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ABSTRACT

We investigate the Cauchy problem for linear elliptic operators with
C™—coefficients at a regular set Q@ C R?, which is a classical example of
an ill-posed problem. The Cauchy data are given at the manifold I C 92
and our goal is to reconstruct the trace of the H'(£2) solution of an elliptic
equation at 9€2/T". The method proposed here composes the segmenting
Mann iteration with a fixed point equation associated with the elliptic
Cauchy problem. Our algorithm generalizes the iterative method devel-
oped by Maz’ya et al., who proposed a method based on solving successive
well-posed mixed boundary value problems. We analyze the regularizing
and convergence properties both theoretically and numerically.

1. INTRODUCTION

The solution of a linear elliptic Cauchy problem is written as the solu-
tion of a fixed point equation for an affine operator T (see Section 2). This
fixed point equation is obtained as a byproduct in [Le].
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862 ENGL AND LEITAO

In Section 3.1 we discuss the functional analytical formulation in [Le] of
an iterative method for solving elliptic Cauchy problems, which was origin-
ally proposed by Maz’ya et al. in [KMF].

The original formulation of the Mann iteration (see [Ma]) is discussed in
Section 3.2. We also analyze a variant introduced by Groetsch, called seg-
menting Mann iteration (see [Gr], [EnSc]). These iterative methods approx-
imate the solution of fixed point equations. The Groetsch variation is
particularly interesting, when the fixed point equation is described by a
non-expansive operator.

In Section 4 we formulate the segmenting Mann iteration for the fixed
point equation of Section 2, associated with the solution of an elliptic Cauchy
problem. A convergence proof for this new method is given in Section 4.1.
Basically we choose a special topology for the space of boundary data, which
allow us to prove uniform convexity and to verify some spectral properties
of T. These properties are the cornerstone of the proof. A regularization
property of the method is proved in Section 4.3. Then we provide conver-
gence rates for this regularization method and report about its numerical
performance in Section 5.

2. ELLIPTIC CAUCHY PROBLEMS AND
FIXED POINT EQUATIONS

Let Q C [R? be an open bounded set and T' C 92 a given manifold. We
denote by P a second order elliptic operator defined in . We denote by
elliptic Cauchy problem the following (time independent) initial value pro-
blem for the operator P

Pu=0 inQ
u=rf at I (CP)
u,=g atl

where the given functions f,g:I" — R are called Cauchy data.

The problem we want to solve is to evaluate the trace of the solution of
such an initial value problem at the part of the boundary where no data is
prescribed, i.e. at IQ\I". As a solution of the Cauchy problem (CP) we con-
sider a H'(Q)-distribution, which solves the weak formulation of the elliptic
equation in 2 and also satisfies the Cauchy data at I" in the sense of the trace
operator.

It is well known that elliptic Cauchy problems are not well posed in the
sense of Hadamard.! A famous example given by Hadamard himself (see
[Had]) shows that we cannot have continuous dependence of the data.
Also existence of solutions for arbitrary Cauchy data (f,g) cannot be

'For a formal definition of well posed problems, see e.g. [Ba] or [EHN].
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ELLIPTIC CAUCHY PROBLEMS 863

assured,” as shows a simple argumentation with the Schwartz reflection
principle (see [GiTr]). However, extending the Cauchy-Kowalewsky and
Holmgren Theorems to the H'-context, it is possible to prove uniqueness
of solutions in weak sense (see [DaLi], [Is]).

Our next step is to characterize the solution of (CP) as solution of a
fixed point equation. We define I'y: =T, I, : = 0Q\I', such that ')y N, = @
and I'y U T, = 9Q2. Further, we make the following assumption on the second
order elliptic differential operator P

2
P(u):=— Y _ Dj(a;;Dyu), Q)
i,j=1

where the operator coefficients a; ; satisfy

* 4;;€ L (Q)
. the matrix A(x):= (a,j)” | satisfies: £'A(x)& > al€ll’, ae. xeQ,
VE € R?, where o > 0 is given (independent of x).

Given the Cauchy data (f,g) € HV*(I')) x Hoé (T",), we assume that there
exists a H'—solution of the problem?

Pu=0 in , u=f atly, u, =g atly.

We are mainly interested in the determination of the Neumann trace
Pi=u,, € H(%z(l"z)/ Notice that, once ¢ is known, the solution of (CP) can
be determined as the solution of the well posed mixed boundary value problem

Pu=0 atQ, u=f atly, u, =¢ atl,.

Next we define the operators L,: Hééz(Fz) Hl/z(Fz) L;HYA(T,) —
1/2(1“2) by L,(¢):= Wi, s L,(y):= Vol where w,v € H'(S) solve

Pw=0 1in Q, w=/f atly, w,, =¢ atl,
and

Pyv=0 in Q, v, =g atly, v=1y atl,
respectively. Now, defining the operator

T:Hy'(T2) 2 ¢ = Ly(L,(9) € Hyp (T2 b)
and observing that

Ln(@) = M|1-2’ Ld(u\rz) = gba

we obtain the desired characterization 7'(¢) =

2The Cauchy data (f, g) is called consistent if the corresponding problem (CP) has a solution.
Otherwise (f, g) is called inconsistent Cauchy data.
3For details on the definition of the Sobolev spaces see [Ad] or [DaLi].
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864 ENGL AND LEITAO

Note that T is an affine operator, since L, and L, are affine as well. The
linear part of T is denoted by 7; € L’(H(l)éz(f‘z)/). The affine term of the
operator 7 depends on the Cauchy data (f,g) and is denoted by
Zr g € Hééz(f‘z)/. Than we conclude that the solution ¢ of (CP) is also a
solution of the fixed point equation

To(=Tw+zr4) = o. 3)

The converse is also true, i.e. if ¢ is a solution of (3), one concludes from the
uniqueness of solution of (CP) that ¢ must be equivalent to U, -

3. ITERATIVE METHODS
3.1. The Maz’ya Iteration

In this section we discuss the functional analytical formulation in [Le] of
an iterative method originally proposed by Maz'ya et al. (see [KMF]).
Defining H:= Hééz(r‘z)’ and following the notation of Section 2, the
Maz’ya iteration can be written in the form of the algorithm:

1. Choose ¢; € H;

2. Fork=1,2,..., do
Vi = L(o1);
@1 = La(Yi);

Notice that this is equivalent to set ¢ := T, k=0,1,..., which
is exactly the Picard successive approximation for equation (3). In this
particular case we have

k—1

O = TH@) = T @) + > T(z1.,). 4)
j=0

The choice of a special topology for the Hilbert space H allows one to verify
the non-expansivity and asymptotic regularity of the operator T,.* These are
the key properties used in [Le] to prove the strong convergence of the
sequence {¢;} to the solution ¢ of problem (CP). The convergence of the
Maz’ya iteration follows basically from

Lemma 1. Let H be a Hilbert space and A: H — H a linear non-expansive
regular asymptotic operator. Given x € H, the sequence {Akx} converges to the
orthogonal projection of x onto Ker(I — A).”

The interpretation of the Cauchy problem’s solution as a solution of
a fixed point equation is already suggested in [KMF]. In this paper, Maz’ya

“The corresponding definitions can be found in [BrPe].
3See [Je] for a complete proof.

MaRcEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

)



ORDER | _=*_[Il REPRINTS

ELLIPTIC CAUCHY PROBLEMS 865

et al. based their argumentation on some monotonicity results and elliptic
theory to prove the convergence of the iterative method.

3.2. The Mann Iteration

In this section we analyze the iterative method introduced by Mann (see
[Ma]) to determine solutions of fixed point equations. Let X be a Banach
space and £ C X a convex compact subset. Given a continuous operator
T:E — E, we know from Schauder’s fixed point theorem that T has at
least one fixed point in E. The considered task is that of constructing in £
a sequence that converges to a fixed point of 7.

The starting point for the development of the Mann iteration is the
ordinary iteration process x;.;:= T(xy), with x; € E arbitrarily chosen.®
Let us introduce the infinite triangular matrix

1 0 o --- 0
P N |

azp 4z dsz

where the coefficients a;; satisfy

i
Dag=0, i,j=1,2,... i)a;=0, j>i i)Y ay=1, i=12,...
=

The Mann iteration is defined by

1. Choose x| € E;
2. Fork=1,2,...do

k
Vi = E ak].xj,
Jj=1

Xper1 := T(vg);
This method is denoted briefly by M(x,, A, T). It can be regarded as a gen-
eralization of the ordinary iteration process, since this corresponds to the
special choice 4 = I (the identity matrix). In the early work [Ma], Mann
proves the following result:

Lemma 2. If either of the sequences {x;}, {v;} converges, than the other also
converges to the same limit, and this common limit is a fixed point of T.

Further properties of the sets of limit points of {x;} and {v,} are also
proved, under additional requirements on the coefficients a;.

®It is obvious that this Picard iteration may fail to converge in this general framework.
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866 ENGL AND LEITAO

The proof in [Ma] can be extended to a locally convex Hausdorff vector
space X and E C X a convex closed subset, by using the regularity of the
matrix 4. A sketch of the proof is given in [Do], which also analyzes the
Mann iteration for quasi non-expansive operators.

In the article [Gr], Groetsch considers a variant of the iteration defined
above. The Banach space X is assumed to be uniformly convex and E C X
convex only. Additionally to i), ii) and iii), the further assumption

) a1y =1 —ayi)a, j<i

is made, in which case the matrix A is said to be segmenting.” The corre-
sponding iterative method is called Mann segmenting iteration. As one can
easily check, v, | can be written in this case as the convex linear combination

Vigr = (I = d)vi + di T(vp), ()

where dy := @y j41, 1.€. vy lies on the line segment joining v, and x;,; =
T(v;). Notice that the choice of the diagonal elements d), determines com-
pletely the segmenting matrix 4. Next we enunciate the main theorem in [Gr]:

Lemma 3. Let T be a non-expansive operator with at least one fixed point in E.
If 302, di(1 — dy) diverges, then the sequence {(I — T)v;} converges strongly
to zero, for every x| € E.

Notice that, differently from Lemma 2, compactness of E is not required
in Lemma 3. This is the reason, why the existence of fixed points of 7" must be
assumed in the last lemma.

In order to prove that M(x;, 4, T) converges strongly to a fixed point of
T for every x; € E, one needs stronger assumptions such as:

e F is closed convex; T(F) is relatively compact in X.

e FE is closed convex; I — T maps bounded closed subsets of E into
closed subsets of E.

e FE is closed convex; T is demicompact in the sense of [BrPe].

One should note that the last condition is a particular case of the second one.

In the particular case X is an Euclidian space, £ C X is a convex com-
pact subset, T: E — FE is a non-expansive mapping with a unique fixed point
x € E, and 4 is a segmenting matrix such that > >, di(1 — dy) diverges, then
M(x;, A, T) converges to x, for every x; € E.

It is worth mentioning that Lemma 3 gives on M(x;, 4, T) a condition
analogous to the asymptotic regularity, which was used in Lemma 1 to prove
the convergence of the Maz’ya iteration.

"Due to the geometrical interpretation, we adopt the notation used in [Gr] and [EnSc]. In [Do],
matrices satisfying iv) are called normal matrices.
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ELLIPTIC CAUCHY PROBLEMS 867

4. AN ITERATIVE METHOD FOR CAUCHY PROBLEMS

In this section we introduce a segmenting Mann iteration for solving the
elliptic Cauchy problem (CP). Let T be the operator defined in (2) and 4 a
segmenting matrix. We assume the Cauchy data (f,g) are consistent and
denote by ¢ the solution of the fixed point equation (3). The Mann—
Maz’ya iteration is defined by:

1. Choose ¢, € H;
2. Fork=1,2,...do

k
b= ) aey
=1

¢k+1 = T(¢/c)’

Note that ¢, ¢, € H, k=1,2,.... We represent this iterative process by
(¢1, A, T). Obviously it coincides with the Maz’ya iteration if one chooses
A=1.

Defining the iteration errors g := ¢, — ¢ and y; := ¢, — ¢, we obtain

Ekr1 = Pry1 — @ = T() — T(@) = Ty(pr — @) = Ti(vi)»
k k k k

V=0 —@=Y ayp—@=y ayp— Y ayp= Y  ays;.
= = = =

It becomes clear, that the convergence of the iteration (¢, 4,T) to the
fixed point ¢ is equivalent to the convergence (to zero) of the iteration
(81, A, T/)

In order to analyze this method, we need to define a special topology for
the space H.

Definition 4. Given ¢ € H, let W(p) € H'(Q) be the solution of the mixed
boundary value problem

Pw=0 in Q, w=0 atTly, w,, =¢ atl,.
We define the functional || - ||,:H — R by llgl,:= ([, [VW(p)|*dx)"/>.

It is proved in [Le] that the functional || - ||, defines a norm in H, which

is equivalent to the usual Sobolev norm of this space. Actually, one can verify
that the bilinear form

(0, = fQ VIV () YW () dx

defines an inner product in . In the Hilbert space (H; (-, -),) we are able to
analyze the Mann—Maz’ya iteration (¢;, 4, T).
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868 ENGL AND LEITAO
4.1. Convergence Proof

We start this section discussing an auxiliary convexity result, that is
needed for the proof of the main theorem.®

Lemma 5. Let ¢, ¢ be the sequences generated by the iteration (¢, A, T)
and @ the solution of the fixed point equation (3). If for some ¢ > 0, ky € N
the inequality ||T(¢r) — @il =&, Yk >ky holds, then there exists ¢ >0
such that

@1 — @l = (1 = cdi(1 = d)lld — @Il k= k. (6)

Proof. Notice that ||¢, — ¢l < ||¢; — ¢ll, for k > 1 (see (11) below). Since the
Hilbert space H is uniformly convex, we obtain for every pair x,y € H with
X1, IVl < ligr — @Il and [lx — y|l = ¢ the inequality

12 4+ (1 =)yl = 2A[1(1/2)(x + p)Il + (1 = 20) Iy
< 2:(1 = O)ligr — @l + (1 = 21l — &l (7
< ¢ — @Il —22e(1 = 1)), A €[0,1],

where the constant 0 < ¢ < 1 depends only on ¢ and |¢; — ¢||. Further, it
follows from (5)

b1 — o =1 —d)(gr — @) + di(T(¢r) — T()). ®)
Now, from (8) and (7) with x = T'(¢;) — T(9), y = ¢ — @, A = d}., we obtain
the inequality in (6) with ¢ = 2¢. ]

Next we prove for the Mann—Maz’ya iteration, a result analogous to the
one stated Lemma 3.

Theorem 6. Let T be the operator defined in (2) and A a segmenting matrix
such that Y .-, di(1 —dy) diverges. The iteration (¢, A, T) generates a
sequence {¢,} such that {(I — T)¢,} converges strongly to zero, for every
(S H.

Proof. From the segmenting property (5), follows

@1 — Grcll = dic | T () — Prel- ©)

8For simplicity we denote by || - || the norm of the Hilbert space H, but meant is the norm || - ||,
introduced in Definition 4.
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From the non-expansivity of 7; and (9) we obtain

1T (Prs1) — iyt ll < N1 T(Prq1) — T(@I + 1T (b)) — Pyl
< dilT($r) — il + 1 T(dp) — (1 — di)d — di Tl
= di | T() — ¢l + (1 = dINT(Pr) — il
= [IT(¢r) — ¢xll- (10)

Denoting by ¢ the solution of the fixed point equation (3), we estimate
I6k41 — @l = I(1 — d)y + di T(@p) — (1 — di)gp — d@l|
= (1 = d)(pr — @) + d(T() — T ()l
=< ligx — ¢l (1D
and
¢ — T(Pll = llpr — @+ T(@) — Tl < 2lix — &l (12)

Now, let us assume that (I — T)¢; 4 0 for some ¢;. Since the sequence
I(I — T)¢y|l is monotone decreasing by (10), there exists ¢ > 0 and ky € N
such that

1T(pr) — il = &, k= k. (13)
From (12) and (13) follows
o —@ll = &/2, k= k. (14)

Now we obtain from (13) and Lemma 5
éks1 — @Il < lig — @ll — cdi (1 — di)lldr — @l
< -1 — @l = cdp (1 — dp_)lp—1 — ol
— cdi(1 = dp)ligr — ol
< -1 — @l = llgx — @lle(dy_1(1 — dy_1) + di(1 — di)),
for k > k. Repeating the argumentation we have
k
i1 — @l < N, — @Il — cllgr — @1l Y di(1 — d).
J=ko
This inequality together with (14) imply
k
€ _ e
3 = e, =@l =5 D di(1 —d
J=ko
and we finally obtain
k
1+ d—d)] =208, -5l K=k
J=ko

This gives a contradiction, since Zj’il di(1 — d;) diverges by hypothesis. []
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Notice that to prove Theorem 6, it is enough to verify that (/ — 7T) x
v — 0, for every &; € H. This can be done with minor adaptations in the
above proof.

Corollary 7. Let T be the operator defined in (2) and A a segmenting matrix
such that Y2, di(1 — dy) diverges. For every ¢, € H the sequences {¢;}, {¢r}
generated by the iteration (¢, A, T) satisfy

i G- i
koo =9 o O
where @ is the unique determined solution of the fixed point equation (3).

Proof. Since (f,g) are consistent Cauchy data, existence and uniqueness
of ¢ can be assured (see Section 2). Since (I — T, = (I — T))(¢ — @), it
follows from Theorem 6 that lim,(/ — 7})(¢r — ¢) = 0 or alternatively lim;
dist(¢,— @, N) =0, where N:= Ker(/ — T;). However we know from [Le,
Theorem 2.3] that Ker(/ — 7)) = {0}, from what follows ¢, — @. The
second statement follows from limy ¢, = lim; T(¢x_) = T(9) = ¢. L]

4.2. A Remark on Noisy Cauchy Data

Before analyzing regularization properties and obtaining convergence
rates for the Mann—Maz’ya iteration (see Sections 4.3 and 4.4 below), it is
necessary to make some considerations about the treatment of noisy
Cauchy data.

Let (f,g) be consistent Cauchy data and z;, € H the corresponding
affine term of the operator 7, defined in Section 2. Notice that for every
pair of Cauchy data (f, g e HA () x H&éz(l“l)/, consistent or not, we can
analogously obtain a corresponding affine term Z. In this section we investi-
gate the following question: Given the measured data (f,,g,) in L*(I";)x
H*(TyY, with

”fs _f”LZ +1lge — g”(H(%z)’ <e,

how can we obtain a corresponding affine term z,, such that |z; , — z|| < e.

We claim that z, can be obtained under the following a priori assump-
tion on the exact Cauchy data: /' € H'(I'}), r > 1/2. In order to verify this
assertion, we first use a smoothing operator S: L*(T'}) — H'/*(T")) to gener-
ate afg = Sf. € H'/A(I)), satisfying || f —fg||1/2 < ¢'. The existence of such an
operator follows from

Lemma 8. Let f € H', r > s > 0. There exists a smoothing operator S: L* —
H* and a positive function y with lim, o y(x) =0, such that for € >0 and
1. e L? with ||f —fell2 < &, we have

If = Sfells < v(e).
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Proof. See [BalLe, Lemma 14]. L]

After smoothing the data f, € L*(T")), we finally obtain from the Cauchy
data (f,,g.) a corresponding z, € Hy,*(T'}) such that lzr.q — zell < € (note
that the affine term z; , depends continuously on the data (f, g)).

4.3. A Regularization Property

In this section we analyze a regularization property of the Mann—
Maz’ya iteration. We start defining, for every fixed ¢ € H, the family of
operators

Rl Hoy—g¢,eH, keN, (15)

where ¢, is k-th element of the sequence generated by the Mann—Maz’ya
algorithm (¢, A, T; + ). In the next theorem we prove a regularization prop-
erty of the family {R}}; with respect to the solution ¢ of the fixed point
equation (3).

Theorem 9. Let ¢ be an arbitrary element of H and {R}};.cn be the family of

operators defined in (15). There exists gy > 0 and functions 1:(0,&)) — R,
k:(0,&9) > N, such that

i) t(e) = 0, for e — 0,
it) For every pair of Cauchy data (f,,g;) with ||z, — z; .|l < &, we have

||Rz(g)(28) — ¢l < t(e).

Proof. Let the Cauchy data (f,,g,) be given as in ii). From the identity
@ = R{(zy.,), k € N follows

IRY(z) — @l = IR *(ze — 27 )
< IRCPO) + 1RYze — 27 o).
Using the facts: || T;]| <1, Zj‘;l a;; = 1, one obtains by induction
IR (Wl < Klwll, &k eN.
Substituting in (16) we have
IRY(z.) — @Il < ek + | R “(O)]I. (17)
Now we define for ¢ > 0, the function

w(e):= 2inf ek + | RY *O)]).

(16)

Note that the sequence {Rf_“—’(O)} corresponds to the Mann—Maz’ya algo-
rithm for the (consistent) Cauchy data (f,g)=(0,0) with initial point

@1 = ¢ — ¢. From Corollary 7 follows lim;_, ., R} (0) = 0, and we can con-
clude lim,_,, 7(¢) = 0.
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Given ¢ > 0 we choose k(¢) € N with
ek(e) + IR LO)] < 7(e)

(this is possible from the definition of 7). The theorem follows now
from (17). Ll

As an immediate consequence of Theorem 9, we obtain the following
regularization property of the Maz’ya iteration:

Corollary 10. The Maz’ya iteration regularizes the fixed point equation (3), i.e.
given ¢ € Hééz(f‘z)’, there exists &y >0 and functions t:(0,g0) — R,
k:(0,89) = N, such that lim,_ yt(e) = 0 and for every pair of Cauchy data
(fe, &) with ||z, — z7 4|l < € the inequality || @xe) — @Il < (e) holds.

4.4. Convergence Rates

Notice that in Theorem 9, we obtain an estimate for the iteration error
e, = ¢ — @. However, without making any further assumption on g, (or
equivalently on @), we cannot give concrete choices for z(-), k(-) as functions
of &, i.e. we cannot prove convergence rates.

In this section we consider the iteration residual and use the discrepancy
principle as stopping rule (again without any additional regularity assump-
tion on @), in order to obtain a similar (but constructive) result (at least for
the residuals; for rates of convergence for the iterates themselves, we will need
additional conditions as explained in Section 4.5).

We start by defining the iteration residual. Let (f,g) be consistent
Cauchy data and z, € H with ||z, — z/ .|| < &. Given ¢; € H, let us consider
the sequences

O = 110k + 2700 Gt = Ty + 2z, k=1,2,...,

@] = ¢;. The corresponding residuals (exact and real, i.e. using noisy data)
are defined by

rk::vag_(I_T/)(pk’ ri’:: Ze_(I_T/)(P/i-

Now let u > 1 be fixed. According to the discrepancy principle, we should
stop the iteration at the step k(e, z,) when for the first time [|rf. . Il < ue, ie.

k(e, z¢):= min{k € Nll|z, — (I — T¢Il < pe}. (18)

Remark 11. Notice that the residual sequences {||ri|l}, {llrill} are non-
increasing. Indeed, this follows from

g — U = T = 270 = U = T)(Tii + 27.)
= T)(zr.g = U = T,
ze — (I — T1)<P/i+1 = T)(z. — (I — T))¢}).

and the non-expansivity of T).
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Next we obtain an estimate for k(e, z,) in (18). For simplicity we con-
sider only the Maz’ya iteration (4 = I), being the general case completely
analog. (This result is comparable to the one known for the Landweber
iteration; see e.g. [EHN, Section 6.1] or [EnSc].)

Theorem 12. If u > 1 is fixed, the stopping rule k(e,z,) determined by the
discrepancy principle in (18) satisfies k(e, z,) = 0(872).

Proof. Given a linear non-negative operator 7:H — H we have
(TY, TY) =W, ¥) = =T, —=T)y) —=2{U =Ty, TY), veH.
Using this identity for 7' = T}, ¥ = ¢ — ¢;, we obtain
16 = @1 l? = 19 = iI” = Iz, — (I = Ty
=2 = T — ). Ti(¢ — ¢))
(notice that TY = ¢ — ¢;;1) and we can estimate
16 =il =10 = ¢all* = llz7. — U = T,
+ 2T = T))(@ — @), (¢ — ¥)))
> llz7.q — (= Ty (20)
Adding up this inequalities for j = 1,...,k, we obtain

(19)

k
16— @il? = 16— @it 1> = Y Nzpg = = T = kllzp o — (I = Tl
j=1

(in the last inequality we used the monotonicity of the sequence |r.||; see
Remark 11) and we can conclude

Iz e = = TDoell® < k7116 — @11 21
Now, let us consider the real residual r;. We have
lze = (I = T@isi | = 1T/ (ze = (I = Tyl

< I TFGe = 2.6l + 1T G — T = T
<e+llzr e — U = Tl
Substituting (21) in the last inequality, we obtain

Ize = (I = TDiall e +k™“llo —oll. (22)

Since the right hand side of (22) is lower than we for k > (u— 1)">x
16 — ¢ lI°e2, we have k(e,z,) < ce”2, where the constant ¢ > 0 depends
only on u and ¢;. ]

172

From Theorem 12 we obtain the desired convergence rates for the resi-
duals in the Mann—Maz’ya iteration. (Notice that, as in Theorem 9, we do
not make any additional regularity assumption on the solution ¢.)
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Corollary 13. Let (f, g) be consistent Cauchy data, T > 1 and € > 0. Given the
noisy data (f,,g.), with ||z, — zr 4|l < €, the stopping rule k(e, z,) determined by
the discrepancy principle satisfies

l) ”Zs - (I - T/)wli(s,zg)” = pne;
i) k(e z.) = O(?).

4.5. Convergence Rates Under Source Conditions

In this section we again use the discrepancy principle as stopping rule
for the iteration. However, differently from Section 4.4, we make additional
regularity assumptions on the solution of the fixed point equation (3). This
assumptions are stated in the form of the so-called source conditions. This is a
common way to insert in the estimates some a priori knowledge about the
solution and the spectrum of the operator 7;. In this way, we can also obtain
convergence rates for the approximate solutions, not only for the resulting
residuals.

Source conditions for linear problems usually have the form

- =Dy, vl <.

If f(A) = A" for some u > 0, we have the Holder-type source conditions. Since
our problem is exponentially ill-posed (the eigenvalues of 7; converge expo-
nentially to 1; see e.g. [Le]) this type of condition is too restrictive. Much
more natural in this case is to use logarithmic-type source conditions:

f0):= {%n(exp(m—l»—f’ -0 (23)

with some parameter p > 0. (See Remark 16 for an interpretation of this
source condition.)

Theorem 14. Let (f, g) be consistent Cauchy data and assume that the solution
@ of the fixed point equation (3) satisfies the source condition

o—@ =fU—-T)Y, for some Y€ H, (24)

where ¢; € H is some initial guess and [ is the function defined in (23) with
p = 1. Let > 2,(f,,g.) some given noisy data with ||z, — zy .|| < ¢, & > 0 and
k(e, z,) the stopping rule determined by the discrepancy principle. Then there
exists a constant C, depending on p and ||| only, such that

i) o=l < C(nk)™
ii) llze —( — T)gill < Ck~'(Ink)™”

for all iteration index k satisfying 1 < k < k(e, z,).
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Proof. We set ¢, := ¢; — ¢, P:= 1 — T, (note that P is self-adjoint positive
non-expansive and compact). It follows from the definition of the iterative
algorithm that

k=2

e =>UI—-P/ e+ (I =Pz, — 20,
=0

Pej=(I = P)"'Pe; + (P = (I = P)! "z — ). (25)
for £ > 2. Now, from Lemma A.2, follow the estimates

legll < cllyll(n(k + 1) + e(k — 1) (26)
and

| Peyll < clylltk = D™ (nk + 1) 7" +e. 27
Further, we obtain from the discrepancy principle

e < llze — (I = T@ill = 1Pg — P+ z o — 2|l < | Perll +e. (28)
for 1 <k < k(e, z,). It follows from (28) and (27)

s —2) < cllylltk — 1)~ (In(k + 1) . (29)

Now, from (29) and (26) we obtain
1 _
el < cllvll <1 +m)(ln(k + )™ (30)

Since ¢:= sup;n{(In(k + 1)/ In(k))”} < oo, assertion i) follows from (30)
with C = c||¥||(1 + 1/(x — 2))c. Now we prove ii). It follows from (28)
and (27)

e = (I = TD@ill < 1Pexll + & < cll¥litk — )~ (Ink + 1) 7 + 2¢
and together with (29) we have

Iz, 1= Tt = et (1425 )= ) N ne ). )

Since ¢*:= supyn{(k + 1)/k)} < oo, assertion ii) follows from (31) with
C=c|YI(1+1/(n—2)c"c. ]

It is simple to check that, in the case of exact Cauchy data (¢ = 0),
assertions i) and ii) of Theorem 14 hold for every k > 1. Therefore, in
the case of exact data and under the source condition (24), the iteration
approximates the solution of the fixed point equation (3) with a rate of
O(In(k)™?).

In the case of noisy data, the next theorem gives an estimate for the
asymptotic behavior of the stopping index k(e, z,) in dependence of the noisy
level e.
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Theorem 15. Set k, := k(e, z,). Under the assumptions of Theorem 14 we have

i) ke(In(k,)y = O™,
ii) llg— ¢kl < O((—Ine)™).

Proof. In the sequence we use the notation of Theorem 14. From inequality
(29) for k =k, — 1 follows

(n—2)e < ¢1(k. —2)"'(Ink,)™”
and we obtain
e > o)k, — 2)(Ink.Y > csk (Ink.Y,

proving the first assertion. Now we prove ii). From (25) follows

ko—2 ’

e, =U—=P)ey+ > (I = PY(zy — 2.
j=0

- (32)

=fPWi, + Y (= PY(z ¢ — 2o),
J=0

where ¥ = (I — P)k*_lw. Then we can estimate
lex Il < 1L/ (P |l + k. (33)
Next we estimate the term Pf(P)y . From (32) follows
IPF (P || = [[Pe, — [(1 — (I = P ")(zp y — 2]
< Pey, — (zr.g —z)ll + €
= I = Tk, — zll +¢
<(u+1e.

(34)

Further, we have from Lemma A.3

IPf (P |I”

1
= exp(1)”? /0 exp(~[(1 ~1nG) TP (1 — )y P dE, v, P

/ol
> exp(1>—2h< fo (- ln(x>>—2f’d||Emkﬁn2>

= exp(1) Al (P I17). (35)
Then we obtain from (34), (35) and Lemma A .4
ILf(P)Y |l < O((=In(e*?)) ™). (36)
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Now we estimate the term ek,. From assertion i) and Lemma A.5 follows
ke =0(™ (= Iny/&)™). (37)
Now, from (33), (36), (37) follows
leg, I < O((=In(e)) ™) + e0(e™ (= In V&) ") < O((— In V&) ™),

proving the second assertion. (]

Remark 16. Next we consider the question of how to interpret the source
condition defined in (24). Let Q be the square [—m,n] x[—-m, 7], [ =
{(x,y) € 0Q2; x = —m}, Th={(x,y) € 0Q; x =n} and consider the Cauchy
problem

Au=20 in
u:f atFl
u,=g at I'y

ux, £m)=0 xe(—m,n)

where f( y) Zj a;sin(jy), g(y) = Z] b;sin(jy). Given the Neumann data
o(y)= Z =19 sin(jy), we can explicitly represent the operator T definedin (2) by

N N\ 2
(To)n =Y [(ﬁ) o+ (J ;)a i1 b}sin(jy), (38)
=1 ﬁ] 13 IBJ

where a; = sinh(2jmr) and B; = cosh(2jm). Now we define the Sobolev spaces of
periodic functions

Hyo(—m,7):= {p(y) = Y _ ¢

JjeZ

> (1+/)¢ <00}, seR.

jeZ

If the Cauchy data (f,g) is sufficiently regular, the Maz’ya iteration is well
defined at HI;]r/ 2(T")) and we obtain from (38) a spectral representation of the
linear part of the operator T':

(Tio)(¥) =Y Mo, sin(jy) (39)
=1
II- ||
with A; = (a_,-/,B_,)z, at the space H := Span{sin(jy), j € N} . From the
estimate

In (‘?‘E?) —In (exp(l)[ Z ])
] J

B 2 exp(—2jm) )
=0 et = ¥
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and from the source condition (24) follows

- R 2 exp(1) I 2
||<P—§01||p=Z(1 +j7Y In 1) ¥
=1 j

< Z(l + j2Y(4mj — 1)_2131#,2 < czwjz < 0.
=1 =1

This means that the source condition (24) can be interpreted as a regularity
condition in the sense of H” spaces, i.e. ¢ — ¢, € Hp (T'y). This shows that a
logarithmic source condition is indeed appropriate for our problem.

5. NUMERICAL EXPERIMENTS

Next we present some numerical results related to the numerical imple-
mentation of the Mann—Maz’ya iteration. The first two problems concern
consistent Cauchy problems in a square and in an annular domain. In the
third example we consider a problem with noisy data.

The computation was performed on the Silicon Graphics SGI-machines
(based on R12000 processors; 32-bit code) at the Spezialforschungsbereich
F013. The elliptic mixed boundary value problems were solved using the
(NETLIB) software package PLTMG.’

5.1. A Consistent Problem in a Rectangular Domain
Let © C [R? be the open rectangle (0, 1) x (0, 3/4) and define the follow-
ing subsets of 9L2:
I :={(x,0); x € (0, 1)}, Iy :={(x,3/4); x € (0, 1)},
3:={0,); y€(0,3/4)},  Ty:={1,»); y €(0,3/4)}.
We consider the Cauchy problem

Au=0 1n Q
M:_f at Fl
u,=g atly

u=>0 atF3UF4

where the Cauchy data f(x) = sin(wx), g = 0 is given at [';. We aim to recon-
struct the (Dirichlet) trace of u at T',. As one can easily check, the exact
solution of this Cauchy Problem is given by u(x, y) = cosh(;ry) sin(x).

See URL http://www.netlib.org for details.
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We used in the iteration the matrix 4 = (a;), with ay = k=" for j < k.
As initial guess, we chose ¢; = 0. Each mixed boundary value problem was
solved using (multi-grid) finite element methods, with linear elements and
a uniform mesh with 65921 nodes (256 nodes on I';). We used the stopping
rule lor — gr—ill 2y < 1072, In Figure 1 we present the results correspond-
ing to the Mann-Maz’ya iteration: the dotted line represents the exact
solution and the solid line represents the sequence generated by (0, 4, T).

As one can observe in Figure 1, the convergence rate decays very fast.
This can be in part explained by linear convex combination used to compute
Yy in the Mann-Maz’ya iteration (note that ¥y, — ¢ = (1/(k+ 1)) x
Y1 — (1/k(k + 1)) Z]/;l ©r). As an alternative to improve the convergence
rate, we relaxed the stopping rule and restarted the iteration, using the last
evaluated ¢, as new initial guess. In Figure 2 we present the results corre-
sponding to this restart strategy. For comparison purposes, we restarted the
iteration after every 50 steps. Thus, to compute the results in Figure 2, we had
to evaluate 50, 100, 250 and 500 iteration steps respectively.

The restart strategy seams to save a considerable amount of computa-
tion effort, however we should quote that we have no analytical justification
neither for the choice of the restart criterion nor for the improvement in the
convergence rate. (Argumenting as in Section 4.3, one can verify that the
sequence of residuals is again non-increasing.)

step 10 step 100 step 1000 step 5000
54 5 R 5 S, 57 I
49 49 4 49
3] 3] 3] 34
2 2] 2] 2
11 1 1 T E N
e . _/./// ;"“\\ ‘) -',"'/ \-\\"’ . AN
03704 0% 08 030406 08 103 04 06 08 0% 04 06 08 1
Figure 1. Rectangular domain; iteration for consistent Cauchy data.
step 50 1st Restart 4th Restart Oth Restart
] 5] ] sy % ey
49 49 49 49 L
. ‘\A
34 34 . <R . 3 \
21 21 Ll 2 \.\ 2{
15 E R e S 1 MR
T - . Nl A 5
i 1 — (1 S (15 S
02 04 06 08 02 04 06 08 02 04 06 08 1 02 0.4 06 08 1

Figure 2. Rectangular domain; iteration with restart strategy.
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5.2. A Consistent Problem in an Annular Domain

Let Q be the annulus centered at the origin with inner and outer radius
respectively 1 and 3. We denote the inner and outer boundaries by I'; and I'y
respectively. We consider the following Cauchy problem:

Au=0 1nQ
U:_f at Fl
u,=g atly

Given the Cauchy data f(6) =sin(d) —sin(20)/2 and g=0 at I';, we
want to reconstruct at I', the trace of u. It is easy to check, that the
solution of this Cauchy problem is given by u(r,0) = (1/2)(r + 1
sin(0) — 1/4(* + %) sin(20).

The matrix A is chosen as in Section 5.1. For the multi-grid method
we used linear elements and a (uniform) mesh with 61824 nodes (512 nodes
on I'y). We use the same initial guess ¢; = 0 and the same stopping rule as in
the previous example. In Figure 3 we present the results corresponding to the
Mann—Maz’ya iteration: the dotted line represents the exact solution and the
solid line represents the sequence generated by the iteration (0, A, T). (Note
that in Figures 3—5 the horizontal axis is parameterized from 0 to 2.)

step 5 step 10 step 50 step 100
-~ £ ~ o
39 S 31 o 3 i 39 N
24 . N 2 2y ]
N FARRY ¥
1 N ~l N ~ 1 | ~l ! 2
0~ 03- { I I O A 1 o /0
\ /- 3 ; N i 7
RERV \ 13 E RV { IERY
<N\ i 3
-2 B -2 -2 4 2]
37 y e i -39 VI ¥
02 06 112 16 2 02 06 112 16 2 02 06 112 16 2 02 06 112 16 2

Figure 3. Annular domain; iteration for consistent Cauchy data.

0044

_0.06 1 \] ' Y

02 06 112 16 2 02 06 112 16 2
(a) (b)

Figure 4. Generation of noisy data; (a) Perturbation added to the Dirichlet data;
(b) Perturbation added to the Neumann data.
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step 10

F
0206 112 16 2 02 06 112 16 2 “02706 112 16 2

Figure 5. [lteration for noisy data in the annular domain; dotted-line: exact solution; thin-
line: iteration for exact data; thick-line: iteration for noisy data.

5.3. An Inconsistent Problem (Noisy Data)

For this experiment we consider once more the Cauchy problem for-
mulated in Section 5.2. The noisy data is obtained by inserting in the exact
Cauchy data (f,g) = (sin(6) — (1/2)sin(20),0) a perturbation of 5%. In
Figure 4 we present the perturbations added to the Dirichlet and to the
Neumann data.

The matrix A4 is chosen as in Section 5.1. The initial guess, stopping rule
and mesh level used for the computation are the same as those considered in
that section. The results corresponding to the Mann—Maz’ya iteration are
presented in Figure 5 (thick line).

As one can see in Figure 5, the performance of the numerical
implementation of the Mann—Maz’ya iteration is stable. The high frequency
components of the error start to interfere in the iteration only after an expo-
nential number of steps. Indeed, in the Maz’ya algorithm the iteration error
er = @ — ¢ satisfies e = Tyep = T,kel, and the eigenvalues of the fixed
point operator 7; converge exponentially to 1 (see Remark 16 for an exam-
ple). Thus, the iteration reconstructs first the projection of the solution over
the first eigenspace of the operator 7; after an exponential number of steps,
it reconstructs also the projection over the second eigenspace; and so on.

The high frequency components of the error are exponentially amplified
and destroy completely the approximation if we iterate long enough.
However, due to the characteristic explained above, one has to evaluate an
exponential number of steps in order to observe the influence of the bad
frequencies.

6. FINAL REMARKS
Let us suppose 02 =T'; UT', UT'; and we want to analyze a Cauchy

problem with data given at I'; plus some further boundary condition
(Neumann, Dirichlet, ...) at I'; (this is precisely the situation in Section 5.1).
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It is still possible to use the Maz’ya method for such problems. All we have to
do is to adapt the Maz’ya iteration by adding this extra boundary condition
at I'; to both mixed boundary value problems at each iteration step. This
over-determination of boundary data does not affect the analysis of the
Maz’ya algorithm (see [Le]). Consequently, it also does not affect the
analysis of the Mann—Maz’ya iteration presented here.

The Maz’ya iterative method (see Section 3.1) generates a sequence of
Neumann traces, which approximate the unknown Neumann boundary con-
dition u, Ay Analogously, we can define an iterative method, which produces
a sequence of Dirichlet traces (this was already suggested by Maz’ya et al. in
[KMF]). The convergence proof for this iteration is quite similar to the one
presented in [Le] for the Maz’ya iteration. It is also possible to combine this
iteration with the Mann strategy. All the results formulated here for the
Mann—Maz’ya method remain valid for this iteration.

The approach followed in [Le] to characterize the solution of elliptic
Cauchy problems as a solution of a fixed point equation can be extended,
using spectral theory, to differential operators of hyperbolic and parabolic
types (see [BaLe]). The formulation of the Mann iteration for this problems
follow the lines discussed here.

APPENDIX

Lemma A.l. Let p>0 and keN,. Define the real-valued function
F(0) = (1 = V(n (exp(1))/A) 77, & €[0,1]. Then we have

f) < Clnk)™?, Arel0,1],

with C independent of k. Moreover, for each p € R, the real-valued function
g(0) = (1 — A'A(In(exp(1))/1) 7 defined on [0, 1], satisfies

g0) < Ck™'ink)™”,  re€[0,1],
with C independent of k.

Proof. The first assertion is proved in [DES, Lemma A.1]. The second asser-
tion is quite similar to the second part of the lemma cited above and can be
proved with an analogous argumentation. L]

Lemma A.2. Let p > 0, H a Hilbert space, P.'H — H a positive linear self
adjoint non-expansive operator, f the real-valued function defined by

1= { (In(exp(DA™)" 2 € (0.1]
0 A =0.
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Let e := f(P)Y, for some € H. Then for any k > 1
I = PYeerll < Cllll(In(k +2))
I(Z = P)*Pey || < Cllylk™" (In(k + 2))”
with C independent of k.

Proof. This lemma is analogue to the result stated in [DES, Lemma 2.6]. It
follows from Lemma A.1, the same way as [DES, Lemma 2.6] follows form
[DES, Lemma A.1]. L]

Lemma A.3. Given p > 1, then

1 1
~ 2 ~ _2
/0 (1 = 100y = /0 (1 = In()dr),
with h(t):= exp(—1"2)2.

Proof. The assertion follows from the convexity of h in [0,00) and Jensen’s
inequality. (see [DES, Lemma A.2]) L]

Lemma A4. Let p>1, C>0 and ¢ > 0 sufficiently small such that 1 >
(—In(Ce*?))™ > ¢. Let

/ 1 h((1 = In(0) " )d|| Eyy|* = Cs?.
0

Then there exists D > 0 (independent of &) such that
1
[ @ = mGy i < D= ).
0

Proof. Let 5, = (— In(C&e*?))™. Then
h(sy) = (Ce¥* (= In(Ce*?) ™7 > C& .

Thus, it follows from the monotonicity of h that the equation l;(s) = C¢” has
a solution s; € (0, s,]. From the assumptions and Lemma A.3 follows

1
h( / (1- ln(x))‘zf’dnEmnz) < Cs
0
and we conclude from the monotonicity of h that
1
[ = Gy =51 = 52 = DIy
0

for a generic constant D. L]
Lemma A.5. Let k be a solution of
k(lnk)Y = Cs™'.

Copyright © Marcel Dekker, Inc. All rights reserved.
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Then k satisfies

k=0@"(=1n2)™).
Proof. Follows immediately from [DES, Lemma A.6]. L]
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