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AbstratWe investigate an iterative mean value method for the inverse (andhighly ill-posed) problem of solving the heat equation bakwards in time.Semi-group theory is used to rewrite the solution of the inverse problemas the solution of a �xed point equation for an aÆne operator, withlinear part satisfying speial funtional analytial properties. We give aonvergene proof for the method and obtain onvergene rates for theresidual. Convergene rates for the iterates are also obtained under theso alled soure onditions.1 IntrodutionThe problem of solving the heat equation bakwards in time is a lassial ex-ample of ill-posed problem. Using semi-group theory to represent the solutionof paraboli problems, one an verify that this partiular problem is modeledby a linear positive operator, whose eigenvalues onverge exponentially to zero(see Setion 2).In this paper we introdue a mean value method, based on the Mann iter-ation, in order to �nd the solution of a �xed point equation assoiated to theinverse problem. The development presented in [6℄ for ellipti Cauhy problemsis extended to this inverse paraboli problem.Our algorithm generalizes the iteration introdued in [1℄, where this problemis also onsidered. In that paper the authors obtain the same �xed point equa-tion treated here. However they propose a method based on solving suessivewell-posed initial value problems, whih an be interpreted as a partiular aseof our mean value method.yPartially supported by CNPq grant 150019/01-7.



2 A. Leit~aoThe paper is organized as follows. In Setion 2 we introdue some neessarynotation and formulate the inverse problem. We also reinterpret the inverseproblem in the form of a �xed point equation. In Setion 3 we present anoverview of the iterative method introdued by W.Mann. In Setion 4 we for-mulate our mean value method and give a onvergene proof for the ase ofexat data. In Setion 5 we onsider problems with noisy data. The general-ized disrepany priniple is used to obtain onvergene rates for the iterationresidual. Using appropriate soure onditions, we also prove onvergene ratesfor the iterates. Finally, we disuss an example, whih shows that for this par-tiular inverse problem, the soure onditions an be interpreted in terms ofregularity of the solution in Sobolev spaes.2 Formulation of the inverse problemWe start this setion introduing some notation. Given a normed linear spaeH, we all an operator T : H ! H non expansive if kTk � 1. An arbitraryoperator T : H ! H is alled regular asymptoti in H iflimk!1 kT k+1(x)� T k(x)k ! 0; 8x 2 H:Let 
 � IRn be an open bounded set with smooth boundary �
 and �be a positive self-adjoint unbounded operator (with disrete spetrum) denselyde�ned on L2(
). The resolution of the identity assoiated to � is representedby E�, � 2 IR. The family of Hilbert spaes Hs(
), s � 0 (or simply Hs) isnow de�ned byHs(
) := f' 2 L2(
); k'k2s := Z 10 (1 + �2)sdhE�'; 'i <1g: (1)Obviously H0 = L2(
). The Hilbert spaes H�s(
) (with s > 0) are de�nedby duality: H�s := (Hs)0. One should notie that the embedding Hr ,! Hs,r > s is dense and ompat. It is worth mentioning that in the speial ase� = (��)1=2, where � is the Laplae{Beltrami operator on 
, we have Hs(
) =H2s0 (
), where Hs0(
) are the Sobolev spaes aording to Lions and Magenes.Next we formulate the inverse problem onsidered in this paper. Given afuntion f 2 H0 let u 2 (V; k � kV ), whereV := L2(0; T ;H1(
)); kuk2V := Z T0 (ku(t)k21 + k�tu(t)k2�1) dt; (2)



Mean value methods for solving the heat equation ... 3be the solution of(P ) � (�t + �2)u = 0; in (0; T )� 
u(T ) = f :Our goal is to reonstrut u(t) at t = 0. In other words, given a temperaturepro�le at the time t = T and a heat transport equation, �nd the orrespondingtemperature pro�le at the initial time t = 0. Problem (P ) orresponds tothe inverse heat transport problem, whih is known to be exponentially ill-posed. This assertion follows immediately from the expliit representation ofthe solution u of problem (P ), whih is given byu(t) = exp(�2(T � t)) f: (3)Indeed, using the eigenfuntions of �, one an onstrut a sequene of data fkonverging (uniformly) to zero in H, while the V -norm of the orrespondingsolutions uk do not.Notie that if u 2 V , then u(0); u(T ) 2 H0. Another important remarkonerning the inverse problem: given f 2 H0, problem (P ) has exatly onesolution in V . Thus the problem of determining u(0) (solution) from u(T )(data) has always a solution, this solution is unique, but it does not depend ina stable way on the problem data.In the sequel we haraterize the solution of our inverse problem as thesolution of a �xed point equation. We start by onsidering problem (P ) withdata f 2 H0 and denote by �x the solution of the inverse problem, i.e. �x = u(0).Let the positive onstant �� be de�ned by�� := inff�; � 2 �(�)g: (4)Next we hose a parameter  2 (0; 2 exp(��2T )): (5)Given ' 2 H0, let us onsider the following initial value problem of parabolitype(Q) � (�t + �2)w = 0; in (0; T )� 
w(0) = 'We de�ne the aÆne operator T : H0 ! H0 byT' := '� (w(T )� f): (6)



4 A. Leit~aoA straightforward alulation shows that T �x = �x, i.e. �x is a �xed point of T .Further, sine the solution of problem (Q) an be written asw(t) = exp(��2t)'; (7)we obtain for the operator T the representationT' = �I �  exp(��2T )�'+ f: (8)Remark 1 In [1℄ several properties of the linear part of the operator T , namelyTl = I �  exp(��2T ), are investigated. The most relevant ones are self-adjointness, nonexpansivity, asymptoti regularity and the fat that 1 is not aneigenvalue of Tl (although 1 belongs to the ontinuous spetrum of Tl). Further,under the stronger assumption  < 2 exp(~�2T ), where ~� := (��2 � T�1 ln 2)1=2,injetivity of Tl an also be proved.Remark 2 If we write the inverse problem in the form S�x = f , with S :=exp(��2T ), equation (6) resembles very muh the �xed point equation�x = �x+ S�(f � S�x); (9)whih is based on a transformation of the normal equation. If kSk2 < 2, therelated �xed point operator I � S�S is nonexpansive and one may apply themethod of suessive approximation (this orresponds to the so alled Landweberiteration: 'k+1 = 'k + S�(f � S'k)). However, this ondition is not satis�edis our ase. The idea in [1℄ is to hoose a relaxation parameter  > 0 suh thatI�S is nonexpansive and then apply the suessive approximation method forthe �xed point equation �x = �x +  (f � S�x): (10)3 The Mann iterationWe present a brief overview of the method introdued by W. Mann in 1953 in[9℄. Given a Banah spae X and E � X, Mann onsidered the problem ofapproximating a solution of the �xed point equation for a ontinuous operatorT : E ! E.In order to avoid the problem of existene of �xed points, the subset E wasassumed to be onvex and ompat (the existene question is than promptly



Mean value methods for solving the heat equation ... 5answered by the Shauder �xed point theorem). Strongly inuened by theworks of Ces�aro and Topelitz, who used mean value methods in the summationof divergent series, Mann proposed a mean value iterative method based on thePiard iteration (xk+1 := T (xk)), whih we shall present next.Let A be the (in�nite) lower triangular matrixA = 0BBB� 1 0 0 � � � 0 � � �a21 a22 0 � � � 0 � � �a31 a32 a33 � � � 0 � � �... ... ... . . . ... ... 1CCCA ;with oeÆients aij satisfyingi) aij � 0 ; i; j = 1; 2; : : :;ii) aij = 0 ; j > i;iii) iPj=1 aij = 1 ; i = 1; 2; : : :.Starting with an arbitrary element x1 2 E, the Mann iteration is de�ned in thefollowing way1. Choose x1 2 E;2. For k = 1; 2; : : : dovk :=Pkj=1 akj xj;xk+1 := T (vk);In the sequel we denote this iteration briey by M(x1; A; T ). Notie that withthe partiular hoie A = I, this method orresponds to the usual suessiveapproximation method. Next we state the main result in [9℄.Lemma 1 Let X be a Banah spae, E � X a onvex ompat subset, T :E ! E ontinuous. Further, let fxkg, fvkg be the sequenes generated by theiteration M(x1; A; T ). If either of the above sequenes onverges, then the otheralso onverges to the same point, and their ommon limit is a �xed point of T .Proof. See Theorem 1 in [9℄.



6 A. Leit~aoIn that paper, the ase where neither of the sequenes fxkg, fvkg onverges isalso onsidered. Under additional requirements on the oeÆients aij, a relationbetween the sets of limit points of fxkg and fvkg is proven.Many authors onsidered the Mann iteration in other frameworks. Amongothers we mention [4℄, [7℄, [8℄ and [10℄. In the sequel we disuss a result obtainedby C.Groetsh, whih will be useful in the further disussion. In [7℄, Groetshonsiders a variant of the Mann iteration. The Matrix A is assumed to besegmenting, i.e. additionally to properties i), ii) and iii), the oeÆients aijmust also satisfyiv) ai+1;j = (1� ai+1;i+1) aij, j � i.One an easily hek that, under assumptions i), . . . , iv), the element vk+1 ofM(x1; A; T ) an be written in the form of the onvex linear ombinationvk+1 = (1� dk)vk + dkT (vk); (11)where dk := ak+1;k+1. In other words, vk+1 lies on the line segment joining vkand xk+1 = T (vk), what justi�es the denomination of segmenting matrix. Notiethat in this ase the hoie of the diagonal elements dk determines ompletelythe matrix A. The following lemma orresponds to the main result in [7℄.Lemma 2 Let X be an uniformly onvex Banah spae, E � X a onvexsubset, T : E ! E a nonexpansive operator with at least one �xed point in E.If P1k=1 dk(1� dk) diverges, then the sequene f(I � T )vkg onverges stronglyto zero, for every x1 2 E.Proof. See Theorem 2 in [7℄.In order to prove strong onvergene of the sequene fxkg, one needs strongerassumptions on both the set E and the operator T (e.g. E is also losed andT (E) is relatively ompat in X).Notie that Lemma 2 gives on fxkg a ondition analogous to the asymptotiregularity, whih is used in both [10℄ and [2℄. This ondition is also used in [1℄and [6℄ for the analysis of linear Cauhy problems.The last result we analyze in this setion is due to H.W.Engl and A. Leit~aoand is the analog of Lemma 2 for aÆne operators with nonexpansive linear part,de�ned on Hilbert spaes.



Mean value methods for solving the heat equation ... 7Lemma 3 Let H be a Hilbert spae and T : H ! H an aÆne operator withnonexpansive linear part. Further, let A be a segmenting matrix suh thatP1k=1 dk(1 � dk) diverges. The iteration M(x1; A; T ) generates a sequene vksuh that f(I � T )vkg onverges strongly to zero, for every x1 2 H.Proof. See Theorem 6 in [6℄.4 A mean value method for the inverse heattransport problemThe iterative method proposed in this paper orresponds to the Mann iterationapplied to the �xed point equation T' = ', where the operator T is de�nedin (8). Initially we address the question of onvergene for exat data. Giventhe exat data f 2 H0 we have the following onvergene result:Theorem 1 Let T be the operator de�ned in (8) and A a segmenting matrixwith P1k=1 dk(1� dk) =1. For every x1 2 H0 the iteration M(x1; A; T ) gener-ates sequenes xk and vk, whih onverge strongly to �x, the uniquely determined�xed point of T .Proof. Existene and uniqueness of the �xed point �x was already justi�ed onSetion 2. Let Tl be the linear part of the operator T . Sine (I � Tl)(vk � �x) =(I � T )vk and Ker(I � Tl) = f0g (see Remark 1 or [1, Lemma 8℄ for details), itis enough to prove that limk(I�T )vk = 0. This however follows from Lemma 3.5 Convergene ratesIn this setion we onsider the ase of inexat data. This is a partiularlyinteresting question, what onerns the appliation of this method to real liveproblems. Let us assume we are given noisy Cauhy data f" 2 H0, suh thatkf � f"k � "; (12)where " > 0 is the noise level and f 2 H0 represents the exat problem data.This assumption is relevant in the ase where f" is obtained by means of mea-surements, sine measured data always ontain errors. In this ase we onsider



8 A. Leit~aothe iteration residual and use the generalized disrepany priniple to providea stopping rule for the algorithm.In the sequel, we onsider for simpliity the partiular ase where the seg-menting matrix is given by A = I, the identity matrix. We start by de�ningthe iteration residual. Given x1 2 H0, let us onsider the sequenesxk+1 = Tl xk + f; (13)x"k+1 = Tl x"k + f"; (14)generated by the iterative method (note that x"1 = x1). The orrespondingresiduals (exat and real, i.e. using noisy data) are de�ned byrk := f � (I � Tl)xk; (15)r"k := f" � (I � Tl)x"k: (16)Notie that the residual sequenes fkr"kkg, fkrkkg are noninreasing. Indeed,this follows from the nonexpansivity of the operator Tl.Now let � > 1 be �xed. Aording to the disrepany priniple, the iterationshould be stopped at the step k("; f"), when for the �rst time kr"k(";f")k � �",i.e. k("; f") := minfk 2 IN j kf" � (I � Tl)'"kk � �"g: (17)If we do not make any further (regularity) assumption on the solution �x, weannot prove onvergene rates for the iterates kxk� �xk. However, it is possibleto obtain rates of onvergene for the residuals.Next we obtain an estimate for k("; f") in (17). The proof of this result issimilar to the one known for the Landweber iteration (see, e.g. [5, Setion 6.1℄).For onveniene of the reader we inlude here the proof.Proposition 1 If � > 1 is �xed, the stopping rule de�ned by the disrepanypriniple in (17) satis�es k("; f") = O("�2).Proof. We start from the identityk�x� xj+1k2 = k�x� xjk2 � kf � (I � Tl)xjk2� 2h(I � Tl)(�x� xj); Tl(�x� xj)i (18)to obtain the estimatek�x� xjk2 � k�x� xj+1k2 � kf � (I � Tl)xjk2: (19)



Mean value methods for solving the heat equation ... 9Adding up this inequalities for j = 1; : : : ; k we an onludekf � (I � Tl)'kk2 � k�1k�x� x1k2: (20)Sine the real residual r"k satisfykf" � (I � Tl)x"k+1k � "+ kf � (I � Tl)xkk; (21)we obtain from (20)kf" � (I � Tl)x"k+1k � " + k� 12 k�x� x1k: (22)Sine the right hand side of (22) is lower than �" for k > (��1)�2k�x�x1k2"�2,we have k("; z") �  "�2, where the onstant  > 0 depends only on � and x1.From Proposition 1 it is possible to obtain rates of onvergene for theresiduals.Corollary 1 Let f be the exat data, � > 1 and " > 0. Given noisy dataf", with kf" � fk � ", the stopping rule k("; f") determined by the disrepanypriniple satis�esi) kf" � (I � Tl)x"k(";f")k � �";ii) k("; z") = O("�2).If appropriate regularity assumptions are made on the �xed point �x, it ispossible to obtain onvergene rates also for the approximate solutions. Thisadditional assumptions are stated here in the form of the so-alled soure on-ditions (see, e.g., [5℄). Sine our inverse problem is exponentially ill-posed, thesoure ondition take the form�x� x1 = F (I � Tl) y; (23)where y is some funtion in H0 and F is de�ned byF (�) := � (ln(e=�))�p; � > 00; � = 0with p > 0 �xed. This hoie of F orresponds to the logarithmi-type soureonditions. Under these assumptions we an prove the following rates:



10 A. Leit~aoProposition 2 Let f be given data and assume that the �xed point �x of Tsatis�es the soure ondition�x� x1 = F (I � Tl) y; for some y 2 H0; (24)where x1 2 H0 is some initial guess and F is de�ned as above for some p � 1.Let � > 2, f" some given noisy data with kf" � fk � ", " > 0 and k("; f")the stopping rule determined by the disrepany priniple. Then there exists aonstant C, depending on p and kyk only, suh thati) k�x� x"kk � C(lnk)�p;ii) kf" � (I � Tl)x"kk � Ck�1(ln k)�p;for all iteration index k satisfying 1 � k � k("; f").Proof. Using the estimates in the appendies of [3℄ and [6℄ and the disrepanypriniple one obtainsk�x� x"kk �  kyk �1 + 1��2� � ln(k + 1)��p: (25)Sine ~ := supk2INf(ln(k+1)= ln(k))�pg <1, assertion i) follows from (25) withC = kyk(1+ 1��2) ~. To prove ii), we again use the estimates in the appendiesof [3℄ and [6℄ to obtainkf" � (I � Tl)x"kk �  kyk�1 + 2��2� (k � 1)�1� ln(k + 1)��p: (26)Sine ? := supk2INf(k + 1)=k)g < 1, assertion ii) follows from (26) withC = kyk(1 + 1��2) ? ~.Proposition 3 Set k" := k("; f"). Under the assumptions of the previous The-orem we havei) k"� ln(k")�p = O("�1);ii) k�x� x"k"k � O�(� lnp")�p�.Proof. Argumenting as in the proof of Proposition 2 we obtain(�� 2)" � 1(k" � 2)�1(ln k")�p; (27)



Mean value methods for solving the heat equation ... 11from what follows "�1 � 2 (k" � 2) (ln k")p � 3 k" (ln k")p; (28)proving the �rst assertion. To prove ii), we �rst obtain from the iteration rulethe estimate k�x� x"k"k � kF (P )vk"k+ "k"; (29)where P = I�Tl. Using the estimates in the appendies of [3℄ and [6℄ we obtainfor the �rst term on the right hand side of (29) the estimate.kF (P )vk"k � O�(� ln(" 23 ))�p�: (30)Again using the estimates in the appendies of [3℄ and [6℄ we obtain for theseond term on the right hand side of (29) the estimatek" = O�"�1 (� lnp")�p�: (31)Now, substituting the last two estimates in (29), assertion ii) follows.The interest in the soure onditions of logarithmi-type is motivated by thefat that it an be interpreted in the sense of Hs regularity of �x� x1. In orderto illustrate this fat, let us onsider the speial ase 
 = (��; �), T = 1,� = (��)1=2. We de�ne the Sobolev spaes of periodi funtions:Hsper(��; �) := f'(t) = Pj2ZZ'j eijt; Pj2ZZ(1 + j2)s'2j <1g; s 2 IR: (32)Clearly, the operator T is well de�ned at H = spanfsin(jt); j 2 INgk�kL2 .The problem data and the initial guess an be represented in the formf(t) =Xj fj sin(jt); x1(t) =Xj �j sin(jt): (33)Observe also that in H the operator T an be expliitely represented by(Tx1)(t) =Xj �(1� e�j2)�j + fj� sin(jt): (34)The next step orresponds to the hoie of the parameter . Notie that ��in (4) satis�es �� = inff�; � 2 �(�)g = 1;



12 A. Leit~aowhile the parameter ~� in Remark 1 is given by~� = (��2 � T�1 ln 2)1=2 = (1� ln(2))1=2:Thus, in this partiular ase, the ondition (5) for the hoie of  is given by0 <  < 2 exp(~�2T ) = e (35)and the hoie  = 1 is allowed.From the logarithmi soure ondition (23), with y(t) = Pj yj sin(jt) andq = 2p, followsk�x� x1k2q = P1j=1(1 + j2)2p ln� exp(1)1� (1� e�j2)��2py2j � 1Pj=1 y2j � 1:The reiproal holds, i.e. if �x � x1 2 H2pper, then exists y 2 H with �x � x1 =f(I � Tl) y. Thus, the logarithmi soure ondition an indeed be interpretedas Hp regularity.Referenes[1℄ Baumeister, J.; Leit~ao, A., On iterative methods for solving ill-posed prob-lems modeled by partial di�erential equations, J. Inverse Ill-Posed Probl.9 (2001), 13 { 30[2℄ Browder, F.; Petryshyn, W., Constrution of �xed points of nonlinear map-pings in Hilbert spae, J. Math. Anal. Appl. 20 (1967), 197 { 228[3℄ Deuhard, P.; Engl, H.W.; Sherzer, O., A onvergene analysis of iterativemethods for the solution of nonlinear ill-posed problems under aÆnelyinvariant onditions, Inverse Problems, 14 (1998), 1081 { 1106[4℄ Dotson, W.G., Jr., On the Mann iterative proess, Trans. Am. Math. So.149 (1970), 65 { 73[5℄ Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems,Kluwer Aademi Publishers, Dordreht, 1996 (Paperbak: 2000)[6℄ Engl, H.W.; Leit~ao, A., A Mann iterative regularization method for elliptiCauhy problems, Numer. Funt. Anal. Optim. 22 (2001), 861 { 884
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