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On iterative methodsfor solving ill-posed problemsmodeled by partial di�erential equationsJ. BAUMEISTER� and A. LEIT~AOyReeived November 5, 1999Abstrat | We investigate the iterative methods proposed by Maz'ya and Kozlov(see [6, 7℄) for solving ill-posed inverse problems modeled by partial di�erential equa-tions. We onsider linear evolutionary problems of ellipti, hyperboli and parabolitypes. Eah iteration of the analyzed methods onsists in the solution of a well posedproblem (boundary value problem or initial value problem respetively). The iterationsare desribed as powers of aÆne operators, as in [7℄. We give alternative onvergeneproofs for the algorithms by using spetral theory and the fat that the linear parts ofthese aÆne operators are non-expansive with additional funtional analytial proper-ties (see [9, 10℄). Also problems with noisy data are onsidered and estimates for theonvergene rate are obtained under a priori regularity assumptions on the problemdata.1. INTRODUCTION1.1. Main resultsWe present new onvergene proofs for the iterative algorithms proposed in [7℄using a funtional analytial approah, were eah iteration is desribed usingpowers of an aÆne operator T . The key of the proof is to hoose a orrettopology for the Hilbert spae were the iteration takes plae and to prove that Tl,the linear omponent of T , is a regular asymptoti, non-expansive operator (otherproperties of Tl suh as positiveness, self-adjointness and injetivity are also�Fahbereih Mathematik, Johann Wolfgang Goethe Universit�at, Robert{Mayer{Str. 6{10,60054 Frankfurt am Main, Germany. E-mail:baumeist�math.uni-frankfurt.deyDepartment of Mathematis, Federal University of Santa Catarina, P.O. Box 476, 88010-970 Florian�opolis, Brazil. E-mail:aleitao�mtm.ufs.brThe work was partially supported by CNPq/GMD under grant 91.0206/98-8.



2 J. Baumeister and A. Leit~aoveri�ed). The onverse is also proved, i. e. if an iterative proedure onverges,the limit point is the solution of the respetive problem.The onvergene rate of the iterative method an be estimated when wemake appropriate regularity assumptions on the problem data. In the last se-tion some numerial experiments are presented, were we test the algorithmperformane for linear ellipti, hyperboli and paraboli ill-posed problems.The iterative proedures disussed in this paper were presented in [7℄ andalso treated via semi groups in [1℄. The iterative proedure for ellipti Cauhyproblems de�ned in domains of more general type is disussed in [6, 9, 10℄and [5℄. The iterative proedure onerning paraboli problems is also treatedin [12℄.1.2. Preliminaries1.2.1. On non-expansive operatorsLet H be a separable Hilbert spae endowed with an inner produt h� ; � i andnorm k�k. A linear operator T : H ! H is alled non-expansive if kTk � 1.An operator T : H ! H is said to be regular asymptoti in x 2 H iflimk!1 kT k+1(x)� T k(x)k = 0holds true. If the above property holds for every x 2 H , we say that T is regularasymptoti in H .Next we formulate the results used to prove the onvergene of the iterativealgorithms analyzed in this paper.Lemma 1. Let T : H ! H be a linear non-expansive operator. With � wedenote the orthogonal projetor de�ned on H onto the null spae of (I � T ).The following assertions are equivalent:a) T is regular asymptoti in H ;b) limk!1T kx = �x for all x 2 H .A proof of this lemma (even in a more general framework) an be foundin [4℄ (see also [9℄ and the referenes ited therein).Lemma 2. Let T : H ! H be a linear, non-expansive, regular asymptotioperator suh that 1 is not an eigenvalue of T 1. Given z 2 H de�ne S : H 3x 7! Tx+ z 2 H . Then for every x0 2 H the sequene fSkx0g onverges to theuniquely determined solution of the �xed point equation Sx = x.Proof. Let �x 2 H be the solution of S�x = �x. De�ning xk := Skx0 and"k := �x � xk one an easily see that "k+1 = T"k, k 2 N. Lemma 1 allow us toonlude that limk "k = �"0. From the hypothesis we have ker(I � T ) = f0g,and the lemma follows.1The set of all eigenvalues of a linear operator T is denoted by �p(T ).



Iterative methods for ill-posed problems modeled by PDE's 3In the next lemma we present a suÆient ondition for an operator to benon-expansive and regular asymptoti. For onveniene of the reader we inludehere the proof (see [7℄).Lemma 3. Let T be a bounded linear operator in H suh that for  > 0k(I � T )xk2 � (kxk2 � kTxk2) ; 8x 2 H (1)holds true. Then T is non-expansive and regular asymptoti in H .Proof. The non-expansivity of T follows diretly from the inequality0 � �1k(I � T )xk2 � kxk2 � kTxk2; 8x 2 H:Now take x0 2 H . Sine kTk � 1, the sequene kT kx0k2 is non-inreasing, fromwhat we onlude that limk(kT kx0k2 � kT k+1x0k2) = 0. Note that from (1)follows kT kx0 � T k+1x0k2 � (kT kx0k2 � kT k+1x0k2):Putting all together one an see that T is regular asymptoti in H .Equivalent to the ondition (1) in Lemma 3 is the following one2h(I � T )x; xi � + 12 k(I � T )xk2; 8x 2 H; (2)as the following line suggests (see [7℄)kxk2 = kTxk2 � k(I � T )xk2 + 2hx; (I � T )xi ; 8x 2 H:1.2.2. On funtion spaesLet 
 � Rn be an open, bounded set with smooth boundary and let A be apositive, self-adjoint, unbounded operator densely de�ned on the Hilbert spaeH := L2(
). Let E�, � 2 R, denote the resolution of the identity assoiated toA, i. e. hA'; i = Z�2R� dhE�';  i = Z 10 � dhE�';  i;for ' 2 D(A), the domain of A, and  2 H . Note that given f 2 C(R+ ) we ande�ne the operator f(A) on H by settinghf(A)';  i := Z 10 f(�) dhE�';  i;for every ' 2 D(f(A)) and  2 H , where the domain of f(A) is de�ned byD(f(A)) := n' 2 H j Z 10 f(�)2 dhE�'; 'i <1o:2Clearly, ondition (1) is only suÆient for T being non-expansive and regular asymptotiin H.



4 J. Baumeister and A. Leit~aoNow we are ready to onstrut a family of Hilbert spaes Hs(
), s � 0, as thedomain of de�nition of the powers of A3Hs(
) := n' 2 H j k'ks := �Z 10 (1 + �2)sdhE�'; 'i�1=2 <1o: (3)The Hilbert spaes H�s(
) (with s > 0) are de�ned by duality4: H�s := (Hs)0.It follows from the de�nition that H0(
) = H . It an also be proved that theembedding Hr(
) ,! Hs(
) is dense and ompat for r > s (see [11℄, Chapter1). An interesting example is A = (��)1=2, where � is the Laplae {Beltramioperator on 
. In this partiular ase we have the identity Hs(
) = H2s0 (
),where Hs0(
) is the Sobolev spae of index s aording to the de�nition of Lionsand Magenes (see [11℄, p. 54). One should note that funtions in Hs(
) satisfynull boundary onditions in the sense of the trae operator.Given T > 0 we de�ne the spaes L2(0; T ;Hs(
)) of funtions u : (0; T ) 3t 7! u(t) 2 Hs(
). These are normed spaes if we onsiderkuk2;0;T ;s := �Z T0 ku(t)k2s dt�1=2;as a norm in L2(0; T ;Hs(
)). Finally, we de�ne the spaes C(0; T ;Hs(
)) ofontinuous funtions u : [0; T ℄ 3 t 7! u(t) 2 Hs(
). The norm on these spaesis given by kuk1;0;T ;s := supt2[0;T ℄ ku(t)ks:2. THE ILL-POSED PROBLEMSLet the operator A with disrete spetrum, the set 
 and the Hilbert spaesHs(
) be de�ned as in Setion 1.2. In the next three paragraphs we formulatethe ill-posed problems that are disussed in this artile.2.1. The ellipti problem:Given funtions (f; g) 2 H1=2(
)�H�1=2(
), �nd u 2 (Ve; k�kVe), whereVe := L2(0; T ;H1(
));kukVe := �Z T0 (ku(t)k21 + k�tu(t)k20) dt�1=2;that satis�es ( (�2t �A2)u = 0 in (0; T )�
u(0; x) = f(x); �tu(0; x) = g(x); x 2 
: (Pe)3For simpliity we may write Hs instead of Hs(
).4Alternatively one an de�ne H�s(
) as the ompletion of H in the (�s)-norm de�ned in(3).



Iterative methods for ill-posed problems modeled by PDE's 5Note that if u 2 Ve, then �tu 2 L2(0; T ;H) and appropriate trae theorems(see [11℄) guarantee that u(0); u(T ) 2 H1=2(
) and �tu(0); �tu(T ) 2 H�1=2(
).In this problem we are mostly interested in the value of u for t = T , i. e.u(T; x) and �tu(T; x), x 2 
. This ellipti initial value problem (also alledCauhy problem) is not well posed in the sense of Hadamard (see [2℄). Thisfollows from the general representation of the solution of (Pe) given byu(t) = osh(At)f + sinh(At)A�1g: (4)One an onstrut a sequene of Cauhy data (fk; gk) = (0; gk) using the eigen-funtions of A, suh that (fk; gk) onverge to zero in H1=2 � H�1=2 while thenorm of the solutions kukkVe do not.2.2. The hyperboli problem:Given funtions f; g 2 H1(
), �nd u 2 (Vh; k� kVh), whereVh := fv 2 C(0; T ;H1(
)) j �tu 2 C(0; T ;H)g;kukVh := supt2[0;T ℄(ku(t)k21 + k�tu(t)k20)1=2;that satis�es ( (�2t +A2)u = 0 in (0; T )�
;u(0; x) = f(x); u(T; x) = g(x); x 2 
: (Ph)Note that if u 2 Vh, then u(0); u(T ) 2 H1(
) and �tu(0); �tu(T ) 2 H .Let's assume that the numbers k�=T , k = 1; 2; : : : are not eigenvalues of A5.Then this hyperboli (Dirihlet) boundary value problem is ill-posed if the dis-tane from the set M := fk�=T ; k 2 Ng to �(A) (the spetrum of A) is zero.To see this, we take �k 2 �(A) with limk dist(�k;M) = 0 and gk the respetive(normalized) eigenfuntions. Solving problem (Ph) for the data (f; g) = (0; gk)one obtains respetively the solutionsuk(t) = sin(At) sin(AT )�1gk = sin(�kt) sin(�kT )�1gk; (5)whih happens to be unbounded in Vh.2.3. The paraboli problem:Given a funtion f 2 H = L2(
) �nd u 2 (Vp; k � kVp), whereVp := L2(0; T ;H1(
));kukVp := �Z T0 (ku(t)k21 + k�tu(t)k2�1) dt�1=2;5If this ondition is not satis�ed, one an easily see that problem (Ph) is not uniquelysolvable.



6 J. Baumeister and A. Leit~aothat satis�es ( (�t +A2)u = 0 in (0; T )�
;u(T; x) = f(x); x 2 
: (Pp)Note that if u 2 Vp, then u(0); u(T ) 2 H .Problem (Pp) orresponds to the well known problem of solving the heatequation bakwards in time, whih is known to be (severely) ill-posed. Thisfollows from the general representation of the solution of (Pp) given byu(t) = exp(A2(T � t))f: (6)Again using the eigenfuntions of A, one an onstrut a sequene of data fkonverging to zero in H while the norm of the solutions kukkVp do not.3. DESCRIPTION OF THE METHODS3.1. The iterative proedure for the ellipti problemConsider problem (Pe) with data (f; g) 2 H1=2(
)�H�1=2(
). Given any initialguess '0 2 H�1=2(
) for �tu(T ) we improve it by solving the following mixedboundary value problems (BVP) of ellipti type:( (�2t �A2)v = 0; in (0; T )�
;v(0) = f; �tv(T ) = '0;( (�2t �A2)w = 0; in (0; T )�
;�tw(0) = g; w(T ) = v(T )and de�ning '1 := �tw(T ). Eah one of the mixed BVP's above has a solutionin Ve and onsequently '1 2 H�1=2(
). Setting '0 := '1 and repeating thisproedure we onstrut a sequene f'kg in H�1=2(
).Our assumptions on the operator A allow the determination of the exatsolutions v and w of the above problems, whih are given byv(t) = sinh(At) osh(AT )�1A�1'0 + osh(A(t � T )) osh(AT )�1f;w(t) = osh(At) osh(AT )�1v(T ) + sinh(A(t � T )) osh(AT )�1A�1g:Finally, we an write'1 = �tw(T ) = tanh(AT )2'0 + sinh(AT ) osh(AT )�2Af + osh(AT )�1g:Now, de�ning the aÆne operator Te : H�1=2(
)! H�1=2(
) byTe(') := tanh(AT )2'+ zf;g; (7)



Iterative methods for ill-posed problems modeled by PDE's 7with zf;g := sinh(At) osh(AT )�2Af+osh(AT )�1g, the iterative algorithm anbe rewritten as'k = Te('k�1) = T ke ('0) = tanh(AT )2k'0 + k�1Xj=0 tanh(AT )2jzf;g : (8)3.2. The iterative proedure for the hyperboli problemLet's now onsider problem (Ph) with data f; g 2 H1(
). Given any initial guess'0 2 H for �tu(0) we improve it by solving the following initial value problems(IVP) of hyperboli type6:( (�2t +A2)v = 0; in (0; T )�
;v(0) = f; �tv(0) = '0;( (�2t +A2)w = 0; in (0; T )�
;w(T ) = g; �tw(T ) = �tv(T )and de�ning '1 := �tw(0). Eah one of the mixed IVP's above has a solution inVh and onsequently '1 2 H . Repeating this proedure we onstrut a sequenef'kg in H .As in Setion 3.1, the assumptions on the operatorA allow the determinationof the exat solutions v and w of the above problems. In fat we havev(t) = os(At)f + sin(At)A�1'0;w(t) = os(A(t� T )) g + sin(A(t � T ))A�1�tv(T ):Finally, we an write'1 = �tw(0) = os(AT )2'0 � os(AT ) sin(AT )Af + sin(AT )gand de�ning the aÆne operator Th : H ! H byTh(') := os(AT )2'+ zf;g; (9)with zf;g := � os(AT ) sin(AT )Af + sin(AT )g, the iterative method an berewritten as'k = Th('k�1) = T kh ('0) = os(AT )2k'0 + k�1Xj=0 os(AT )2j zf;g: (10)6The seond problem is onsidered with reversed time.



8 J. Baumeister and A. Leit~ao3.3. The iterative proedure for the paraboli problemWe onsider problem (Pp) with data f 2 H . De�ne �� := inff�;� 2 �(A)g andhose a positive parameter  suh that  < 2 exp(��2T ). Now, given '0 2 H aninitial guess for u(0), the method onsists in �rst solving the IVP of parabolitype: ( (�t +A2)v0 = 0 in (0; T )�
;v0(0) = '0:Then we solve for k � 1 the sequene of IVP's:( (�t +A2)vk = 0 in (0; T )�
;vk(0) = vk�1(0)� (vk�1(T )� f):The sequene f'kg is de�ned by 'k := vk(0) 2 H . Note that the analytisolutions of the above problems are given byvk(t) = exp(�A2t)'k;and we obtain 'k+1 = (I �  exp(�A2T ))'k + f:Now, we de�ne the aÆne operator Tp : H ! H byTp(') := (I �  exp(�A2T ))'+ zf ; (11)with zf := f , and we are able to rewrite the iterative algorithm as'k = Tp('k�1) = T kp ('0)= (I �  exp(�A2T ))k'0 + k�1Xj=0(I �  exp(�A2T ))jzf : (12)4. ANALYSIS OF THE METHODS4.1. The ellipti aseThe linear part of the aÆne operator Te de�ned in (7) is given by Tl;e :=tanh(AT )2. We begin the disussion analyzing an important property of prob-lem (Pe).Lemma 4. Given (f; g) 2 H1=2 � H�1=2, problem (Pe) has at most onesolution in Ve.Proof. This result is a generalization of the Cauhy {Kowalewsky theorem.A omplete proof an be found in [9℄.



Iterative methods for ill-posed problems modeled by PDE's 9From Lemma 4 follows that if problem (Pe) has a solution u 2 Ve, then it'sNeumann trae �' := �tu(T ) solves the equation Te �' = �'. The objetive of theiterative method in Setion 3.1 is to �nd a solution of this �xed point equation.The ill-posedness of problem (Pe) an be reognized in the fat that 1 belongsto ontinuous spetrum of Tl;e, as one an see in the next lemma.Lemma 5. The linear operator Tl;e : H�1=2 ! H�1=2 is positive, self-adjoint, injetive, non-expansive, regular asymptoti and 1 is not an eigenvalueof Tl;e. Further Tl;e satis�es the ondition (1).Proof. The injetivity follows promptly from Lemma 4. The properties:positiveness, self-adjointness and 1 62 �p(Tl;e) follow from the de�nition of Tl;etogether with the assumptions on A made in Setion 1.2.2 (remember we re-quired in Setion 2 that �(A) is disrete).In order to prove that Tl;e is non-expansive and regular asymptoti, it isenough to verify the ondition (1) (see Lemma 3). It's easy to see that Tl;esatis�es this ondition with  = 1, if �(Tl;e) 2 [0; 1℄. One should note that thislast property was already proved above.In the next theorem we disuss the onvergene of the algorithm desribedin Setion 3.1.Theorem 1. Let Te be the operator de�ned in (7) and Tl;e it's linear part. Ifproblem (Pe) in Setion 2.1 is onsistent7 for the data (f; g), then the sequenef'kg de�ned in (8) onverges to �tu(T ) in the norm of H�1=2(
).The proof follows from Lemma 5 and Lemma 2 with z := zf;g, T := Tl;e andS := Te.The onverse of Theorem 1 is also true, i. e. if the sequene f'kg in (8)onverges in H�1=2(
), it onverges to the solution of (Pe).Theorem 2. If the sequene f'kg de�ned in (8) onverges, say to �', thenproblem (Pe) is onsistent for the Cauhy data (f; g) and it's solution u 2 Vesatis�es �tu(T ) = �'.Proof. If limk 'k = �', then Te �' = �'. Taking '0 = �' in the mixed BVP's ofSetion 3.1 we see that the funtions v, w satisfy the same boundary onditions(Dirihlet and Neumann onditions, respetively) at t = T . From Lemma 4 wemust have v = w and one an see that u := v = w is the solution of (Pe), theidentity �tu(T ) = �' being obvious.4.2. The hyperboli aseThe linear part of the aÆne operator Th de�ned in (9) is given by Tl;h :=os(AT )2. We start the disussion proving some properties of this operator.Lemma 6. The linear operator Tl;h : H ! H is positive, self-adjoint,injetive, non-expansive, regular asymptoti and 1 is not an eigenvalue of Tl;h.Further Tl;h satis�es the ondition (1).7This means that it has a orresponding solution u 2 Ve.



10 J. Baumeister and A. Leit~aoProof. The injetivity follows from the assumption fk�=T ; k 2 Ng\�(A) =;. The properties: positiveness, self-adjointness and 1 62 �p(Tl;h) are proved likein Lemma 5.Again we use Lemma 3 to prove that Tl;h is non-expansive and regularasymptoti. Sine �(Tl;h) 2 [0; 1℄, the ondition (1) is obtained analogous as inLemma 5.From Lemma 6 follows that if problem (Ph) has a solution u 2 Vh, thenit's Neumann trae �' := �tu(0) solves the equation Th �' = �'. Just like inthe ellipti ase (see Setion 4.1) the objetive of the method in Setion 3.2 isto approximate the solution of this �xed point equation. The ill-posedness ofproblem (Ph) reets in the fat that 1 belongs to ontinuous spetrum of Tl;h(see Lemma 6). In the next theorem we disuss the onvergene of the algorithmdesribed in Setion 3.2.Theorem 3. Let Th be the operator de�ned in (9) and Tl;h it's linear part.If problem (Ph) in Setion 2.1 is onsistent for the data (f; g), then the sequenef'kg de�ned in (10) onverges to �tu(0) in the norm of H .The proof follows from Lemma 6 and Lemma 2 with z := zf;g , T := Tl;h andS := Th.The onverse of Theorem 3 is also true, i. e. if the sequene f'kg in (10)onverges in H , it onverges to the solution of (Ph).Theorem 4. If the sequene f'kg de�ned in (10) onverges, say to �', thenproblem (Ph) is onsistent for the Cauhy data (f; g) and it's solution u 2 Vhsatis�es �tu(0) = �'.Proof. If limk 'k = �', then Th �' = �'. Taking '0 = �' in the IVP's ofsetion 3.2 we see that the funtions v, w satisfy the same Neumann boundaryonditions at t = 0 and t = T . From Lemma 6 we must have v = w and onean see that u := v = w is the solution of (Ph), the identity �tu(0) = �' beingobvious.4.3. The paraboli aseThe linear part of the aÆne operator Tp de�ned in (11) is given by Tl;p :=I �  exp(�A2T ). First, we analyze an important property of problem (Pp).Lemma 7. Given f 2 H , problem (Pp) has exatly one solution in Vp.This result is suggested by the general representation of the solution givenin (6). A omplete proof an be found in [11℄, Chapter 3.Just like in the other ases, the iterative method in Setion 3.3 approxi-mates the solution of the orresponding �xed point equation Tp �' = �', whih isuniquely solved by the Dirihlet trae �' = u(0) of the solution u 2 Vp of (Pp)(see Lemma 7). Next, we disuss some properties of Tl;p.



Iterative methods for ill-posed problems modeled by PDE's 11Lemma 8. The linear operator Tl;p : H ! H is self-adjoint, non-expansive,regular asymptoti and 1 is not an eigenvalue of Tl;p. Further, if  < 2 exp(~�2T ),where ~� := (��2�T�1 ln 2)1=2, then Tl;p is injetive and satis�es the ondition (1).Proof. The self-adjointness follows follows from the de�nition of Tl;p. Sinethe inequality 0 <  exp(��2T ) < 2 exp([��2 � �2℄T ) < 2 holds for every � 2�(A), we have �p(Tl;p) 2 (�1; 1) and the non-expansivity follows. Note that theproperty 1 62 �p(Tl;p) was also proved.To prove the asymptoti regularity we take ' 2 H and write T k+1l;p '�T kl;p' =T kl;p , where  := (Tl;p � I)' 2 H . Sine �p(Tl;p) 2 (�1; 1), it follows thatlimk T kl;p = 0, for all  2 H .Now, if  satis�es the extra assumption, a simple alulation shows that�p(Tl;p) 2 (0; 1). The injetivity follows immediately and the ondition (1) isproved analogous as in Lemma 5.In the next theorem we disuss the onvergene of the algorithm desribedin Setion 3.3.Theorem 5. Let Tp be the operator de�ned in (11) and Tl;p it's linear part.Given f 2 H , let u 2 Vp be the uniquely determined solution of problem (Pp).Then the sequene f'kg de�ned in (12) onverges to u(0) in the norm of H .The proof follows from Lemma 8 and Lemma 2 with z := zf , T := Tl;p andS := Tp.5. REGULARIZATIONIn order to regularize the algorithms proposed in Setion 3 we make the followingassumptions on the formulation of the respetive problems:(He) Given the Cauhy data (f"; g") 2 H1=2 � H�1=2, there exist onsistentCauhy data (f; g) 2 H1=2�H�1=2 suh that kf�f"k1=2+kg�g"k�1=2 � ",where " > 0.(Hh) Given the Dirihlet data (f"; g") 2 H1�H1, there exist onsistent Dirihletdata (f; g) 2 H1 �H1 suh that kf � f"k1 + kg � g"k1 � ", where " > 0.(Hp) The given data f" 2 H is suh that kf � f"kH � ", where f 2 H is theDirihlet trae at t = T of the exat solution of (Pp) and " > 0.The assumptions on the data made in (He) and (Hh) may look very restri-tive. One would prefer f" 2 H = L2(
) in (He) and (f"; g") 2 H �H in (Hh),sine these represent measured data. Nevertheless (He) and (Hh) are naturallysatis�ed if we make stronger assumptions on the regularity of the solutions ofthe orresponding ill-posed problems. This fat is explained inLemma 9. Let f 2 Hr, r > s > 0, and f" 2 H be suh that kf � f"k2H � ",where " > 0. Then there exists a smoothing operator S : H ! Hs and a



12 J. Baumeister and A. Leit~aopositive funtion  with limx#0 (x) = 0, suh that ~f" := Sf" 2 Hs satis�eskf � ~f"k2s � (").Proof. Using the resolution of the identity assoiated to A, we de�ne forh > 0 the operator Sh : H ! Hs by Sh := R 1=h0 dE� 8. De�ning ~f" := Shf" 2 Hsone an estimatekf � ~f"k2s = kf � Shf" � Shfk2s � 2�k(I � Sh)fk2s + kSh(f � f")k2s�: (13)The �rst term on the right hand side of (13) an be estimated byk(I � Sh)fk2s = Z 11=h(1 + �2)sh (1 + �2)r(1 + �2)r i dhE�f; fi� (1 + h�2)s�r Z 10 (1 + �2)r dhE�f; fi= (1 + h�2)s�rkfk2r:For the seond term on the right hand side of (13) we havekSh(f � f")k2s = Z 1=h0 (1 + �2)sdhE�(f � f"); (f � f")i� (1 + h�2)s Z 1=h0 dhE�(f � f"); (f � f")i� (1 + h�2)skf � f"k2H :Substituting the last inequalities in (13) we obtainkf � ~f"k2s � 2�(1 + h�2)s"+ (1 + h�2)s�rkfk2r�: (14)To balane the right hand side of (14) one must hoose h = [("�1kfk2r)1=r �1℄�1=2. Now the theorem follows hoosing S := Sh and (x) := 4x(r�s)=rkfk2s=rr .Remark 1. Let f" 2 H be the given Cauhy data for (Pe). From Lemma 9follows that when the exat Cauhy data f is better than H1=2, i. e. f 2 Hr forr > 1=2, then it is possible to �nd a ~f" in H1=2 near to f in the (1=2){norm.For the hyperboli ase one obtains an analogous result.Sine the aÆne term zf;g depends ontinuously on the data (f; g) and zf de-pends ontinuously on f , we onlude from Lemma 9 that under the orrespond-ing assumption it is possible to obtain from the measured data (f"; g") 2 H2a z" satisfying kzf;g � z"k � "0 (respetively kzf � z"k � "0).Let T be one of the operators de�ned in (7), (9) or (11) and Tl the orre-sponding linear part. We want to hoose a linear operator R suh that given '0,the regularized sequene ~'k+1 := R ~'k + z" onverges faster then the original8Reall that R10 dE� is the identity operator in H.



Iterative methods for ill-posed problems modeled by PDE's 13one 'k+1 := Tl'k + zf;g. Simultaneously we have to assure that the di�erenek lim ~'k � lim'kk remains small.In Setion 3 we have seen that Tl = R10 F (�)dE�, where F (�) is eithertanh2(�), os2(�) or (1� exp(��2T )). Given n 2 N we de�ne the regularizationoperator Rn by Rn := Z n0 F (�) dE�:Next we de�ne �' and 'n as the �xed points of �' = Tl �'+zf;g and 'n = R'n+z"respetively (note that 'n exists sine Rn is ontrative). From the identity'n � �' = Rn('n � �') + (Rn � Tl) �'+ z" � zf;gone obtains the estimatek'n � �'k � k(I �Rn)�1(Rn � Tl) �'k+ "k(I �Rn)�1k; (15)whih leads us to the following lemmaLemma 10. Let Tl represent the linear part of the iterative proedurefor one of the problems (Pe), (Ph) or (Pp). Given the orresponding family ofoperators Rn de�ned as above, we havelimn!1 k(I �Rn)�1(Rn � Tl) �'k = 0 and limn!1 k(I � Rn)�1k =1:Proof. Sine (I � Rn) is the identity operator on Rg(Rn � Tl), the �rstassertion follows from the innequality9k(I �Rn)�1(Rn � Tl) �'k2s � Z 1n (1 + �2)s dhE� �'; �'i:The seond assertion follows from the identity k(I � Rn)�1k = (1 � �(n))�1,where �(n) := maxf� 2 �(A);� < ng, and the fat that A : H ! H isunbounded.Now making a priori assumptions on the regularity of �', we obtain fromLemma 10 and the estimate (15) the desired regularization result.Lemma 11. If there exists a positive monotone inreasing funtion G 2C(R+ ) withlim�!1G(�) =1 and Z 10 (1 + �2)sG2(�) dhE� �'; �'i =M2 <1;then exists an optimal hoie of n� 2 N suh that k'n� � �'k � k'n � �'k for alln 2 N. Further n� solves the minimization problemminn2N �MG�1(n) + "(1 + �(n))�1	:9Here s 2 R must be hosen aording to the spae where the iteration takes plae.



14 J. Baumeister and A. Leit~aoProof. From Lemma 10 followsk(I �Rn)�1(Rn � Tl) �'k2s � Z 1n (1 + �2)sG2(�)G2(�) dhE� �'; �'i� G�2(n) Z 1n (1 + �2)sG2(�) dhE� �'; �'i�M2G�2(n):From (15) we obtaink'n � �'k �MG�1(n) + "(1 + �(n))�1and the theorem follows.6. NUMERICAL RESULTS6.1. A paraboli reonstrution problemWe onsider the heat equation a2�tu = �u at (0; T )�
, where 
 = (0; 1)�(0; 1).The solution u(0) of the reonstrution problem is shown in Figure 1. It onsistsof a L2(
) funtion added to a polynomial of fourth degree.In the �rst example we hoose a2 = 8 and take as problem data f := u(T )evaluated at T = 0:0625. The iterative proedure is started with '0 � 0 and wehose the parameter  = 2, whih is in agreement with Lemma 8. In Figure 2one an see the data f of the reonstrution problem and the iteration errorafter 106 steps.In the seond example we hoose a2 = 2 and set f := u(T ) for T = 0:0625,where u(0) is the same as before. The iterative proedure is started with '0 � 0.In Figure 3 one an see the problem data f and the iteration error after 106steps.
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Figure 1. Solution of the reonstrution problem (u(0))
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Figure 2. Temperature pro�le u(T ) for a2 = 8 and iteration error after 106 steps
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Figure 3. Temperature pro�le u(T ) for a2 = 2 and iteration error after 106 stepsTable 1. Evolution of the relative error in the L2-norm (paraboli problem)10 steps 103 steps 104 steps 105 steps 106 stepsa2 = 8 32.5% 25.7% 23.5% 22.5% 20.9%a2 = 2 49.8% 42.2% 40.1% 36.2% 31.4%



16 J. Baumeister and A. Leit~aoTable 2. Evolution of the relative error in the L2-norm (ellipti problem)102 steps 103 steps 105 steps 106 steps 108 steps 109 stepsk = 1 48.33% 5.34% 5.30% 5.30% 5.30% 5.30%k = 2 99.86% 98.61% 29.72% 11.28% 11.28% 11.28%k = 3 99.99% 99.98% 99.74% 97.44% 21.79% 18.42%One should note that �' := u(0) is a �xed point of the numerial iteration.This follows from the fat that f = u(T ) was obtained by solving a diretproblem.In both examples the reonstrution is muh better at the part of the domainwhere the initial ondition is smooth. In Table 1 we present the evolution ofthe iteration error 'k � u(0) for the two examples above.Note also that the onvergene speed deays exponentially as we iterate.This is a onsequene of the exponential behaviour of the eigenvalues of Tl;p(see Paragraph 4.3).6.2. An ellipti reonstrution problemWe onsider next the Laplae equation �2t u + �2xu = 0 at (0; T ) � 
, where
 = (0; 1). Given k 2 N we hoose the Cauhy data f � 0, gk = sin(k�x) andtry to reonstrut the orresponding traes �tu(T ) at the �nal time T = 110.In Table 2 the evolution of the relative reonstrution error for three distintvalues of k is presented. From this data one an see that if g an be expandedin a Fourier series, it's �rst oeÆient will be aurately reonstruted after 104steps, while the seond one only after 106 steps, et.REFERENCES1. G. Bastay, Iterative Methods for Ill-Posed Boundary Value Problems.Link�oping Studies in Siene and Tehnology, Dissertations No. 392,Link�oping, 1995.2. J. Baumeister, Stable Solution of Inverse Problems. Fried. Vieweg &Sohn, Braunshweig, 1987.3. V.M. Isakov, On the uniqueness of the solution of the Cauhy problem.Soviet Math. Dokl. (1980) 22, No. 3, 639{642.4. H. Jeggle, Nihtlineare Funktionalanalysis. Teubner, Stuttgart, 1979.5. M. Jourhmane and A. Nahaoui, A relaxation algorithm for solving aCauhy problem. In: Preliminary proeedings of 2nd Intern. Confer. onInverse Problems in Engineering: Theory and Pratie, Le Croisi, June1996. Vol. 2.10Note that gk = sin(k�x) are eigenfuntions of Tl;e with orresponding eigenvalues �k =tanh(k�)2. The solutions of the reonstrution problems are given by osh(k�) sin(k�x).
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