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On iterative methodsfor solving ill-posed problemsmodeled by partial di�erential equationsJ. BAUMEISTER� and A. LEIT~AOyRe
eived November 5, 1999Abstra
t | We investigate the iterative methods proposed by Maz'ya and Kozlov(see [6, 7℄) for solving ill-posed inverse problems modeled by partial di�erential equa-tions. We 
onsider linear evolutionary problems of ellipti
, hyperboli
 and paraboli
types. Ea
h iteration of the analyzed methods 
onsists in the solution of a well posedproblem (boundary value problem or initial value problem respe
tively). The iterationsare des
ribed as powers of aÆne operators, as in [7℄. We give alternative 
onvergen
eproofs for the algorithms by using spe
tral theory and the fa
t that the linear parts ofthese aÆne operators are non-expansive with additional fun
tional analyti
al proper-ties (see [9, 10℄). Also problems with noisy data are 
onsidered and estimates for the
onvergen
e rate are obtained under a priori regularity assumptions on the problemdata.1. INTRODUCTION1.1. Main resultsWe present new 
onvergen
e proofs for the iterative algorithms proposed in [7℄using a fun
tional analyti
al approa
h, were ea
h iteration is des
ribed usingpowers of an aÆne operator T . The key of the proof is to 
hoose a 
orre
ttopology for the Hilbert spa
e were the iteration takes pla
e and to prove that Tl,the linear 
omponent of T , is a regular asymptoti
, non-expansive operator (otherproperties of Tl su
h as positiveness, self-adjointness and inje
tivity are also�Fa
hberei
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2 J. Baumeister and A. Leit~aoveri�ed). The 
onverse is also proved, i. e. if an iterative pro
edure 
onverges,the limit point is the solution of the respe
tive problem.The 
onvergen
e rate of the iterative method 
an be estimated when wemake appropriate regularity assumptions on the problem data. In the last se
-tion some numeri
al experiments are presented, were we test the algorithmperforman
e for linear ellipti
, hyperboli
 and paraboli
 ill-posed problems.The iterative pro
edures dis
ussed in this paper were presented in [7℄ andalso treated via semi groups in [1℄. The iterative pro
edure for ellipti
 Cau
hyproblems de�ned in domains of more general type is dis
ussed in [6, 9, 10℄and [5℄. The iterative pro
edure 
on
erning paraboli
 problems is also treatedin [12℄.1.2. Preliminaries1.2.1. On non-expansive operatorsLet H be a separable Hilbert spa
e endowed with an inner produ
t h� ; � i andnorm k�k. A linear operator T : H ! H is 
alled non-expansive if kTk � 1.An operator T : H ! H is said to be regular asymptoti
 in x 2 H iflimk!1 kT k+1(x)� T k(x)k = 0holds true. If the above property holds for every x 2 H , we say that T is regularasymptoti
 in H .Next we formulate the results used to prove the 
onvergen
e of the iterativealgorithms analyzed in this paper.Lemma 1. Let T : H ! H be a linear non-expansive operator. With � wedenote the orthogonal proje
tor de�ned on H onto the null spa
e of (I � T ).The following assertions are equivalent:a) T is regular asymptoti
 in H ;b) limk!1T kx = �x for all x 2 H .A proof of this lemma (even in a more general framework) 
an be foundin [4℄ (see also [9℄ and the referen
es 
ited therein).Lemma 2. Let T : H ! H be a linear, non-expansive, regular asymptoti
operator su
h that 1 is not an eigenvalue of T 1. Given z 2 H de�ne S : H 3x 7! Tx+ z 2 H . Then for every x0 2 H the sequen
e fSkx0g 
onverges to theuniquely determined solution of the �xed point equation Sx = x.Proof. Let �x 2 H be the solution of S�x = �x. De�ning xk := Skx0 and"k := �x � xk one 
an easily see that "k+1 = T"k, k 2 N. Lemma 1 allow us to
on
lude that limk "k = �"0. From the hypothesis we have ker(I � T ) = f0g,and the lemma follows.1The set of all eigenvalues of a linear operator T is denoted by �p(T ).



Iterative methods for ill-posed problems modeled by PDE's 3In the next lemma we present a suÆ
ient 
ondition for an operator to benon-expansive and regular asymptoti
. For 
onvenien
e of the reader we in
ludehere the proof (see [7℄).Lemma 3. Let T be a bounded linear operator in H su
h that for 
 > 0k(I � T )xk2 � 
(kxk2 � kTxk2) ; 8x 2 H (1)holds true. Then T is non-expansive and regular asymptoti
 in H .Proof. The non-expansivity of T follows dire
tly from the inequality0 � 
�1k(I � T )xk2 � kxk2 � kTxk2; 8x 2 H:Now take x0 2 H . Sin
e kTk � 1, the sequen
e kT kx0k2 is non-in
reasing, fromwhat we 
on
lude that limk(kT kx0k2 � kT k+1x0k2) = 0. Note that from (1)follows kT kx0 � T k+1x0k2 � 
(kT kx0k2 � kT k+1x0k2):Putting all together one 
an see that T is regular asymptoti
 in H .Equivalent to the 
ondition (1) in Lemma 3 is the following one2h(I � T )x; xi � 
+ 12
 k(I � T )xk2; 8x 2 H; (2)as the following line suggests (see [7℄)kxk2 = kTxk2 � k(I � T )xk2 + 2hx; (I � T )xi ; 8x 2 H:1.2.2. On fun
tion spa
esLet 
 � Rn be an open, bounded set with smooth boundary and let A be apositive, self-adjoint, unbounded operator densely de�ned on the Hilbert spa
eH := L2(
). Let E�, � 2 R, denote the resolution of the identity asso
iated toA, i. e. hA'; i = Z�2R� dhE�';  i = Z 10 � dhE�';  i;for ' 2 D(A), the domain of A, and  2 H . Note that given f 2 C(R+ ) we 
ande�ne the operator f(A) on H by settinghf(A)';  i := Z 10 f(�) dhE�';  i;for every ' 2 D(f(A)) and  2 H , where the domain of f(A) is de�ned byD(f(A)) := n' 2 H j Z 10 f(�)2 dhE�'; 'i <1o:2Clearly, 
ondition (1) is only suÆ
ient for T being non-expansive and regular asymptoti
in H.



4 J. Baumeister and A. Leit~aoNow we are ready to 
onstru
t a family of Hilbert spa
es Hs(
), s � 0, as thedomain of de�nition of the powers of A3Hs(
) := n' 2 H j k'ks := �Z 10 (1 + �2)sdhE�'; 'i�1=2 <1o: (3)The Hilbert spa
es H�s(
) (with s > 0) are de�ned by duality4: H�s := (Hs)0.It follows from the de�nition that H0(
) = H . It 
an also be proved that theembedding Hr(
) ,! Hs(
) is dense and 
ompa
t for r > s (see [11℄, Chapter1). An interesting example is A = (��)1=2, where � is the Lapla
e {Beltramioperator on 
. In this parti
ular 
ase we have the identity Hs(
) = H2s0 (
),where Hs0(
) is the Sobolev spa
e of index s a

ording to the de�nition of Lionsand Magenes (see [11℄, p. 54). One should note that fun
tions in Hs(
) satisfynull boundary 
onditions in the sense of the tra
e operator.Given T > 0 we de�ne the spa
es L2(0; T ;Hs(
)) of fun
tions u : (0; T ) 3t 7! u(t) 2 Hs(
). These are normed spa
es if we 
onsiderkuk2;0;T ;s := �Z T0 ku(t)k2s dt�1=2;as a norm in L2(0; T ;Hs(
)). Finally, we de�ne the spa
es C(0; T ;Hs(
)) of
ontinuous fun
tions u : [0; T ℄ 3 t 7! u(t) 2 Hs(
). The norm on these spa
esis given by kuk1;0;T ;s := supt2[0;T ℄ ku(t)ks:2. THE ILL-POSED PROBLEMSLet the operator A with dis
rete spe
trum, the set 
 and the Hilbert spa
esHs(
) be de�ned as in Se
tion 1.2. In the next three paragraphs we formulatethe ill-posed problems that are dis
ussed in this arti
le.2.1. The ellipti
 problem:Given fun
tions (f; g) 2 H1=2(
)�H�1=2(
), �nd u 2 (Ve; k�kVe), whereVe := L2(0; T ;H1(
));kukVe := �Z T0 (ku(t)k21 + k�tu(t)k20) dt�1=2;that satis�es ( (�2t �A2)u = 0 in (0; T )�
u(0; x) = f(x); �tu(0; x) = g(x); x 2 
: (Pe)3For simpli
ity we may write Hs instead of Hs(
).4Alternatively one 
an de�ne H�s(
) as the 
ompletion of H in the (�s)-norm de�ned in(3).



Iterative methods for ill-posed problems modeled by PDE's 5Note that if u 2 Ve, then �tu 2 L2(0; T ;H) and appropriate tra
e theorems(see [11℄) guarantee that u(0); u(T ) 2 H1=2(
) and �tu(0); �tu(T ) 2 H�1=2(
).In this problem we are mostly interested in the value of u for t = T , i. e.u(T; x) and �tu(T; x), x 2 
. This ellipti
 initial value problem (also 
alledCau
hy problem) is not well posed in the sense of Hadamard (see [2℄). Thisfollows from the general representation of the solution of (Pe) given byu(t) = 
osh(At)f + sinh(At)A�1g: (4)One 
an 
onstru
t a sequen
e of Cau
hy data (fk; gk) = (0; gk) using the eigen-fun
tions of A, su
h that (fk; gk) 
onverge to zero in H1=2 � H�1=2 while thenorm of the solutions kukkVe do not.2.2. The hyperboli
 problem:Given fun
tions f; g 2 H1(
), �nd u 2 (Vh; k� kVh), whereVh := fv 2 C(0; T ;H1(
)) j �tu 2 C(0; T ;H)g;kukVh := supt2[0;T ℄(ku(t)k21 + k�tu(t)k20)1=2;that satis�es ( (�2t +A2)u = 0 in (0; T )�
;u(0; x) = f(x); u(T; x) = g(x); x 2 
: (Ph)Note that if u 2 Vh, then u(0); u(T ) 2 H1(
) and �tu(0); �tu(T ) 2 H .Let's assume that the numbers k�=T , k = 1; 2; : : : are not eigenvalues of A5.Then this hyperboli
 (Diri
hlet) boundary value problem is ill-posed if the dis-tan
e from the set M := fk�=T ; k 2 Ng to �(A) (the spe
trum of A) is zero.To see this, we take �k 2 �(A) with limk dist(�k;M) = 0 and gk the respe
tive(normalized) eigenfun
tions. Solving problem (Ph) for the data (f; g) = (0; gk)one obtains respe
tively the solutionsuk(t) = sin(At) sin(AT )�1gk = sin(�kt) sin(�kT )�1gk; (5)whi
h happens to be unbounded in Vh.2.3. The paraboli
 problem:Given a fun
tion f 2 H = L2(
) �nd u 2 (Vp; k � kVp), whereVp := L2(0; T ;H1(
));kukVp := �Z T0 (ku(t)k21 + k�tu(t)k2�1) dt�1=2;5If this 
ondition is not satis�ed, one 
an easily see that problem (Ph) is not uniquelysolvable.



6 J. Baumeister and A. Leit~aothat satis�es ( (�t +A2)u = 0 in (0; T )�
;u(T; x) = f(x); x 2 
: (Pp)Note that if u 2 Vp, then u(0); u(T ) 2 H .Problem (Pp) 
orresponds to the well known problem of solving the heatequation ba
kwards in time, whi
h is known to be (severely) ill-posed. Thisfollows from the general representation of the solution of (Pp) given byu(t) = exp(A2(T � t))f: (6)Again using the eigenfun
tions of A, one 
an 
onstru
t a sequen
e of data fk
onverging to zero in H while the norm of the solutions kukkVp do not.3. DESCRIPTION OF THE METHODS3.1. The iterative pro
edure for the ellipti
 problemConsider problem (Pe) with data (f; g) 2 H1=2(
)�H�1=2(
). Given any initialguess '0 2 H�1=2(
) for �tu(T ) we improve it by solving the following mixedboundary value problems (BVP) of ellipti
 type:( (�2t �A2)v = 0; in (0; T )�
;v(0) = f; �tv(T ) = '0;( (�2t �A2)w = 0; in (0; T )�
;�tw(0) = g; w(T ) = v(T )and de�ning '1 := �tw(T ). Ea
h one of the mixed BVP's above has a solutionin Ve and 
onsequently '1 2 H�1=2(
). Setting '0 := '1 and repeating thispro
edure we 
onstru
t a sequen
e f'kg in H�1=2(
).Our assumptions on the operator A allow the determination of the exa
tsolutions v and w of the above problems, whi
h are given byv(t) = sinh(At) 
osh(AT )�1A�1'0 + 
osh(A(t � T )) 
osh(AT )�1f;w(t) = 
osh(At) 
osh(AT )�1v(T ) + sinh(A(t � T )) 
osh(AT )�1A�1g:Finally, we 
an write'1 = �tw(T ) = tanh(AT )2'0 + sinh(AT ) 
osh(AT )�2Af + 
osh(AT )�1g:Now, de�ning the aÆne operator Te : H�1=2(
)! H�1=2(
) byTe(') := tanh(AT )2'+ zf;g; (7)



Iterative methods for ill-posed problems modeled by PDE's 7with zf;g := sinh(At) 
osh(AT )�2Af+
osh(AT )�1g, the iterative algorithm 
anbe rewritten as'k = Te('k�1) = T ke ('0) = tanh(AT )2k'0 + k�1Xj=0 tanh(AT )2jzf;g : (8)3.2. The iterative pro
edure for the hyperboli
 problemLet's now 
onsider problem (Ph) with data f; g 2 H1(
). Given any initial guess'0 2 H for �tu(0) we improve it by solving the following initial value problems(IVP) of hyperboli
 type6:( (�2t +A2)v = 0; in (0; T )�
;v(0) = f; �tv(0) = '0;( (�2t +A2)w = 0; in (0; T )�
;w(T ) = g; �tw(T ) = �tv(T )and de�ning '1 := �tw(0). Ea
h one of the mixed IVP's above has a solution inVh and 
onsequently '1 2 H . Repeating this pro
edure we 
onstru
t a sequen
ef'kg in H .As in Se
tion 3.1, the assumptions on the operatorA allow the determinationof the exa
t solutions v and w of the above problems. In fa
t we havev(t) = 
os(At)f + sin(At)A�1'0;w(t) = 
os(A(t� T )) g + sin(A(t � T ))A�1�tv(T ):Finally, we 
an write'1 = �tw(0) = 
os(AT )2'0 � 
os(AT ) sin(AT )Af + sin(AT )gand de�ning the aÆne operator Th : H ! H byTh(') := 
os(AT )2'+ zf;g; (9)with zf;g := � 
os(AT ) sin(AT )Af + sin(AT )g, the iterative method 
an berewritten as'k = Th('k�1) = T kh ('0) = 
os(AT )2k'0 + k�1Xj=0 
os(AT )2j zf;g: (10)6The se
ond problem is 
onsidered with reversed time.



8 J. Baumeister and A. Leit~ao3.3. The iterative pro
edure for the paraboli
 problemWe 
onsider problem (Pp) with data f 2 H . De�ne �� := inff�;� 2 �(A)g and
hose a positive parameter 
 su
h that 
 < 2 exp(��2T ). Now, given '0 2 H aninitial guess for u(0), the method 
onsists in �rst solving the IVP of paraboli
type: ( (�t +A2)v0 = 0 in (0; T )�
;v0(0) = '0:Then we solve for k � 1 the sequen
e of IVP's:( (�t +A2)vk = 0 in (0; T )�
;vk(0) = vk�1(0)� 
(vk�1(T )� f):The sequen
e f'kg is de�ned by 'k := vk(0) 2 H . Note that the analyti
solutions of the above problems are given byvk(t) = exp(�A2t)'k;and we obtain 'k+1 = (I � 
 exp(�A2T ))'k + 
f:Now, we de�ne the aÆne operator Tp : H ! H byTp(') := (I � 
 exp(�A2T ))'+ zf ; (11)with zf := 
f , and we are able to rewrite the iterative algorithm as'k = Tp('k�1) = T kp ('0)= (I � 
 exp(�A2T ))k'0 + k�1Xj=0(I � 
 exp(�A2T ))jzf : (12)4. ANALYSIS OF THE METHODS4.1. The ellipti
 
aseThe linear part of the aÆne operator Te de�ned in (7) is given by Tl;e :=tanh(AT )2. We begin the dis
ussion analyzing an important property of prob-lem (Pe).Lemma 4. Given (f; g) 2 H1=2 � H�1=2, problem (Pe) has at most onesolution in Ve.Proof. This result is a generalization of the Cau
hy {Kowalewsky theorem.A 
omplete proof 
an be found in [9℄.



Iterative methods for ill-posed problems modeled by PDE's 9From Lemma 4 follows that if problem (Pe) has a solution u 2 Ve, then it'sNeumann tra
e �' := �tu(T ) solves the equation Te �' = �'. The obje
tive of theiterative method in Se
tion 3.1 is to �nd a solution of this �xed point equation.The ill-posedness of problem (Pe) 
an be re
ognized in the fa
t that 1 belongsto 
ontinuous spe
trum of Tl;e, as one 
an see in the next lemma.Lemma 5. The linear operator Tl;e : H�1=2 ! H�1=2 is positive, self-adjoint, inje
tive, non-expansive, regular asymptoti
 and 1 is not an eigenvalueof Tl;e. Further Tl;e satis�es the 
ondition (1).Proof. The inje
tivity follows promptly from Lemma 4. The properties:positiveness, self-adjointness and 1 62 �p(Tl;e) follow from the de�nition of Tl;etogether with the assumptions on A made in Se
tion 1.2.2 (remember we re-quired in Se
tion 2 that �(A) is dis
rete).In order to prove that Tl;e is non-expansive and regular asymptoti
, it isenough to verify the 
ondition (1) (see Lemma 3). It's easy to see that Tl;esatis�es this 
ondition with 
 = 1, if �(Tl;e) 2 [0; 1℄. One should note that thislast property was already proved above.In the next theorem we dis
uss the 
onvergen
e of the algorithm des
ribedin Se
tion 3.1.Theorem 1. Let Te be the operator de�ned in (7) and Tl;e it's linear part. Ifproblem (Pe) in Se
tion 2.1 is 
onsistent7 for the data (f; g), then the sequen
ef'kg de�ned in (8) 
onverges to �tu(T ) in the norm of H�1=2(
).The proof follows from Lemma 5 and Lemma 2 with z := zf;g, T := Tl;e andS := Te.The 
onverse of Theorem 1 is also true, i. e. if the sequen
e f'kg in (8)
onverges in H�1=2(
), it 
onverges to the solution of (Pe).Theorem 2. If the sequen
e f'kg de�ned in (8) 
onverges, say to �', thenproblem (Pe) is 
onsistent for the Cau
hy data (f; g) and it's solution u 2 Vesatis�es �tu(T ) = �'.Proof. If limk 'k = �', then Te �' = �'. Taking '0 = �' in the mixed BVP's ofSe
tion 3.1 we see that the fun
tions v, w satisfy the same boundary 
onditions(Diri
hlet and Neumann 
onditions, respe
tively) at t = T . From Lemma 4 wemust have v = w and one 
an see that u := v = w is the solution of (Pe), theidentity �tu(T ) = �' being obvious.4.2. The hyperboli
 
aseThe linear part of the aÆne operator Th de�ned in (9) is given by Tl;h :=
os(AT )2. We start the dis
ussion proving some properties of this operator.Lemma 6. The linear operator Tl;h : H ! H is positive, self-adjoint,inje
tive, non-expansive, regular asymptoti
 and 1 is not an eigenvalue of Tl;h.Further Tl;h satis�es the 
ondition (1).7This means that it has a 
orresponding solution u 2 Ve.



10 J. Baumeister and A. Leit~aoProof. The inje
tivity follows from the assumption fk�=T ; k 2 Ng\�(A) =;. The properties: positiveness, self-adjointness and 1 62 �p(Tl;h) are proved likein Lemma 5.Again we use Lemma 3 to prove that Tl;h is non-expansive and regularasymptoti
. Sin
e �(Tl;h) 2 [0; 1℄, the 
ondition (1) is obtained analogous as inLemma 5.From Lemma 6 follows that if problem (Ph) has a solution u 2 Vh, thenit's Neumann tra
e �' := �tu(0) solves the equation Th �' = �'. Just like inthe ellipti
 
ase (see Se
tion 4.1) the obje
tive of the method in Se
tion 3.2 isto approximate the solution of this �xed point equation. The ill-posedness ofproblem (Ph) re
e
ts in the fa
t that 1 belongs to 
ontinuous spe
trum of Tl;h(see Lemma 6). In the next theorem we dis
uss the 
onvergen
e of the algorithmdes
ribed in Se
tion 3.2.Theorem 3. Let Th be the operator de�ned in (9) and Tl;h it's linear part.If problem (Ph) in Se
tion 2.1 is 
onsistent for the data (f; g), then the sequen
ef'kg de�ned in (10) 
onverges to �tu(0) in the norm of H .The proof follows from Lemma 6 and Lemma 2 with z := zf;g , T := Tl;h andS := Th.The 
onverse of Theorem 3 is also true, i. e. if the sequen
e f'kg in (10)
onverges in H , it 
onverges to the solution of (Ph).Theorem 4. If the sequen
e f'kg de�ned in (10) 
onverges, say to �', thenproblem (Ph) is 
onsistent for the Cau
hy data (f; g) and it's solution u 2 Vhsatis�es �tu(0) = �'.Proof. If limk 'k = �', then Th �' = �'. Taking '0 = �' in the IVP's ofse
tion 3.2 we see that the fun
tions v, w satisfy the same Neumann boundary
onditions at t = 0 and t = T . From Lemma 6 we must have v = w and one
an see that u := v = w is the solution of (Ph), the identity �tu(0) = �' beingobvious.4.3. The paraboli
 
aseThe linear part of the aÆne operator Tp de�ned in (11) is given by Tl;p :=I � 
 exp(�A2T ). First, we analyze an important property of problem (Pp).Lemma 7. Given f 2 H , problem (Pp) has exa
tly one solution in Vp.This result is suggested by the general representation of the solution givenin (6). A 
omplete proof 
an be found in [11℄, Chapter 3.Just like in the other 
ases, the iterative method in Se
tion 3.3 approxi-mates the solution of the 
orresponding �xed point equation Tp �' = �', whi
h isuniquely solved by the Diri
hlet tra
e �' = u(0) of the solution u 2 Vp of (Pp)(see Lemma 7). Next, we dis
uss some properties of Tl;p.



Iterative methods for ill-posed problems modeled by PDE's 11Lemma 8. The linear operator Tl;p : H ! H is self-adjoint, non-expansive,regular asymptoti
 and 1 is not an eigenvalue of Tl;p. Further, if 
 < 2 exp(~�2T ),where ~� := (��2�T�1 ln 2)1=2, then Tl;p is inje
tive and satis�es the 
ondition (1).Proof. The self-adjointness follows follows from the de�nition of Tl;p. Sin
ethe inequality 0 < 
 exp(��2T ) < 2 exp([��2 � �2℄T ) < 2 holds for every � 2�(A), we have �p(Tl;p) 2 (�1; 1) and the non-expansivity follows. Note that theproperty 1 62 �p(Tl;p) was also proved.To prove the asymptoti
 regularity we take ' 2 H and write T k+1l;p '�T kl;p' =T kl;p , where  := (Tl;p � I)' 2 H . Sin
e �p(Tl;p) 2 (�1; 1), it follows thatlimk T kl;p = 0, for all  2 H .Now, if 
 satis�es the extra assumption, a simple 
al
ulation shows that�p(Tl;p) 2 (0; 1). The inje
tivity follows immediately and the 
ondition (1) isproved analogous as in Lemma 5.In the next theorem we dis
uss the 
onvergen
e of the algorithm des
ribedin Se
tion 3.3.Theorem 5. Let Tp be the operator de�ned in (11) and Tl;p it's linear part.Given f 2 H , let u 2 Vp be the uniquely determined solution of problem (Pp).Then the sequen
e f'kg de�ned in (12) 
onverges to u(0) in the norm of H .The proof follows from Lemma 8 and Lemma 2 with z := zf , T := Tl;p andS := Tp.5. REGULARIZATIONIn order to regularize the algorithms proposed in Se
tion 3 we make the followingassumptions on the formulation of the respe
tive problems:(He) Given the Cau
hy data (f"; g") 2 H1=2 � H�1=2, there exist 
onsistentCau
hy data (f; g) 2 H1=2�H�1=2 su
h that kf�f"k1=2+kg�g"k�1=2 � ",where " > 0.(Hh) Given the Diri
hlet data (f"; g") 2 H1�H1, there exist 
onsistent Diri
hletdata (f; g) 2 H1 �H1 su
h that kf � f"k1 + kg � g"k1 � ", where " > 0.(Hp) The given data f" 2 H is su
h that kf � f"kH � ", where f 2 H is theDiri
hlet tra
e at t = T of the exa
t solution of (Pp) and " > 0.The assumptions on the data made in (He) and (Hh) may look very restri
-tive. One would prefer f" 2 H = L2(
) in (He) and (f"; g") 2 H �H in (Hh),sin
e these represent measured data. Nevertheless (He) and (Hh) are naturallysatis�ed if we make stronger assumptions on the regularity of the solutions ofthe 
orresponding ill-posed problems. This fa
t is explained inLemma 9. Let f 2 Hr, r > s > 0, and f" 2 H be su
h that kf � f"k2H � ",where " > 0. Then there exists a smoothing operator S : H ! Hs and a
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tion 
 with limx#0 
(x) = 0, su
h that ~f" := Sf" 2 Hs satis�eskf � ~f"k2s � 
(").Proof. Using the resolution of the identity asso
iated to A, we de�ne forh > 0 the operator Sh : H ! Hs by Sh := R 1=h0 dE� 8. De�ning ~f" := Shf" 2 Hsone 
an estimatekf � ~f"k2s = kf � Shf" � Shfk2s � 2�k(I � Sh)fk2s + kSh(f � f")k2s�: (13)The �rst term on the right hand side of (13) 
an be estimated byk(I � Sh)fk2s = Z 11=h(1 + �2)sh (1 + �2)r(1 + �2)r i dhE�f; fi� (1 + h�2)s�r Z 10 (1 + �2)r dhE�f; fi= (1 + h�2)s�rkfk2r:For the se
ond term on the right hand side of (13) we havekSh(f � f")k2s = Z 1=h0 (1 + �2)sdhE�(f � f"); (f � f")i� (1 + h�2)s Z 1=h0 dhE�(f � f"); (f � f")i� (1 + h�2)skf � f"k2H :Substituting the last inequalities in (13) we obtainkf � ~f"k2s � 2�(1 + h�2)s"+ (1 + h�2)s�rkfk2r�: (14)To balan
e the right hand side of (14) one must 
hoose h = [("�1kfk2r)1=r �1℄�1=2. Now the theorem follows 
hoosing S := Sh and 
(x) := 4x(r�s)=rkfk2s=rr .Remark 1. Let f" 2 H be the given Cau
hy data for (Pe). From Lemma 9follows that when the exa
t Cau
hy data f is better than H1=2, i. e. f 2 Hr forr > 1=2, then it is possible to �nd a ~f" in H1=2 near to f in the (1=2){norm.For the hyperboli
 
ase one obtains an analogous result.Sin
e the aÆne term zf;g depends 
ontinuously on the data (f; g) and zf de-pends 
ontinuously on f , we 
on
lude from Lemma 9 that under the 
orrespond-ing assumption it is possible to obtain from the measured data (f"; g") 2 H2a z" satisfying kzf;g � z"k � "0 (respe
tively kzf � z"k � "0).Let T be one of the operators de�ned in (7), (9) or (11) and Tl the 
orre-sponding linear part. We want to 
hoose a linear operator R su
h that given '0,the regularized sequen
e ~'k+1 := R ~'k + z" 
onverges faster then the original8Re
all that R10 dE� is the identity operator in H.



Iterative methods for ill-posed problems modeled by PDE's 13one 'k+1 := Tl'k + zf;g. Simultaneously we have to assure that the di�eren
ek lim ~'k � lim'kk remains small.In Se
tion 3 we have seen that Tl = R10 F (�)dE�, where F (�) is eithertanh2(�), 
os2(�) or (1�
 exp(��2T )). Given n 2 N we de�ne the regularizationoperator Rn by Rn := Z n0 F (�) dE�:Next we de�ne �' and 'n as the �xed points of �' = Tl �'+zf;g and 'n = R'n+z"respe
tively (note that 'n exists sin
e Rn is 
ontra
tive). From the identity'n � �' = Rn('n � �') + (Rn � Tl) �'+ z" � zf;gone obtains the estimatek'n � �'k � k(I �Rn)�1(Rn � Tl) �'k+ "k(I �Rn)�1k; (15)whi
h leads us to the following lemmaLemma 10. Let Tl represent the linear part of the iterative pro
edurefor one of the problems (Pe), (Ph) or (Pp). Given the 
orresponding family ofoperators Rn de�ned as above, we havelimn!1 k(I �Rn)�1(Rn � Tl) �'k = 0 and limn!1 k(I � Rn)�1k =1:Proof. Sin
e (I � Rn) is the identity operator on Rg(Rn � Tl), the �rstassertion follows from the innequality9k(I �Rn)�1(Rn � Tl) �'k2s � Z 1n (1 + �2)s dhE� �'; �'i:The se
ond assertion follows from the identity k(I � Rn)�1k = (1 � �(n))�1,where �(n) := maxf� 2 �(A);� < ng, and the fa
t that A : H ! H isunbounded.Now making a priori assumptions on the regularity of �', we obtain fromLemma 10 and the estimate (15) the desired regularization result.Lemma 11. If there exists a positive monotone in
reasing fun
tion G 2C(R+ ) withlim�!1G(�) =1 and Z 10 (1 + �2)sG2(�) dhE� �'; �'i =M2 <1;then exists an optimal 
hoi
e of n� 2 N su
h that k'n� � �'k � k'n � �'k for alln 2 N. Further n� solves the minimization problemminn2N �MG�1(n) + "(1 + �(n))�1	:9Here s 2 R must be 
hosen a

ording to the spa
e where the iteration takes pla
e.



14 J. Baumeister and A. Leit~aoProof. From Lemma 10 followsk(I �Rn)�1(Rn � Tl) �'k2s � Z 1n (1 + �2)sG2(�)G2(�) dhE� �'; �'i� G�2(n) Z 1n (1 + �2)sG2(�) dhE� �'; �'i�M2G�2(n):From (15) we obtaink'n � �'k �MG�1(n) + "(1 + �(n))�1and the theorem follows.6. NUMERICAL RESULTS6.1. A paraboli
 re
onstru
tion problemWe 
onsider the heat equation a2�tu = �u at (0; T )�
, where 
 = (0; 1)�(0; 1).The solution u(0) of the re
onstru
tion problem is shown in Figure 1. It 
onsistsof a L2(
) fun
tion added to a polynomial of fourth degree.In the �rst example we 
hoose a2 = 8 and take as problem data f := u(T )evaluated at T = 0:0625. The iterative pro
edure is started with '0 � 0 and we
hose the parameter 
 = 2, whi
h is in agreement with Lemma 8. In Figure 2one 
an see the data f of the re
onstru
tion problem and the iteration errorafter 106 steps.In the se
ond example we 
hoose a2 = 2 and set f := u(T ) for T = 0:0625,where u(0) is the same as before. The iterative pro
edure is started with '0 � 0.In Figure 3 one 
an see the problem data f and the iteration error after 106steps.
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Figure 1. Solution of the re
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tion problem (u(0))
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Figure 2. Temperature pro�le u(T ) for a2 = 8 and iteration error after 106 steps
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Figure 3. Temperature pro�le u(T ) for a2 = 2 and iteration error after 106 stepsTable 1. Evolution of the relative error in the L2-norm (paraboli
 problem)10 steps 103 steps 104 steps 105 steps 106 stepsa2 = 8 32.5% 25.7% 23.5% 22.5% 20.9%a2 = 2 49.8% 42.2% 40.1% 36.2% 31.4%



16 J. Baumeister and A. Leit~aoTable 2. Evolution of the relative error in the L2-norm (ellipti
 problem)102 steps 103 steps 105 steps 106 steps 108 steps 109 stepsk = 1 48.33% 5.34% 5.30% 5.30% 5.30% 5.30%k = 2 99.86% 98.61% 29.72% 11.28% 11.28% 11.28%k = 3 99.99% 99.98% 99.74% 97.44% 21.79% 18.42%One should note that �' := u(0) is a �xed point of the numeri
al iteration.This follows from the fa
t that f = u(T ) was obtained by solving a dire
tproblem.In both examples the re
onstru
tion is mu
h better at the part of the domainwhere the initial 
ondition is smooth. In Table 1 we present the evolution ofthe iteration error 'k � u(0) for the two examples above.Note also that the 
onvergen
e speed de
ays exponentially as we iterate.This is a 
onsequen
e of the exponential behaviour of the eigenvalues of Tl;p(see Paragraph 4.3).6.2. An ellipti
 re
onstru
tion problemWe 
onsider next the Lapla
e equation �2t u + �2xu = 0 at (0; T ) � 
, where
 = (0; 1). Given k 2 N we 
hoose the Cau
hy data f � 0, gk = sin(k�x) andtry to re
onstru
t the 
orresponding tra
es �tu(T ) at the �nal time T = 110.In Table 2 the evolution of the relative re
onstru
tion error for three distin
tvalues of k is presented. From this data one 
an see that if g 
an be expandedin a Fourier series, it's �rst 
oeÆ
ient will be a

urately re
onstru
ted after 104steps, while the se
ond one only after 106 steps, et
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