging in H1(
) to the same limit. InFigures 5 (a) and 5 (b) we show the funtions w100 and v100 respetively.One observes that on �2 we have w100 ' v100 and (w100)� ' (v100)�. Thedi�erene wk � vk generates also a sequene of H1{funtions with vanishingCauhy data at �2 but that does not onverge to zero at 
. Suh examplesare known to exist due to Hadamard (see setion 1.2).

(a) (b)Figure 5: Funtions wk and vk { at (a) and (b) respetively { after 100 stepsfor a linear inonsistent Cauhy problem3.4 A non linear problemTake 
 the annulus entered at the origin with inner and outer radius re-spetively 1/2 and 1. This time we deompose the outer omponent of theboundary in two di�erent ways: �
 = �1 [ �2 = ~�1 [ ~�2 where�1 := f(x; y) j x2 + y2 = 1; x < 0g; �2 := f(x; y) j x2 + y2 = 1; x > 0gand~�1 := f(x; y) j x2+y2 = 1; x < p2=2g; ~�2 := f(x; y) j x2+y2 = 1; x > p2=2g:The inner omponent of �
 is alled �i := f(x; y); x2 + y2 = 1=4g.19



Given the Cauhy data f(�) = sin(�) and g(�) = 0 on �1 (respetively ~�1) wereonstrut on �2 (respetively ~�2) the trae of the solution of the non linearCauhy problems:8>>><>>>: � u+ u3 = [ (r + 1=r) sin(�)=2 ℄3 ; in 
u = f ; at �u� = g ; at �u = 54 sin(�) ; at �i ;where � stands for both �1 and ~�1. Both problems have the same solutionu�(x; y) = (r + 1=r) sin(�)=2.A mesh with 82 688 nodes and linear elements is used, the stopping riterionbeing the same as in setion 3.1. In Figure 6 (a) and 6 (b) one an see theexat solution (dotted line) and the iterated sequene  k (solid line) for theCauhy problems with data given on �1 and ~�1 respetively. (note that thex{axis is parameterized from 0 to � in Figure 6 (a) and from �=4 to 3�=4 inFigure 6 (b))
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on the square (0; 1)� (0; 1) and obtained a reonstrution with approximately5% error in the L2(�2) norm, while our reonstrution has an error of approx-imately 4% in this norm (see Figure 2 after 100 iterations).The Cauhy problem in setion 3.2 is numerially treated in [KuIs℄, whereboundary elements are used on the annulus with inner and outer radius 2 and6 respetively. The reonstrution error in the L1(�2){norm has the order of10�2. The orresponding error after 100 iteration steps has the same order(see �gure 3).The diÆulty in solving Cauhy problems by using diret methods is thatthe ill-posedness of the resulting system inreases as one tries to re�ne thenumerial model.Remark 4.2 A motivation for the onvergene of the iteration (in the L1{norm) even in the inonsistent ase an be found on the fat that the numerialdisretization Tl;h of the operator Tl we use to generate the sequene 'k isontrative. In fat, the �nite element method has the property that only thespaes, and not the di�erential equation itself, are disretizated (see [Od℄).This implies that the eigenvalues of Tl;h are lower or equal to the respetiveeigenvalues of Tl. As the eigenfuntions of Tl (de�ned at �2) annot be obtainedby taking traes of the linear �nite elements we are using, we onlude that theeigenvalues7 of Tl;h are strit smaller than the respetive eigenvalues of Tl.Remark 4.3 Another disretization of the operator Tl was tested. We triedto solve the mixed problems on the square domain using �nite di�erenes. Thishas the advantage of being faster (we must invert 2 sti�ness matries one, buteah iteration is than evaluated as a simple matrix vetor produt) speially ifthe number of iteration to be omputed is large. Our numerial experimentsshow that the eigenvalues of this seond disretization of Tl approximate the realeigenvalues better than the disretization by �nite elements does. As a diretonsequene, the approximation obtained using a �nite di�erene disretization{with the same stopping riterion{ is better than the one obtained using �niteelements.Remark 4.4 If the di�erential operator P in (1) is non linear, the propertyT ' = ';where T is the operator de�ned in (4), will only hold if one an guarantees theuniity of solutions for the Cauhy problem governed by P a priori. Even ifthis is the ase, one still have to make sure that eah mixed problem on theiteration is uniquely solvable.7Obviously there is only a �nite number of them.21



We does not prove these properties for the Cauhy problem in setion 3.4,but the iteration was performed using di�erent analytial funtions as initialdata. The veloity of onvergene and the limit enountered is the same for allour tests.In spite of the fat that the onvergene of the iteration is muh slower inthe non linear ase, it an be again veri�ed that the �xed point of Th ' = 'approahes better the �xed point of T ' = ', if the preision h of the disretiza-tion inreases.A Sobolev spaes and trae TheoremsLet 
 2 IR2 be an open, bounded, regular8 set with C1{boundary �
, whihis splited in �
 = [Nj=1�j, the subsets �j being open, onneted and satisfying�i\�j = ; for 1 � i 6= j � N . We denote by j the trae operator with domainC1(
) and range C1(�j). With �j we represent the vetor �eld normal to �j.Given the seond order ellipti operatorP (u) := � 2Xi;j=1 Di(ai;jDju) + 2Xi=1 aiDiu + a0 u;we represent the o-normal derivative of a funtion u respetive to P byu�A = �u��A := 2Xi;j=1 ai;j �i (Dju)where A represent the 2� 2 matrix (ai;j).We introdue now the Sobolev spaes used in this artile. For s = k + � 2IR+ with k 2 IN0 and � 2 [0; 1), we de�neHs(
) := C1(
)jj�jjs;
; Hs0(
) := C10 (
)jj�jjs;
; Hs0(
 [ �) := C10 (
 [ �)jj�jjs;
;where the funtional jj � jjs;
 is de�ned byjjujj2s;
 := Xj�j�k jjD�ujj2L2(
) + Xj�j=k ZZ
�
 jD�u(x)�D�u(y)j2jx� yjn+2� dx dy :For s > 0 we de�ne the spae H�s(
) by dualityH�s(
) = fu 2 D0(
) = < u; � >L2(
) 2 Hs0(
)0g :Given the di�erential operator P as above, we de�ne the spae H1(
;P ) asthe spae of distributions withfu 2 H1(
) = P u 2 L2(
)g :8We mean 
 is loally at one side of �
.22



The last spae we need is Hs00(
); s 2 IR+. If s = k + � with k 2 IN0 and� 2 [0; 1) we de�ne the funtionaljjujjs;00;
 := 8<:jjujj2s;
 + Xj�j=k Z
 jD�u(x)j2 d�2�(x; �
) dx9=;1=2 ;where d(x; �
) is the Eulidean distane between x 2 IRn and �
. Now wede�ne Hs00(
) as the losure of C10 (
) with respet to jj � jjs;00;
.The next theorems an be found in [DaLi℄ or [Gr1,2℄ and will be needed inthe study of weak solutions of mixed boundary value problems.Theorem A.1 (Neumann trae of a H1(
;P ) distribution) The opera-tor ��A : u 7�!  �u��Ade�ned on C1(
) has only one ontinuous extension de�ned at~�� : H1(
;P ) �! H�1=2(�
) :Theorem A.2 (Dirihlet trae on j) Let m 2 IN. The operatoru 7�! (ju; j �u��j ; : : : ; j �m�1u��m�1j )de�ned for every j = 1; : : : ; m at C1(
) has only one ontinuous extensionfrom Hm(
) onto m�1Yi=0 Hm�i� 12 (�j) :Remark A.3 The trae operator in Theorem A.2 has a ontinuous right in-verse. This fat follows from the existene of a prolongation operator ! 2L(Hs(�j); Hs(�
)), s � 0, that is the ontinuous right inverse of the restri-tion operator � 2 L(Hs(�
); Hs(�j)). For details see [Au℄ pp. 187-194.Theorem A.4 (Neumann trae on j) The Neumann trae operator de-�ned on C1(
) with range in C1(�j) has only one ontinuous extension asan operator from H1(
;P ) into H1=200 (�j)0;for j = 1; : : : ; N: 23



B Green's formulaIn the analysis of the mixed boundary value problems that appear in the it-erative proedure (IT), we make use of a speial version of the (�rst) Greenformula. The results presented here are still valid if �
 only Lipshitz ontin-uous and they an be found in [Au℄, [DaLi℄, [Gr1℄, [Le℄, [LiMa℄ or [Tr℄.Theorem B.1 If (u; v) is a pair of funtions in H2(
)�H1(
), then we haveZ
 Pu v dx = Z�
 u�A v d� � Z
 (rv)tAru dx : (23)Equation (23) is still valid if (u; v) 2 H1(
;P )�H1(
).9In next theorem the boundary integral in (23) is replaed by a sum ofintegrals over eah j.Theorem B.2 Given funtions u in H2(
) and v in H1(
) we haveZ
 Pu v dx = NXj=1 Z�j u�A v d� � Z
 (rv)tAru dx: (24)This theorem is a onsequene of the trae Theorem A.2, that guaranteesthe boundedness of the inner produts in (24) in the sense of L2(�j). Theo-rem B.2 still holds if �
 is a C1;1 polygon. In the next theorem (see [Le℄) weformulate Green's formula in the exat ontext needed in this paper.Theorem B.3 Given u 2 H1(
;P ) and v 2 fv 2 H1(
) j j v 2 H1=200 (�j),j = 1; : : : ; Ng we haveZ
 Pu v dx = NXj=1 Z�j u�A v d� � Z
 (rv)tAru dx:The next two theorems desribe some harateristis of the trae of H1{funtions, that are needed in the formulation of the iterative proedure (IT).Theorem B.4 Let N = 2, i.e. �
 = �1 [ �2 and u 2 H1(
). If 1 u is aH1=200 (�1) distribution, then 2 u is a H1=200 (�2) distribution.Theorem B.5 Let N = 2, i.e. �
 = �1[�2 and u be a P{harmoni funtionin H1(
). If 1 �u��A belongs to H�1=2(�1), than 2 �u��A belongs to H�1=2(�2). 109The last assertion follows from the density of the embedding of C1(
) into H1(
;�)together with Theorem A.1.10One should note that H�1=2(�2) = H1=2(�2)0, beause of the identity H1=20 (�2) =H1=2(�2). 24



C Mixed boundary value problemsFor the analysis of mixed problems we need a type of Poinar�e inequality onthe spae H10 (
 [ �j). This is obtained with theoremTheorem C.1 Given a funtion u 2 H10 (
 [ �j) we havejjujjL2(
) �  jjrujjL2(
);where the onstant  depends only on 
.11We analyze the following mixed problem problem at 
. Given the funtionsf 2 H1=2(�1) and g 2 H1=200 (�2)0, �nd a H1{solution of(GP ) 8><>: �u = 0 ; in 
u = f ; at �1u� = g ; at �2 :Existene, uniity and ontinuous dependeny of the data for (GP) are givenby the following theorem of Lax{Milgramm type.Theorem C.2 For every pair of data (f; g) 2 H1=2(�1)�H1=200 (�2)0 the prob-lem (GP) has a unique solution u 2 H1(
). Further it holdsjjujjH1(
) � �jjf jjH1=2(�1) + jjgjjH1=200 (�2)0� : (25)The next theorem investigates the regularity of the H1{solution of (GP).For a detailed proof see [Gr1,2℄ or [Wn℄.Theorem C.3 For boundary data f 2 H3=2(�1) and g 2 H1=2(�2), the H1{solution u of (GP ) an be written asu = h + 2Xi=1 �i ui ; (26)where h 2 H2(
), �i 2 IR and ui are the singular H1{funtionsui(r; �) = r1=2i sin �i2 :Here r1 (respetively r2) is the distane from z = (r; �) 2 
 to the ontat pointpa between �1 and �2 (respetively pb between �2 and �1); �1 (respetively �2)is the angle between z� pa (respetively z� pb) and the line tangent to �
 atpa (respetively at pb) in the diretion of �1.11For a detailed proof see [Tr℄ pp. 69. 25



D Uniity results for Cauhy problemsWhat we present now is a generalisation of some lassial results onerningthe theory of diferential operators with analytial oeÆients. We use theCauhy{Kowalewsky and Holmgren theorems12 together with a regularity the-orem for weak solutions of ellipti equations, to guarantee the uniqueness ofH1{solutions of Cauhy problems.13Theorem D.1 Let L be a linear di�erential operator of order 2 with C1(
){oeÆients, where 
 � IRn is an open regular set. De�ne a(�; �) the respetivebilinear form, whih is supposed to be strong oerive. If the distribution u isa solution of Lu =  with  2 Hklo(
); k 2 IN, then u 2 Hk+2lo (
).14Remark D.2 Under the same assumptions as in Theorem D.1 it follows fromthe assumption  2 C1(
) that u belongs to C1(
).We an now state the uniqueness result for Cauhy problems.Theorem D.3 Let 
 be an open, bounded and simply onneted set of IR2with analytial boundary �
. Let � be an open simply onneted subset of �
and the di�erential operator L de�ned as in Theorem D.1. Then the Cauhy{Problem 8><>: Lu =  ; in 
u = f ; at �u� = g ; at �has for  2 L2(
), f 2 H1=2(�) and g 2 H1=200 (�)0 at most one solution inH1(
).For the speial ase L = �, the Laplae operator, the assumptions relativeto 
 an be weakened. For this operator Theorem D.3 still holds even if 
 isnot supposed to be simply onneted.AknowledgmentsThe author wants to thank his PhD supervisor Prof. Dr. J. Baumeister forthe inspiring disussions that ontributed for the onlusion of this paper. Theauthor was supported during his stay at the Goethe Universit�at in Frankfurtam Main by the Deutshe Akademishe Austauhdienst.12The Cauhy{Kowalewsky theorem an be found in [Fo℄ pp. 69, [DaLi℄ or [Jo℄; for detailson the Holmgren theorem one may see [Jo℄ pp. 65 or [DaLi℄.13See also [Is℄.14The theorem still holds for di�erential operators of order 2m. In this ase we onludeu 2 Hk+2mlo (
). 26
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