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Abstra
tWe investigate an iterative mean value method for the inverse (andhighly ill-posed) problem of solving the heat equation ba
kwards in time.Semi-group theory is used to rewrite the solution of the inverse problemas the solution of a �xed point equation for an aÆne operator, withlinear part satisfying spe
ial fun
tional analyti
al properties. We give a
onvergen
e proof for the method and obtain 
onvergen
e rates for theresidual. Convergen
e rates for the iterates are also obtained under theso 
alled sour
e 
onditions.1 Introdu
tionThe problem of solving the heat equation ba
kwards in time is a 
lassi
al ex-ample of ill-posed problem. Using semi-group theory to represent the solutionof paraboli
 problems, one 
an verify that this parti
ular problem is modeledby a linear positive operator, whose eigenvalues 
onverge exponentially to zero(see Se
tion 2).In this paper we introdu
e a mean value method, based on the Mann iter-ation, in order to �nd the solution of a �xed point equation asso
iated to theinverse problem. The development presented in [6℄ for ellipti
 Cau
hy problemsis extended to this inverse paraboli
 problem.Our algorithm generalizes the iteration introdu
ed in [1℄, where this problemis also 
onsidered. In that paper the authors obtain the same �xed point equa-tion treated here. However they propose a method based on solving su

essivewell-posed initial value problems, whi
h 
an be interpreted as a parti
ular 
aseof our mean value method.yPartially supported by CNPq grant 150019/01-7.



2 A. Leit~aoThe paper is organized as follows. In Se
tion 2 we introdu
e some ne
essarynotation and formulate the inverse problem. We also reinterpret the inverseproblem in the form of a �xed point equation. In Se
tion 3 we present anoverview of the iterative method introdu
ed by W.Mann. In Se
tion 4 we for-mulate our mean value method and give a 
onvergen
e proof for the 
ase ofexa
t data. In Se
tion 5 we 
onsider problems with noisy data. The general-ized dis
repan
y prin
iple is used to obtain 
onvergen
e rates for the iterationresidual. Using appropriate sour
e 
onditions, we also prove 
onvergen
e ratesfor the iterates. Finally, we dis
uss an example, whi
h shows that for this par-ti
ular inverse problem, the sour
e 
onditions 
an be interpreted in terms ofregularity of the solution in Sobolev spa
es.2 Formulation of the inverse problemWe start this se
tion introdu
ing some notation. Given a normed linear spa
eH, we 
all an operator T : H ! H non expansive if kTk � 1. An arbitraryoperator T : H ! H is 
alled regular asymptoti
 in H iflimk!1 kT k+1(x)� T k(x)k ! 0; 8x 2 H:Let 
 � IRn be an open bounded set with smooth boundary �
 and �be a positive self-adjoint unbounded operator (with dis
rete spe
trum) denselyde�ned on L2(
). The resolution of the identity asso
iated to � is representedby E�, � 2 IR. The family of Hilbert spa
es Hs(
), s � 0 (or simply Hs) isnow de�ned byHs(
) := f' 2 L2(
); k'k2s := Z 10 (1 + �2)sdhE�'; 'i <1g: (1)Obviously H0 = L2(
). The Hilbert spa
es H�s(
) (with s > 0) are de�nedby duality: H�s := (Hs)0. One should noti
e that the embedding Hr ,! Hs,r > s is dense and 
ompa
t. It is worth mentioning that in the spe
ial 
ase� = (��)1=2, where � is the Lapla
e{Beltrami operator on 
, we have Hs(
) =H2s0 (
), where Hs0(
) are the Sobolev spa
es a

ording to Lions and Magenes.Next we formulate the inverse problem 
onsidered in this paper. Given afun
tion f 2 H0 let u 2 (V; k � kV ), whereV := L2(0; T ;H1(
)); kuk2V := Z T0 (ku(t)k21 + k�tu(t)k2�1) dt; (2)



Mean value methods for solving the heat equation ... 3be the solution of(P ) � (�t + �2)u = 0; in (0; T )� 
u(T ) = f :Our goal is to re
onstru
t u(t) at t = 0. In other words, given a temperaturepro�le at the time t = T and a heat transport equation, �nd the 
orrespondingtemperature pro�le at the initial time t = 0. Problem (P ) 
orresponds tothe inverse heat transport problem, whi
h is known to be exponentially ill-posed. This assertion follows immediately from the expli
it representation ofthe solution u of problem (P ), whi
h is given byu(t) = exp(�2(T � t)) f: (3)Indeed, using the eigenfun
tions of �, one 
an 
onstru
t a sequen
e of data fk
onverging (uniformly) to zero in H, while the V -norm of the 
orrespondingsolutions uk do not.Noti
e that if u 2 V , then u(0); u(T ) 2 H0. Another important remark
on
erning the inverse problem: given f 2 H0, problem (P ) has exa
tly onesolution in V . Thus the problem of determining u(0) (solution) from u(T )(data) has always a solution, this solution is unique, but it does not depend ina stable way on the problem data.In the sequel we 
hara
terize the solution of our inverse problem as thesolution of a �xed point equation. We start by 
onsidering problem (P ) withdata f 2 H0 and denote by �x the solution of the inverse problem, i.e. �x = u(0).Let the positive 
onstant �� be de�ned by�� := inff�; � 2 �(�)g: (4)Next we 
hose a parameter 
 2 (0; 2 exp(��2T )): (5)Given ' 2 H0, let us 
onsider the following initial value problem of paraboli
type(Q) � (�t + �2)w = 0; in (0; T )� 
w(0) = 'We de�ne the aÆne operator T : H0 ! H0 byT' := '� 
(w(T )� f): (6)



4 A. Leit~aoA straightforward 
al
ulation shows that T �x = �x, i.e. �x is a �xed point of T .Further, sin
e the solution of problem (Q) 
an be written asw(t) = exp(��2t)'; (7)we obtain for the operator T the representationT' = �I � 
 exp(��2T )�'+ 
f: (8)Remark 1 In [1℄ several properties of the linear part of the operator T , namelyTl = I � 
 exp(��2T ), are investigated. The most relevant ones are self-adjointness, nonexpansivity, asymptoti
 regularity and the fa
t that 1 is not aneigenvalue of Tl (although 1 belongs to the 
ontinuous spe
trum of Tl). Further,under the stronger assumption 
 < 2 exp(~�2T ), where ~� := (��2 � T�1 ln 2)1=2,inje
tivity of Tl 
an also be proved.Remark 2 If we write the inverse problem in the form S�x = f , with S :=exp(��2T ), equation (6) resembles very mu
h the �xed point equation�x = �x+ S�(f � S�x); (9)whi
h is based on a transformation of the normal equation. If kSk2 < 2, therelated �xed point operator I � S�S is nonexpansive and one may apply themethod of su

essive approximation (this 
orresponds to the so 
alled Landweberiteration: 'k+1 = 'k + S�(f � S'k)). However, this 
ondition is not satis�edis our 
ase. The idea in [1℄ is to 
hoose a relaxation parameter 
 > 0 su
h thatI�
S is nonexpansive and then apply the su

essive approximation method forthe �xed point equation �x = �x + 
 (f � S�x): (10)3 The Mann iterationWe present a brief overview of the method introdu
ed by W. Mann in 1953 in[9℄. Given a Bana
h spa
e X and E � X, Mann 
onsidered the problem ofapproximating a solution of the �xed point equation for a 
ontinuous operatorT : E ! E.In order to avoid the problem of existen
e of �xed points, the subset E wasassumed to be 
onvex and 
ompa
t (the existen
e question is than promptly



Mean value methods for solving the heat equation ... 5answered by the S
hauder �xed point theorem). Strongly in
uen
ed by theworks of Ces�aro and Topelitz, who used mean value methods in the summationof divergent series, Mann proposed a mean value iterative method based on thePi
ard iteration (xk+1 := T (xk)), whi
h we shall present next.Let A be the (in�nite) lower triangular matrixA = 0BBB� 1 0 0 � � � 0 � � �a21 a22 0 � � � 0 � � �a31 a32 a33 � � � 0 � � �... ... ... . . . ... ... 1CCCA ;with 
oeÆ
ients aij satisfyingi) aij � 0 ; i; j = 1; 2; : : :;ii) aij = 0 ; j > i;iii) iPj=1 aij = 1 ; i = 1; 2; : : :.Starting with an arbitrary element x1 2 E, the Mann iteration is de�ned in thefollowing way1. Choose x1 2 E;2. For k = 1; 2; : : : dovk :=Pkj=1 akj xj;xk+1 := T (vk);In the sequel we denote this iteration brie
y by M(x1; A; T ). Noti
e that withthe parti
ular 
hoi
e A = I, this method 
orresponds to the usual su

essiveapproximation method. Next we state the main result in [9℄.Lemma 1 Let X be a Bana
h spa
e, E � X a 
onvex 
ompa
t subset, T :E ! E 
ontinuous. Further, let fxkg, fvkg be the sequen
es generated by theiteration M(x1; A; T ). If either of the above sequen
es 
onverges, then the otheralso 
onverges to the same point, and their 
ommon limit is a �xed point of T .Proof. See Theorem 1 in [9℄.



6 A. Leit~aoIn that paper, the 
ase where neither of the sequen
es fxkg, fvkg 
onverges isalso 
onsidered. Under additional requirements on the 
oeÆ
ients aij, a relationbetween the sets of limit points of fxkg and fvkg is proven.Many authors 
onsidered the Mann iteration in other frameworks. Amongothers we mention [4℄, [7℄, [8℄ and [10℄. In the sequel we dis
uss a result obtainedby C.Groets
h, whi
h will be useful in the further dis
ussion. In [7℄, Groets
h
onsiders a variant of the Mann iteration. The Matrix A is assumed to besegmenting, i.e. additionally to properties i), ii) and iii), the 
oeÆ
ients aijmust also satisfyiv) ai+1;j = (1� ai+1;i+1) aij, j � i.One 
an easily 
he
k that, under assumptions i), . . . , iv), the element vk+1 ofM(x1; A; T ) 
an be written in the form of the 
onvex linear 
ombinationvk+1 = (1� dk)vk + dkT (vk); (11)where dk := ak+1;k+1. In other words, vk+1 lies on the line segment joining vkand xk+1 = T (vk), what justi�es the denomination of segmenting matrix. Noti
ethat in this 
ase the 
hoi
e of the diagonal elements dk determines 
ompletelythe matrix A. The following lemma 
orresponds to the main result in [7℄.Lemma 2 Let X be an uniformly 
onvex Bana
h spa
e, E � X a 
onvexsubset, T : E ! E a nonexpansive operator with at least one �xed point in E.If P1k=1 dk(1� dk) diverges, then the sequen
e f(I � T )vkg 
onverges stronglyto zero, for every x1 2 E.Proof. See Theorem 2 in [7℄.In order to prove strong 
onvergen
e of the sequen
e fxkg, one needs strongerassumptions on both the set E and the operator T (e.g. E is also 
losed andT (E) is relatively 
ompa
t in X).Noti
e that Lemma 2 gives on fxkg a 
ondition analogous to the asymptoti
regularity, whi
h is used in both [10℄ and [2℄. This 
ondition is also used in [1℄and [6℄ for the analysis of linear Cau
hy problems.The last result we analyze in this se
tion is due to H.W.Engl and A. Leit~aoand is the analog of Lemma 2 for aÆne operators with nonexpansive linear part,de�ned on Hilbert spa
es.



Mean value methods for solving the heat equation ... 7Lemma 3 Let H be a Hilbert spa
e and T : H ! H an aÆne operator withnonexpansive linear part. Further, let A be a segmenting matrix su
h thatP1k=1 dk(1 � dk) diverges. The iteration M(x1; A; T ) generates a sequen
e vksu
h that f(I � T )vkg 
onverges strongly to zero, for every x1 2 H.Proof. See Theorem 6 in [6℄.4 A mean value method for the inverse heattransport problemThe iterative method proposed in this paper 
orresponds to the Mann iterationapplied to the �xed point equation T' = ', where the operator T is de�nedin (8). Initially we address the question of 
onvergen
e for exa
t data. Giventhe exa
t data f 2 H0 we have the following 
onvergen
e result:Theorem 1 Let T be the operator de�ned in (8) and A a segmenting matrixwith P1k=1 dk(1� dk) =1. For every x1 2 H0 the iteration M(x1; A; T ) gener-ates sequen
es xk and vk, whi
h 
onverge strongly to �x, the uniquely determined�xed point of T .Proof. Existen
e and uniqueness of the �xed point �x was already justi�ed onSe
tion 2. Let Tl be the linear part of the operator T . Sin
e (I � Tl)(vk � �x) =(I � T )vk and Ker(I � Tl) = f0g (see Remark 1 or [1, Lemma 8℄ for details), itis enough to prove that limk(I�T )vk = 0. This however follows from Lemma 3.5 Convergen
e ratesIn this se
tion we 
onsider the 
ase of inexa
t data. This is a parti
ularlyinteresting question, what 
on
erns the appli
ation of this method to real liveproblems. Let us assume we are given noisy Cau
hy data f" 2 H0, su
h thatkf � f"k � "; (12)where " > 0 is the noise level and f 2 H0 represents the exa
t problem data.This assumption is relevant in the 
ase where f" is obtained by means of mea-surements, sin
e measured data always 
ontain errors. In this 
ase we 
onsider



8 A. Leit~aothe iteration residual and use the generalized dis
repan
y prin
iple to providea stopping rule for the algorithm.In the sequel, we 
onsider for simpli
ity the parti
ular 
ase where the seg-menting matrix is given by A = I, the identity matrix. We start by de�ningthe iteration residual. Given x1 2 H0, let us 
onsider the sequen
esxk+1 = Tl xk + 
f; (13)x"k+1 = Tl x"k + 
f"; (14)generated by the iterative method (note that x"1 = x1). The 
orrespondingresiduals (exa
t and real, i.e. using noisy data) are de�ned byrk := 
f � (I � Tl)xk; (15)r"k := 
f" � (I � Tl)x"k: (16)Noti
e that the residual sequen
es fkr"kkg, fkrkkg are nonin
reasing. Indeed,this follows from the nonexpansivity of the operator Tl.Now let � > 1 be �xed. A

ording to the dis
repan
y prin
iple, the iterationshould be stopped at the step k("; f"), when for the �rst time kr"k(";f")k � �",i.e. k("; f") := minfk 2 IN j k
f" � (I � Tl)'"kk � �"g: (17)If we do not make any further (regularity) assumption on the solution �x, we
annot prove 
onvergen
e rates for the iterates kxk� �xk. However, it is possibleto obtain rates of 
onvergen
e for the residuals.Next we obtain an estimate for k("; f") in (17). The proof of this result issimilar to the one known for the Landweber iteration (see, e.g. [5, Se
tion 6.1℄).For 
onvenien
e of the reader we in
lude here the proof.Proposition 1 If � > 1 is �xed, the stopping rule de�ned by the dis
repan
yprin
iple in (17) satis�es k("; f") = O("�2).Proof. We start from the identityk�x� xj+1k2 = k�x� xjk2 � k
f � (I � Tl)xjk2� 2h(I � Tl)(�x� xj); Tl(�x� xj)i (18)to obtain the estimatek�x� xjk2 � k�x� xj+1k2 � k
f � (I � Tl)xjk2: (19)



Mean value methods for solving the heat equation ... 9Adding up this inequalities for j = 1; : : : ; k we 
an 
on
ludek
f � (I � Tl)'kk2 � k�1k�x� x1k2: (20)Sin
e the real residual r"k satisfyk
f" � (I � Tl)x"k+1k � "+ k
f � (I � Tl)xkk; (21)we obtain from (20)k
f" � (I � Tl)x"k+1k � " + k� 12 k�x� x1k: (22)Sin
e the right hand side of (22) is lower than �" for k > (��1)�2k�x�x1k2"�2,we have k("; z") � 
 "�2, where the 
onstant 
 > 0 depends only on � and x1.From Proposition 1 it is possible to obtain rates of 
onvergen
e for theresiduals.Corollary 1 Let f be the exa
t data, � > 1 and " > 0. Given noisy dataf", with kf" � fk � ", the stopping rule k("; f") determined by the dis
repan
yprin
iple satis�esi) k
f" � (I � Tl)x"k(";f")k � �";ii) k("; z") = O("�2).If appropriate regularity assumptions are made on the �xed point �x, it ispossible to obtain 
onvergen
e rates also for the approximate solutions. Thisadditional assumptions are stated here in the form of the so-
alled sour
e 
on-ditions (see, e.g., [5℄). Sin
e our inverse problem is exponentially ill-posed, thesour
e 
ondition take the form�x� x1 = F (I � Tl) y; (23)where y is some fun
tion in H0 and F is de�ned byF (�) := � (ln(e=�))�p; � > 00; � = 0with p > 0 �xed. This 
hoi
e of F 
orresponds to the logarithmi
-type sour
e
onditions. Under these assumptions we 
an prove the following rates:



10 A. Leit~aoProposition 2 Let f be given data and assume that the �xed point �x of Tsatis�es the sour
e 
ondition�x� x1 = F (I � Tl) y; for some y 2 H0; (24)where x1 2 H0 is some initial guess and F is de�ned as above for some p � 1.Let � > 2, f" some given noisy data with kf" � fk � ", " > 0 and k("; f")the stopping rule determined by the dis
repan
y prin
iple. Then there exists a
onstant C, depending on p and kyk only, su
h thati) k�x� x"kk � C(lnk)�p;ii) k
f" � (I � Tl)x"kk � Ck�1(ln k)�p;for all iteration index k satisfying 1 � k � k("; f").Proof. Using the estimates in the appendi
es of [3℄ and [6℄ and the dis
repan
yprin
iple one obtainsk�x� x"kk � 
 kyk �1 + 1��2� � ln(k + 1)��p: (25)Sin
e ~
 := supk2INf(ln(k+1)= ln(k))�pg <1, assertion i) follows from (25) withC = 
kyk(1+ 1��2) ~
. To prove ii), we again use the estimates in the appendi
esof [3℄ and [6℄ to obtaink
f" � (I � Tl)x"kk � 
 kyk�1 + 2��2� (k � 1)�1� ln(k + 1)��p: (26)Sin
e 
? := supk2INf(k + 1)=k)g < 1, assertion ii) follows from (26) withC = 
kyk(1 + 1��2) 
? ~
.Proposition 3 Set k" := k("; f"). Under the assumptions of the previous The-orem we havei) k"� ln(k")�p = O("�1);ii) k�x� x"k"k � O�(� lnp")�p�.Proof. Argumenting as in the proof of Proposition 2 we obtain(�� 2)" � 
1(k" � 2)�1(ln k")�p; (27)



Mean value methods for solving the heat equation ... 11from what follows "�1 � 
2 (k" � 2) (ln k")p � 
3 k" (ln k")p; (28)proving the �rst assertion. To prove ii), we �rst obtain from the iteration rulethe estimate k�x� x"k"k � kF (P )vk"k+ "k"; (29)where P = I�Tl. Using the estimates in the appendi
es of [3℄ and [6℄ we obtainfor the �rst term on the right hand side of (29) the estimate.kF (P )vk"k � O�(� ln(" 23 ))�p�: (30)Again using the estimates in the appendi
es of [3℄ and [6℄ we obtain for these
ond term on the right hand side of (29) the estimatek" = O�"�1 (� lnp")�p�: (31)Now, substituting the last two estimates in (29), assertion ii) follows.The interest in the sour
e 
onditions of logarithmi
-type is motivated by thefa
t that it 
an be interpreted in the sense of Hs regularity of �x� x1. In orderto illustrate this fa
t, let us 
onsider the spe
ial 
ase 
 = (��; �), T = 1,� = (��)1=2. We de�ne the Sobolev spa
es of periodi
 fun
tions:Hsper(��; �) := f'(t) = Pj2ZZ'j eijt; Pj2ZZ(1 + j2)s'2j <1g; s 2 IR: (32)Clearly, the operator T is well de�ned at H = spanfsin(jt); j 2 INgk�kL2 .The problem data and the initial guess 
an be represented in the formf(t) =Xj fj sin(jt); x1(t) =Xj �j sin(jt): (33)Observe also that in H the operator T 
an be expli
itely represented by(Tx1)(t) =Xj �(1� 
e�j2)�j + 
fj� sin(jt): (34)The next step 
orresponds to the 
hoi
e of the parameter 
. Noti
e that ��in (4) satis�es �� = inff�; � 2 �(�)g = 1;



12 A. Leit~aowhile the parameter ~� in Remark 1 is given by~� = (��2 � T�1 ln 2)1=2 = (1� ln(2))1=2:Thus, in this parti
ular 
ase, the 
ondition (5) for the 
hoi
e of 
 is given by0 < 
 < 2 exp(~�2T ) = e (35)and the 
hoi
e 
 = 1 is allowed.From the logarithmi
 sour
e 
ondition (23), with y(t) = Pj yj sin(jt) andq = 2p, followsk�x� x1k2q = P1j=1(1 + j2)2p ln� exp(1)1� (1� e�j2)��2py2j � 1Pj=1 y2j � 1:The re
ipro
al holds, i.e. if �x � x1 2 H2pper, then exists y 2 H with �x � x1 =f(I � Tl) y. Thus, the logarithmi
 sour
e 
ondition 
an indeed be interpretedas Hp regularity.Referen
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