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On Inverse Problems for
Semiconductor Equations

M. Burger, H.W. Engl, A. Leitao and P.A. Markowich

Abstract. This paper is devoted to the investigation of inverse problems
related to stationary drift-diffusion equations modeling semiconductor
devices. In this context we analyze several identification problems corre-
sponding to different types of measurements, where the parameter to be
reconstructed is an inhomogeneity in the PDE model (doping profile).
For a particular type of measurement (related to the voltage-current
map) we consider special cases of drift-diffusion equations, where the
inverse problems reduces to a classical inverse conductivity problem. A
numerical experiment is presented for one of these special situations
(linearized unipolar case).

1. Introduction

The drift diffusion equations are the most widely used model to describe
semiconductor devices. From the point of view of applications, there is great
interest in replacing laboratory testing by numerical simulation in order to
minimize development costs. For the current state of technology, the drift
diffusion equations represent a realistic compromise between computational
efficiency (to solve this nonlinear system of partial differential equations)
and an accurate description of the underlying device physics.

The name drift diffusion equations of semiconductors originates from
the type of dependence of the current densities on the carrier densities and
the electric field. The current densities are the sums of drift terms and
diffusion terms. It is worth mentioning that, with the increased miniatur-
ization of semiconductor devices, one comes closer and closer to the limits
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of validity of the drift diffusion equation. This is due to the fact that in ever
smaller devices the assumption that the free carriers can be modeled as a
continuum becomes invalid. On the other hand, the drift diffusion equa-
tions are derived by a scaling limit process, where the mean free path of a
particle tends to zero.

The mathematical modeling of semiconductor equations has developed
significantly, together with their manufacturing. The basic semiconductor
device equations where first presented, in the level of completeness described
in this paper, by W. Van Roosbroeck (see [56]) in 1950. Since then they
have been subject of intensive mathematical and numerical investigation
(cf. [42] for an overview).

This paper is devoted to the investigation of inverse problems related
to stationary drift-diffusion equations modeling semiconductor devices. In
this context we analyze several inverse problems related to the identifica-
tion of doping profiles. In all these inverse problems the parameter to be
identified corresponds to the so called doping profile (a parameter function
in a system of PDE’s). However, the reconstruction problems are related
to data generated by different types of measurement techniques.

The paper is organized as follows. In section 2 we describe the station-
ary and transient drift diffusion equations. Some existence and uniqueness
results (needed further in the text) are presented and some particular mod-
els (derived from different simplification assumptions) are investigated. In
Section 3 the inverse doping problems are presented. We address the in-
verse problems modeled by the voltage-current map, by capacitance mea-
surements, and by Laser-beam-induced measurements. We also address the
identification issue for some of the inverse problems mentioned above. In
Section 4 we present some new numerical results for an identification prob-
lem related to the voltage-current map (linearized unipolar case). The re-
sults are obtained using the Landweber-Kaczmarz method.

There are other relevant inverse problems for semiconductor equations
that are not covered in this paper:

• The inverse problem of identifying transistor contact resistivity of pla-
nar electronic devices, such as MOSFETs (metal oxide semiconductor
field-effect transistors) is treated in [22]. It is shown that a one-point
boundary measurement of the potential is sufficient to identify the
resistivity from a one-parameter monotone family, and such identifi-
cation is both stable and continuously dependent on the parameter.
Because of the device miniaturization, it is impossible to measure the
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contact resistivity in a direct way to satisfactory accuracy. There are
extensive experimental and simulation studies for the determination
of contact resistivity by certain accessible boundary measurements.
• A similar problem of determining the contact resistivity of a semi-

conductor device from a single voltage measurement is investigated in
[15]. It can be modeled as an inverse problem for the elliptic differ-
ential equation ∆V − pχ(S)u = 0 in Ω ⊂ R2, ∂V/∂n = g ≥ 0 but
g �≡ 0 on ∂Ω, where V (x) is the measured voltage, S ⊂ Ω and p > 0
are unknown. In this paper, the authors consider the identification of
p when the contact location S is also known.
• The problem of optimal design of devices, where the aim is to find

a doping profile that can reach certain design goals, e.g., maximum
drive current while keeping the leakage current below a certain thresh-
old. From a computational point of view, this problem exhibits many
similarities to the inverse doping problems considered in this paper,
with the difference that in optimal design one usually has to solve the
drift-diffusion equations for only one or two different applied voltages.
We refer to [14, 32, 54]

2. Semiconductor equations

The basic semiconductor device equations consist of the Poisson equation
(2.1), the continuity equations for electrons (2.2) and holes (2.3), and the
current relations for electrons (2.4) and holes (2.5). For some applications,
in order to account for thermal effects in semiconductor devices, its also
necessary to add to this system the heat flow equation (2.6).

div(ε∇V ) = q(n− p− C) (2.1)

div Jn = q(∂tn+R) (2.2)

div Jp = q(−∂tp−R) (2.3)

Jn = q(Dn(E, T )∇n− µn(E, T )n∇V ) (2.4)

Jp = q(−Dp(E, T )∇p− µp(E, T )p∇V ) (2.5)

ρ c(T ) ∂tT −H = div k(T )∇T, (2.6)

defined in a domain Ω ⊂ R
d (d = 1, 2, 3) representing the semiconductor

device. Here V denotes the electrostatic potential (−∇V is the electric
field, E = |∇V |), n and p are the concentration of free carriers of negative
charge (electrons) and positive charge (holes) respectively, and Jn and Jp
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are the densities of the electron and the hole current respectively. Dn and
Dp are the diffusion coefficients for electrons and holes respectively. µn

and µp represent the mobilities of electrons and holes respectively. The
positive constants ε and q denote the permittivity coefficient (for silicon)
and the elementary charge respectively. The functionR = R(n, p, x) denotes
the recombination-generation rate. The function C = C(x) represent the
doping concentration, which is produced by diffusion of different materials
into the silicon crystal and by implantation with an ion beam. The constants
ρ and c represent the specific mass density and specific heat of the material.
k and H denote the thermal conductivity and the locally generated heat.

This set of equations is considered in a domain Ω ⊂ R
d (d = 1, 2, 3)

representing the semiconductor device. We assume the boundary ∂Ω of Ω
to be divided into two nonempty disjoint parts: ∂Ω = ∂ΩN ∪ ∂ΩD. The
Dirichlet part of the boundary ∂ΩD models the Ohmic contacts, where
the potential V as well as the concentrations n and p are prescribed. The
Neumann part ∂ΩN of the boundary corresponds to insulating surfaces,
thus a zero current flow and a zero electric field in the normal direction are
prescribed.

In the next subsection, when we turn our attention to the stationary
drift-diffusion equations, we shall discuss in more detail the system (2.1)–
(2.6) as well as corresponding boundary conditions. Detailed expositions of
the subject of modeling, analysis and simulation of semiconductor equations
can be found in the books of S. Selberherr [53], P. Markowich [41] and P.
Markowich et al [42].

2.1. Stationary drift diffusion equation

We shall consider system (2.1)–(2.6) under the following assumptions: Ther-
mal effects will not be taken into account, i.e. we shall work under the as-
sumption of constant particle temperature. Further, we consider the carrier
concentrations n and p and the potential V as time-independent functions.

Under the above assumptions, if we substitute the current relations
for electrons and holes (2.4) and (2.5) into the corresponding continuity
equations (2.2) and (2.3), we obtain a coupled system of partial differential
equations, the so called stationary drift diffusion equation:

div(εs∇V ) = q(n− p− C), in Ω (2.7)

div(Dn∇n− µnn∇V ) = R, in Ω (2.8)

div(Dp∇p− µpp∇V ) = R, in Ω. (2.9)
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Parameter Typical value

εs 11.9 ε0
µn ≈ 1500 cm2 V−1 s−1

µp ≈ 450 cm2 V−1 s−1

Cn 2.8× 10−31 cm6/s
Cp 9.9× 10−32 cm6/s
τn 10−6 s
τp 10−5 s

Table 2.1. Properties of silicon at room temperature
(physical constants: Permittivity in vacuum ε0 = 8.85 ×
10−14As V−1 cm−1; Elementary charge q = 1.6× 10−19As).

Next we briefly discuss the modeling of the recombination-generation
rate. The bandgap is relatively large for semiconductors (gap between va-
lence and conduction band), and a significant amount of energy is necessary
to transfer electrons from the valence and to the conduction band. This
process is called generation of electron-hole pairs. On the other hand, the
reverse process corresponds to the transfer of a conduction electron into
the lower energetic valence band. This process is called recombination of
electron-hole pairs. In our model these phenomena are described by the
recombination-generation rate R. Various models can be found in the lit-
erature (see, e.g., [53]). For the sake of simplicity, we shall consider either
the Shockley Read Hall rate

RSRH =
np− n2

i

τp(n+ ni) + τp(p+ ni)

or the Auger recombination-generation rate

RAU = (Cnn+ Cpp) (np− n2
i ) ,

where ni denotes the intrinsic density, τn and τp are the lifetimes of electrons
and holes respectively (see Table 2.1 for some typical values for recombina-
tion generation parameters). In both cases we can write

R = R(n, p, x) (np− n2
i ) .

Now we shall introduce the boundary conditions. As already men-
tioned, the boundary ∂Ω of Ω is divided in two nonempty parts: ∂Ω =
∂ΩN ∪∂ΩD. Due to the thermal equilibrium assumption it follows np = n2

i ,
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and the assumption of vanishing space charge density gives n−p−C = 0, for
x ∈ ∂ΩD. On the Dirichlet part of the boundary this implies the following
type of boundary conditions:

V = VD(x) := U(x) + Vbi(x) on ∂ΩD (2.10)

n = nD(x) := 1
2

(
C(x) +

√
C(x)2 + 4n2

i

)
on ∂ΩD (2.11)

p = pD(x) := 1
2

(
−C(x) +

√
C(x)2 + 4n2

i

)
on ∂ΩD, (2.12)

where U(x) is the applied potential, (differences in U(x) between differ-
ent segments of ∂ΩD correspond to the applied bias between these two
contacts), Vbi(x) := UT ln

(nD(x)
ni

)
and UT is the thermal voltage.

Since the Neumann part of the boundary ∂ΩN = ∂Ω − ∂ΩD models
insulating or artificial surfaces, a zero current flow and a zero electric field
in the normal direction are prescribed. Thus, the following homogeneous
boundary conditions are supplied (in terms of Jn and Jp):

∇V · ν = 0 on ∂ΩN (2.13)

Jn · ν = 0 on ∂ΩN (2.14)

Jp · ν = 0 on ∂ΩN . (2.15)

Next we briefly address the modeling of the doping profile. The func-
tion C(x) models a preconcentration of ions in the crystal, so C(x) =
C+(x) − C−(x) holds, where C+ and C− are concentrations of negative
and positive ions respectively. In those subregions of Ω in which the pre-
concentration of negative ions predominate (P-regions), we have C(x) < 0.
Analogously, we define the N-regions, where C(x) > 0 holds. The bound-
aries between the P- and N-regions (where C change sign) are called P-N
junctions. An example of a device with a very simple P-N junction is shown
in Figure 2.1, where a two-dimensional P-N diode is represented.

Now we introduce an important special change of variables, in order
to rewrite system (2.7)–(2.9) as well as boundary conditions (2.10)–(2.12)
and (2.13)–(2.15) in a more convenient way. This variable transformation
is (partially) motivated by the Einstein relations

Dn = UT µn, Dp = UT µp,
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Figure 2.1. P-N diode. Example of P-N junction.

∂ΩN ∂ΩN

∂ΩNΓ1 ⊂ ∂ΩD

∂ΩD

P-region

N-region

which are a standard assumption about the mobilities and diffusion coeffi-
cients. The so called Slotboom variables (u, v) are defined by the relations

n(x) = ni exp
(
V (x)
UT

)
u(x), p(x) = ni exp

(
−V (x)
UT

)
v(x) . (2.16)

For convenience, we rescale the potential and the mobilities:

V (x) ← V (x)/UT , µ̃n := qUTµn, µ̃p := qUTµp .

Note that the current relations now read:

Jn = µ̃nni e
V∇u, Jp = −µ̃pni e

−V∇v .

Therefore, we can write the stationary drift diffusion equation in the form
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λ2 ∆V = δ2
(
eV u− e−V v

)
− C(x), in Ω (2.17)

div Jn = δ4Q(V, u, v, x) (uv − 1), in Ω (2.18)

div Jp = −δ4Q(V, u, v, x) (uv − 1), in Ω (2.19)

V = VD = U + Vbi, on ∂ΩD (2.20)

u = uD = e−U , on ∂ΩD (2.21)

v = vD = eU , on ∂ΩD (2.22)

∇V · ν = 0 on ∂ΩN (2.23)

Jn · ν = 0 on ∂ΩN (2.24)

Jp · ν = 0 on ∂ΩN , (2.25)

where λ2 := ε/(qUT ), δ2 := ni and the function Q is defined implicitly by
the relation Q(V, u, v, x) = R(n, p, x). Notice the applied potential has also
to be rescaled: U(x)← U(x)/UT .

2.2. Some existence and uniqueness results for stationary drift diffusion
equation

In this subsection we discuss the solution theory for the system of drift
diffusion equations (2.17)–(2.25). First we present an existence result, which
can be found in the monography [42, Theorem 3.3.16].

Proposition 2.1. Let κ > 1 be a constant satisfying

κ−1 ≤ uD(x) , vD(x) ≤ κ, ∀x ∈ ∂ΩD ,

and let −∞ < Cm ≤ CM < +∞. Then for any C ∈ {L∞(Ω) ; Cm ≤
C(x) ≤ CM , x ∈ Ω} the boundary value problem (2.17)–(2.25) admits a
weak solution (V, u, v) ∈ (H1(Ω) ∩ L∞(Ω))3 satisfying

κ−1 ≤ u(x) , v(x) ≤ κ, ∀x ∈ Ω ,

furthermore

V (x) ≥ min
(

inf
∂ΩD

VD , UT ln
[

1
2κni

(Cm + (C2
m + 4n2

i )
1/2)

])
, in Ω

V (x) ≤ max

(
sup
∂ΩD

VD , UT ln
[
κ

2ni
(CM + (C2

M + 4n2
i )

1/2)
])

, in Ω .
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Sketch of the proof. Solving the Poisson equation and the continuity equa-
tions (three elliptic mixed boundary value problems), one at a time, it is
possible to define an operator in an appropriate L2–space, whose fixed point
is a weak solution of (2.17)–(2.25). The existence of a fixed point is estab-
lished by the Schauder Fixed point operator, once one proves that the fixed
point operator is completely continuous, which is accomplished by the use
of standard elliptic theory. �

As far as uniqueness of solutions of system (2.17)–(2.25) is concerned,
a corresponding result can be obtained if the applied voltage is small (in
the norm of L∞(∂ΩD) ∩H3/2(∂ΩD)). The following uniqueness result cor-
responds to [12, Theorem 2.4].

Proposition 2.2. Let the voltage U be such that ‖U‖L∞(∂ΩD) +‖U‖H3/2(∂ΩD)

is sufficiently small. Then system (2.17)–(2.25) has a unique solution (V, u,
v) ∈ (H1(Ω) ∩ L∞(Ω))3.

Since existence and uniqueness of solutions for system (2.17)–(2.25)
can be guaranteed for small applied voltages only, it is reasonable to con-
sider instead of this system its linearized version around the equilibrium
point U ≡ 0 instead. We shall follow this approach through a large part of
this paper.

Under stronger assumptions on the boundary parts ∂ΩD, ∂ΩN as well
as on the boundary conditions VD, uD, vD, it is even possible to show H2-
regularity for a solution (V, u, v) of (2.17)–(2.25). Next we shall discuss a
corresponding result; for the proof details we refer to the monography by
Markowich [41]. First we have to consider the following assumptions:

A1) Ω is a bounded domain of class C0,1 in Rd and the (d−1)-dimensional
Lebesgue measure of ∂ΩD is positive;

A2) The Dirichlet boundary data (VD, uD, vD) in (2.20)–(2.22) satisfy

(VD, uD, vD) ∈ (H2(Ω))3, (VD, uD, vD)|∂ΩD
∈ (L∞(∂ΩD))3 .

Furthermore, (VD, uD, vD)|∂ΩN
= (0, 0, 0) and there is U+ ≥ 0 such

that

e−U+ ≤ inf
∂ΩD

uD, inf
∂ΩD

vD; sup
∂ΩD

uD, sup
∂ΩD

vD ≤ eU+ ;

A3) The doping profile satisfies C ∈ L∞(Ω);
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A4) The function Q in (2.18), (2.19) is such that Q(·, ·, ·, x) ∈ C1(R ×
(0,∞)2) for all x ∈ Ω; Q(V, u, v, ·), ∇(V,u,v)Q(V, u, v, ·) ∈ L∞(Ω) uni-
formly for (V, u, v) in bounded sets of R× (0,∞)2; Q(V, u, v, x) ≥ 0 in
R× (0,∞)2 × Ω;

A5) The mobilities µn, µp satisfy: µn = µn(x), µp = µp(x), µn, µp ∈
W 1,∞(Ω); functions µn, µp are both positive and uniformly bounded
(away from zero) in Ω;

A6) The solution of

∆w = f in Ω , w|∂ΩD
= wν |∂ΩN

= 0 ,

satisfies ‖w‖2,q,Ω ≤ K1‖f‖q,Ω for every f ∈ Lq(Ω) with q = 2 and
q = 3/2.

Proposition 2.3. [41, Theorem 3.3.1] Let’s assume that assumptions A1) –
A6) hold. Then every weak solution (V, u, v) ∈ (H1(Ω) ∩ L∞(Ω))3 satisfies

(V, u, v) ∈ (H2(Ω))3 .

Notice that, in the 2-dimensional case, assumption A6) can only be
satisfied (for q = 2) if the angle between the Neumann and Dirichlet parts
of ∂Ω is smaller than π/2. Otherwise, the solutions of the elliptic mixed
boundary value problems in A6) will not belong to any space H1+ε(Ω),
ε > 0 (see [26] for details).

If assumption A6) holds only for q = 2, it is still possible to prove
H2-regularity for the solution V of the Poisson equation. However, it is not
possible to prove square-integrability of all second derivatives of u and v,
but this is usually not needed for the formulation of the inverse problem.

2.3. The equilibrium case

In this subsection we analyze the equilibrium case for the stationary drift
diffusion equations, which corresponds to the assumption U(x) ≡ 0. In this
particular case several simplifications are possible. It is immediate to see
that the solution of (2.17)–(2.25) is of the form (V = V 0, u ≡ 1, v ≡ 1),
where 


λ2 ∆V 0 = eV 0 − e−V 0 − C(x) in Ω

V 0 = Vbi(x) on ∂ΩD

∇V 0 · ν = 0 on ∂ΩN .

(2.26)

As already mentioned in subsection (2.2), we shall be interested in the
linearized drift diffusion system at the equilibrium. Keeping this in mind,
we compute the derivative of the solution of (2.17)–(2.25) with respect to
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the voltage U at U ≡ 0 in the direction h. This directional derivative is
given by the solution (V̂ , û, v̂) of





λ2 ∆V̂ = eV 0
û+ e−V 0

v̂ +
(
eV 0

+ e−V 0)
V̂ in Ω

div (µne
V 0∇û) = Q0(V 0, x)(û+ v̂) in Ω

div (µpe
−V 0∇v̂) = Q0(V 0, x)(û+ v̂) in Ω

V̂ = h on ∂ΩD

û = −h on ∂ΩD

v̂ = h on ∂ΩD

∂V 0

∂ν
=

∂û

∂ν
=

∂v̂

∂ν
= 0 on ∂ΩN ,

(2.27)

where Q0(V 0, x) = Q(V 0, 1, 1, x). Notice that, in the linearized case close
to equilibrium, the solutions (û, v̂) of the continuity equations do not de-
pend on the electrostatic potential V̂ .

2.4. Unipolar and bipolar cases

In this subsection we introduce two special cases, which are going to play
a key rule in the modeling of some of the inverse problems analyzed in this
paper. We start by introducing the operator called voltage-current (V–C)
map:

ΣC : H3/2(∂ΩD) → H1/2(Γ1)
U �→ J · ν|Γ1 = (Jn + Jp) · ν|Γ1 ,

where Γ1 ⊂ ∂ΩD (see Figure 2.1 for an example). The map ΣC takes the
applied voltage U into the outflow current density on Γ1. The linearized
unipolar case (close to equilibrium) corresponds to the model obtained
from the unipolar drift diffusion equations by linearizing the V–C map
at U ≡ 0. This simplification is motivated by the fact that the V–C map
can only be defined as a single-valued function in a neighborhood of U = 0.
Furthermore, the following assumptions are also taken into account

i) The concentration of holes satisfy p = 0 (or, equivalently, v = 0 in Ω);
ii) No recombination-generation rate is present, i.e. R = 0 (or Q = 0).
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Under this assumptions, system (2.17)–(2.25) reduces to the decoupled sys-
tem: 



λ2 ∆V 0 = eV 0 − C(x) in Ω
div (eV 0∇û) = 0 in Ω

V 0 = Vbi(x) on ΩD

û = U(x) on ΩD

∇V 0 · ν = 0 on ΩN

Ĵn · ν = 0 on ΩN

(2.28)

The inverse problem of identifying the doping profile in the linearized
unipolar model (2.28) corresponds to identification of C(x) from the map

Σ′
C(0) : U �→ (Ĵn · ν)|Γ1 , Ĵn := µne

V0∇û.
Notice that, since V = Vbi is known at ∂ΩD, the current data (output)
Jn · ν = µne

V 0
uν can be directly replaced by the Neumann data uν .

We shall return to this identification problem in Section 3, where the
inverse problem described above is considered as a generalization of the
well known electrical impedance tomography or inverse conductivity problem
(see, e.g., [9, 35] for a survey on these inverse problems).

Next we concentrate on deriving the so called bipolar case. As in the
unipolar case, we will be interested in reconstructing the doping profile C in
(2.17)–(2.25) from the linearized V–C map at U ≡ 0. This is an interesting
case, due to the fact that the Poisson Equation and the continuity equations
decouple.

From (2.27) we see that the Gateaux derivative of the V–C map ΣC

at the point U = 0 in the direction Φ is given by the expression

Σ′
C(0)Φ :=

(
µn e

Vbi ûν − µp e
−Vbi v̂ν

)
|Γ1 ,

where (u, v) solve


div (µne
V 0∇û) = Q0(V 0, x)(û+ v̂) in Ω

div (µpe
−V 0∇v̂) = Q0(V 0, x)(û+ v̂) in Ω

û = −Φ on ∂ΩD

v̂ = Φ on ∂ΩD
∂û

∂ν
=

∂v̂

∂ν
= 0 on ∂ΩN

(2.29)

and V 0 is the solution of the equilibrium problem (2.26).
Notice that the solution of the Poisson equation can be computed a pri-

ori, since it does not depend on Φ. The linear operator Σ′
C(0) is continuous.
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Actually we can prove more: since (u, v) depend continuously (in H2(Ω)2)
on the boundary data Φ (in H3/2(∂ΩD)), it follows from the boundedness
and compactness of the trace operator γ : H2(Ω)→ H1/2(Γ1) that Σ′

C(0) is
a bounded and compact operator. The application Σ′

C(0) maps the Dirich-
let data for (u, v) to a weighted sum of their Neumann data and can be
compared with the identification problem in the electrical impedance to-
mography.

2.5. Flipped bipolar case

In this subsection we introduce another special case, which will be relevant
for the formulation of the inverse problem related to the laser-beam-induced
current (LBIC) measurements. We start by introducing the LBIC functional
defined by the boundary integral

I : L2(Ω) → R
g �→

∫

Γ1

{
µne

V 0
ûν − µpe

−V 0
v̂ν

}
ds

where Γ1 ⊂ ∂ΩD is defined as in Subsection 2.4, V 0 is the solution of the
equilibrium problem (2.26) and (u, v) solve





div (µne
V 0∇û) = Q0(V 0, x)(û+ v̂) + g in Ω

div (µpe
−V 0∇v̂) = Q0(V 0, x)(û+ v̂) + g in Ω

û = v̂ = 0 on ∂ΩD
∂û

∂ν
=

∂v̂

∂ν
= 0 on ∂ΩN

(2.30)

Notice that the only differences between systems (2.30) and (2.29)
(from the bipolar case) are: 1) the L2(Ω) function g, appearing on the
right hand side of the linearized continuity equations and representing the
applied laser beam (see Section 3 for details on the problem formulation);
2) the Dirichlet boundary condition at ∂ΩD.

The inverse problem of reconstructing the doping profile from mea-
surements of the LBIC functional was considered in [23, 24]. An alternative
representation for the functional I was derived in [23]. Analyzing the varia-
tional formulation of the system constituted by (2.26) and (2.30) and using
standard functional analytical arguments as well as basic elliptic theory
(see [28]), the authors proved that the LBIC functional can be written as

I(g) = 〈̂̃v − ũ, g〉L2(Ω) , (2.31)
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where V 0 is defined as before and (û, v̂) solve the system



div (µne
V 0∇ũ) = Q0(V 0, x)(ũ− ṽ) in Ω

div (µpe
−V 0∇ṽ) = Q0(V 0, x)(ṽ −ˆ̃u) in Ω

ũ = ṽ = 1 on Γ1

ũ = ṽ = 0 on ∂ΩD/Γ1

∂ũ

∂ν
=

∂ũ

∂ν
= 0 on ∂ΩN

(2.32)

We shall refer to system (2.26), (2.32) as flipped bipolar case. As in the
bipolar case, the solution of the Poisson equation can be computed a priori,
since V 0 does not depend on g. Therefore, to evaluate I in (2.31) one needs
only to solve the coupled system (2.32). Moreover, from the representation
formula (2.31), it follows that I is a linear continuous functional on L2(Ω).

3. Inverse doping problem

The so called inverse doping profile corresponds to the problem of identi-
fying a doping profile C(x) in system (2.17)–(2.25) from indirect measure-
ments. In practical applications, the following types of measurements are
available (cf. [38]):

1. Current flow through a contact Γ1 ⊂ ∂ΩD:

I(U) =
∫

Γ1

(Jn + Jp).ν ds ,

where U ∈ H3/2(∂ΩD) with ‖U‖ small.
Under the (idealized, but technologically realizable) assumption that
we not only know the averaged flow through Γ1, but the actual flow
J ·ν on Γ1, this type of measurement corresponds to the voltage-current
map introduced in Subsection 2.4:

ΣC(U) := (Jn + Jp) · ν
∣∣
Γ1
∈ H1/2(Γ1) .

2. Mean capacitance of a contact Γ1 ⊂ ∂ΩD:

Cap(U) =
∂

∂U

(∫

Γ1

∇V.ν ds
)
.

We shall consider the idealized (but again technologically realizable)
data corresponding to measurements of the variation of the electric
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flux (in the normal outward direction) with respect to an applied volt-
age U at ∂ΩD. This data corresponds to the so called capacitance
measurements

TC(U) :=
∂

∂U

∂V

∂ν

∣∣∣
Γ1

=
∂V̂

∂ν

∣∣∣
Γ1

∈ H1/2(Γ1) ,

here V is the solution of the Poisson equation for an applied voltage
U ∈ H3/2(∂ΩD).

3. Measurements of the total current i(x) flowing out through one contact
induced by a laser beam applied at different locations x ∈ Ω:

i(x) := I(δ(· − x)) = v̂(x)− û(x) ,
where I is the LBIC functional defined in Subsection 2.5, and (û, v̂) is
the solution of system (2.32). These data correspond to the so called
laser-beam-inducted current measurements.

In all cases we assume that Γ1 ⊂ ∂ΩD is sufficiently regular with non zero
measure. The first step in the investigation of the inverse problems mod-
eled by operators ΣC and TC consists in analyzing whether these operators
are well defined in appropriate spaces. The next three subsections are de-
voted to the analysis of each of these operators. In the last subsection we
discuss in details the inverse problem related to the V–C map for the lin-
earized unipolar case close to equilibrium and its relation with the electrical
impedance tomography.

3.1. The voltage-current map

in this subsection we analyze the V–C map introduced above. The map
ΣC takes (for a fixed doping profile C) the applied voltage U into the
corresponding current density. The non-linear operator ΣC is well-defined,
when considered as a map between suitable Sobolev spaces. This assertion
is a consequence of the following result:

Proposition 3.1. [12, Proposition 3.1] For each applied voltage U ∈ Br(0) ⊂
H3/2(∂ΩD) with r > 0 sufficiently small, the current J · ν ∈ H1/2(Γ1) is
uniquely defined. Furthermore, ΣC : H3/2(∂ΩD)→ H1/2(Γ1) is continuous
and is continuously differentiable in Br(0).

Sketch of the proof. The first part of the proof follows basically from the
uniqueness of solutions for system (2.17)–(2.25) in H2(Ω)3 together with
regularity properties of the Neumann trace operator γ : H2(Ω)→ H1/2(Γ1).
The Fréchet-differentiability follows from standard estimates of the residual
in the Taylor expansion of the operator ΣC . �



288 Burger, Engl, Leitao and Markowich Vol. 72 (2004)

By iterating the argumentation in Proposition 3.1, one can even prove
that ΣC is of class C∞ in Br(0) ⊂ H3/2(∂ΩD) for r sufficiently small.

Proposition 3.1 establishes a basic property to consider the inverse
problem of reconstructing the doping profile C from the V–C map. In the
sequel we shall consider two possible inverse problems for the V–C map.

In the first inverse problem we assume that, for each C, the output
corresponds to the map ΣC . A realistic experiment corresponds to measure,
for given {Uj}Nj=1, with ‖Uj‖ = 1, the outputs

{
ΣC(tUj) | j = 1, · · · , N ; t ∈ [0, r]

}
.

This data corresponds to the assumption that the amplitude of an applied
voltage Uj can be varied continuously in a practical experiment. In practice,
the functions Uj are chosen to be piecewise constant.

Notice that, for fixed Uj , the continuity of ΣC implies the continuity
of the function t �→ ΣC(tUj). Therefore, we have

ΣC(·Uj) ∈ C(0, r;H1/2(Γ1)) ⊂ L2(0, r;L2(Γ1)) .

This allow the following abstract formulation of the inverse problem for the
V–C map:

F (C) = Y , (3.1)
where

1) Parameter: C = C(x) ∈ L2(Ω) =: X ;
2) Output: Y =

{
ΣC(·Uj)

}N

j=1
∈ [L2((0, r)× Γ1)]N =: Y ;

3) Parameter-to-output map: F : X → Y .
The domain of definition of the operator F is

D(F ) := {C ∈ L2(Ω); Cm ≤ C(x) ≤ CM , a.e. in Ω} ,
where C and C are appropriate positive constants.

This choice of spaces is motivated by Propositions 2.2 and 2.3, which
guarantee, for each t‖Uj‖ < r (r small) and C ∈ D(F ), the existence and
uniqueness of a H2-solution (V, n, p) for system (2.17)–(2.25). Therefore,
the map

F : D(F ) ⊂ X → Y
C �→

{
ΣC(·Uj)

}N

j=1

is well defined. Furthermore, F is also Fréchet-differentiable in D(F ). In-
deed, we already know that the map (V, u, v) �→ J · ν|Γ1 is continuously
differentiable (this is included in the proof of Proposition 3.1). Thus, it
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is enough to verify the differentiability of the map Uj : D(F ) � C �→
(V, u, v) ∈ H2(Ω)3, for fixed Uj . The variation of the solution (V, u, v) of
system (2.17)–(2.25) with respect to a variation of the doping profile C can
be deduced similarly as in (2.27). To prove Fréchet-differentiability of UJ ,
we only have to estimate the residual in the Taylor expansion of this map,
as in the proof of Proposition 3.1.

This inverse problem is addressed in the literature as identification of
doping profiles from full voltage-current data. Next we shall investigate a
different formulation of the same inverse problem related to the V–C map.

In practical applications, the V–C map can only be defined in a neigh-
borhood of U = 0 (due to hysteresis defects for large applied voltages).
This motivates the analysis of the problem of identifying the doping profile
C from the linearized V–C map at U = 0. (see unipolar and bipolar cases
in Subsection 2.4).

As described in Subsection 2.4, the Gateaux derivative of the V–C
map at U = 0 in direction Φ is given by

Σ′
C(0)Φ =

(
µn e

Vbiuν − µp e
−Vbivν

)
|Γ1 ,

where (u, v) solve the system in (2.29) and V 0 is the solution of the equilib-
rium case (2.26). In Subsection 2.4 we have already verified the boundedness
and compactness of Σ′

C(0). Contrary to the case of full data, the solution
of the Poisson equation can be computed a priori, since it is independent
of Φ.

The next step to complete the setup of this second inverse problem for
the V–C map is to define the problem data. The data for the problem can
be obtained from the full V–C data:

Y :=
{
Σ′

C(0)Uj

}N

j=1
∈
[
L2(Γ1)

]N
.

In the literature, this inverse problem in called identification of doping
profiles from reduced voltage-current data. Notice that the functions Uj are
defined as before. Therefore, we obtain for the inverse problem with reduced
data the same abstract formulation as in (3.1) with

1) Parameter: C = C(x) ∈ L2(Ω) =: X ;
2) Output: Y =

{
Σ′

C(·Uj)
}N

j=1
∈
[
L2(Γ1)

]N =: Y ;
3) Parameter-to-output map: F : X → Y .

The domain of definition of the operator F is the same as in the case of
full data. Notice that the parameter-to-output operator for reduced data is
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given by:
F : D(F ) ⊂ X → Y

C �→
{
Σ′

C(0)Uj

}N

j=1

Analogously as in the full V–C data case, one can prove that the non-linear
parameter-to-output operator is well defined and Fréchet differentiable in
its domain of definition D(F ).

As already observed, the solution of the Poisson equation can be com-
puted a priori. The remaining problem (coupled system for (u, v)) is quite
similar to the problem of electrical impedance tomography. In this inverse
problem the aim is to identify the conductivity q = q(x) in the equation:

−div (q∇u) = f in Ω ,

from measurements of the Dirichlet-to-Neumann map, which maps the ap-
plied voltage u|∂Ω to the electrical flux quν |∂Ω. The application Σ′

C(0) maps
the Dirichlet data for û and v̂ to the weighted sum of their Neumann data.
It can be seen as the counterpart of electrical impedance tomography for
common conducting materials.

We close this subsection discussing yet another inverse problem for
the capacitance measurements. This problem again concerns the reduced
V–C map and arrises in a limiting case of the drift diffusion equations,
called limit of zero space charge, which is mathematically represented by
the scaling limit λ → 0. In this case the Poisson equation reduces to an
algebraic relation between V and C and existence of solutions of the zero-
space-charge problem in L∞(Ω) has been proven in [42].

Notice that, in the limiting case λ = 0, without further regularity
assumptions on the doping profile C we can only guarantee H1 regularity
for a solution (u, v) of (2.29). Therefore, J ·ν ∈ H−1/2(Γ1) follows. However,
as already observed in [12], if ∇C ∈ Lp(Ω) for p sufficiently large (p ≥ 6),
one can show that the reduced V–C map exists and maps continuously to
L2(Γ1).

From the Poisson equation in equilibrium we obtain sinhV = 2C and
the linearized continuity equations can be written in the form




div (µna∇û) = q(a, x)(û+ v̂) in Ω
div (µpa

−1∇v̂) = q(a, x)(û+ v̂) in Ω

u = −Φ on ∂ΩD

v = Φ on ∂ΩD
∂u

∂ν
=

∂v

∂ν
= 0 on ∂ΩN

(3.2)
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where

a = a(C) = earcsinh(2C) , q(a, x) = Q(ln(a), 1, 1, x) .

Thus, in this limiting case, the inverse doping profile problem reduces
to the identification of the conductivity a in the coupled system (3.2) from
the reduced V–C map. Once we have reconstructed the coefficient a, the
doping profile can be obtained from the relation C = 1

2 sinh(ln a).

3.2. Capacitance measurements

In this subsection we address the inverse problem modeled by the operator
TC , introduced at the beginning of Section 3.

The operator TC maps an applied voltage U at ∂ΩD to the idealized
data corresponding to the Neumann trace of the electric potential V̂ at
Γ1 ⊂ ∂ΩD, i.e.

TC : H3/2(∂ΩD) → H1/2(Γ1)

U �→ ∂V̂

∂ν

∣∣∣
Γ1

where V̂ solves:



λ2 ∆V̂ =
(
eV 0

+ e−V 0)
V̂ + eV 0

û+ e−V 0
v̂ in Ω

V̂ = U on ∂ΩD

∇V̂ · ν = 0 on ∂ΩN

here V 0 is the solution the equilibrium case (2.26) and (û, v̂) is the solution
of the system





div (µne
V 0∇û) = Q0(V 0, x)(û+ v̂) in Ω

div (µpe
−V 0∇v̂) = Q0(V 0, x)(û+ v̂) in Ω

û = −U on ∂ΩD

v̂ = U on ∂ΩD
∂û

∂ν
=

∂v̂

∂ν
= 0 on ∂ΩN

Using a priori estimates of the solution of the Poisson equation, we
conclude that V̂ depends continuously on the boundary data as well as on
the functions û and v̂, appearing on the right hand side of the PDE. Further,
we know that the map U �→ (û, v̂) is well-defined. Therefore, we can deduce
the well-definedness of the application TC , for each doping profile C in

{C ∈ L2(Ω); Cm ≤ C(x) ≤ CM , a.e. in Ω} .
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The continuity of TC can be proved in an analogous way. Furthermore,
repeating the argumentation used for the operator Σ′(0), one can prove
boundedness and compactness of the linear operator TC .

To obtain the abstract formulation of the inverse problem related to
the operator TC , we take into account the more realistic case of a finite
number of measurements:

1) Parameter: C = C(x) ∈ L2(Ω) =: X ;
2) Output: Y =

{
TC(Uj)

}N

j=1
∈
[
L2(Γ1)

]N =: Y ;
3) Parameter-to-output map: F : X → Y ;

for fixed Uj ∈ H3/2(∂ΩD) with ‖Uj‖ small. The domain of definition of the
operator F is the same as in the case of the V–C map. The parameter-to-
output operator is defined by

F : D(F ) ⊂ X → Y
C �→

{
TCUj

}N

j=1

The well-definedness of the operator F follows from the one of TC . The
Fréchet-differentiability of the parameter-to-output operator can be proved
analogously as in the case of full voltage-current data.

3.3. Laser-beam-inducted current measurements

In this subsection we analyze the inverse problem related to the laser-beam-
inducted current (LBIC) image. This is a newly developed non-destructive
optical technique for the detection of semiconductor properties. In this tech-
nique a laser beam is applied to the semiconductor body to induce currents
to flow through the ohmic contacts on the boundary. The LBIC image con-
sists of measurements of the local current i(x) flowing out through one
contact (Γ1 ⊂ ∂ΩD) induced by a laser beam applied at location x for
all x ∈ Ω. This image, considered as a mapping Ω � x �→ i(x) ∈ R, is
considered to contain information about the doping profile. Therefore, the
relation between the LBIC image and the doping profile can be modeled as
an inverse problem for the system of drift-diffusion equations.

Let (V 0, û, v̂) be the solution of system (2.26), (2.32). According to
the representation formula (2.31), the LBIC image can be rewritten in the
form

i(x) = ṽ(x)− ũ(x) , x ∈ Ω .

The equilibrium potential V 0 satisfying (2.26) is determined uniquely
by the doping profile C(x) and vice versa. Therefore, reconstructing the
doping profile C(x) from the LBIC image is equivalent to reconstructing
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the exponential of equilibrium potential eV 0
from the representation i(x)

of the LBIC image.
In [23, 24] the uniqueness of the inverse problem is analyzed. In [24]

a one dimensional problem is considered and the non-uniqueness of the
inverse problem is proven. We shall next address this result.

A measurement i(x) for x ∈ Ω is said to be attainable, if i(x) =
v̂(x)− û(x) with (û, v̂) being the solution of (2.32) for some potential V 0.
Let us for a moment consider the one dimensional version of system (2.32)
for Ω = (0, 1)



(µne
V 0
ũ′)′ = Q0(V 0, x)(ũ− ṽ) x ∈ (0, 1)

(µpe
−V 0ˆ̃v′)′ = Q0(V 0, x)(ṽ − ũ) x ∈ (0, 1)

ũ(0) = ṽ(0) = 1
ũ(1) = ṽ(1) = 0

(3.3)

In this case, the objective is to reconstruct V 0 (or alternatively eV 0
) from

given i(x) = ũ(x)− ṽ(x). The next result establishes a necessary and suffi-
cient condition for attainability of a measurement i(x).

Proposition 3.2. [24, Theorem 2.1] A measurement i(x) is attainable if and
only if there exists constants c1 and c2 so that the equation(

c1 −
Q0

µn
I(x)

)
Y (x) + i′(x)−

(
c2 +

Q0

µp
I(x)

)
Y (x)−1 = 0 , (3.4)

has a positive solution Y (x) for each x ∈ (0, 1), and Y (x) satisfies the
integral equation

1 +
∫ 1

0

(
c1 −

Q0

µn
I(x)

)
Y (x)dx = 0 .

Here I(x) =
∫ x
0 i(ξ)dξ. Furthermore, if i(x) is attainable then the constants

c1 and c2 are nonpositive.

Sketch of the proof. To prove the necessity, one integrates the differential
equations in (3.3) and obtain a representation for i′(x). The attainability of
i(x) follows from the fact that Y (x) = e−V 0(x) satisfies both the quadratic
equation and the integral equation of the proposition.

To prove the sufficiency, one sets

û(x) = 1 +
∫ x

0

(
c1 −

Q0

µn
I(ξ)

)
Y (ξ)dξ

v̂(x) = 1 +
∫ x

0

(
c2 −

Q0

µp
I(ξ)

)
Y (ξ)−1dξ
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and obtain in a straightforward way that (û, v̂) solve (3.3) for V 0(x) =
− lnY (x). From an obvious substitution follows v̂ − û =

∫ x
0 i

′(ξ)dξ. �

According to this result, the attainability of a measurement i(x) is
equivalent to the solvability of a quadratic equation for Y (x). Notice that,
if the constants c1 and c2 are known, then the potential is obtained simply
by V 0(x) = − lnY (x).

A first identifiability result is given in [23]. In this paper, the authors
prove that i(x) ≡ 0 if and only if V 0(x) ≡ c, for some real constant c
(see Theorem 3.2 in the reference above). Therefore, in general there is no
uniqueness for the inverse problem. Using Proposition 3.2, the same authors
manage to extend this first non-uniqueness result for the one-dimensional
case presented above, as follows

Proposition 3.3. [24, Theorem 2.3] Let i(x) ∈ C1
0 [0, 1] be an attainable mea-

surement and V 0 be the corresponding potential. Moreover, assume that the
constants c1 and c2 found by Proposition 3.2 with respect to Y (x) = e−V 0(x)

satisfy

c1 <
Q0

µn
Imin and c2 < −Q0

µp
Imax ,

where Imin and Imax are respectively the maximum and the minimum of I(x)
in [0, 1]. Then there is a one-parameter family {V (x)}, containing V 0 and
strictly monotone in the parameter, that produces the same measurement
i(x) = v̂(x)− û(x) from system (3.3).

Proposition 3.3 characterizes the nonuniqueness of the one-dimensional
inverse problem for the LBIC operator. Therefore, more information is
needed to possibly recover V 0(x) from i(x) uniquely. In the LBIC technique
it is reasonable to assume that doping profile is known on the boundary
where the ohmic contacts are made (∂ΩD ⊂ ∂Ω). Thus, if we assume that
V 0 is given at x = 0, we gain another constraint for c1 and c2, namely

c1e
−V 0(0) − i′(0)− c2eV 0(0) = 0 . (3.5)

This additional constraint ensures the unique recovery of V 0(x) from the
LBIC image i(x) among the monotone one-parameter family {V (x)} de-
scribed in Proposition 3.3. Notice that this class of potentials does not
include all possible solutions to the inverse problem. Therefore, the above
constraint does not lead to uniqueness of solutions of the one-dimensional
inverse problem in general.
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In [24] the authors also propose an algorithm for the reconstruction
of V 0(x) from i(x) based on Proposition 3.3 and the additional constraint
(3.5). As discussed above, it is enough to reconstruct the constants c1 and
c2. The proposed algorithm consists in a Gauss-Newton method for the
minimization of a least square functional J associated to the residual of
the pairs (c1, c2) in both (3.4) and (3.5), namely

J(c1, c2) :=
1
2
(
J1(c1, c2)2 + J2(c1, c2)2

)
,

where

J1(c1, c2) :=
1
2

∫ 1

0

√
i′(x)2 + 4

(
c1 −

Q0

µn
I(ξ)

)(
c2 −

Q0

µp
I(ξ)

)
dx− 1

J2(c1, c2) :=
(
c1e

−V 0(0) − i′(0)− c2eV 0(0)
)
e−|V 0(0)| .

In [25], a similar model based on the drift diffusion equations is used
in order to analyze several parameter identification problems for semicon-
ductor diodes by LBIC imaging. Numerical methods are developed for the
simulation of the LBIC images of a diode as well as for the identification
of parameters (junction depth, diffusion length equilibrium potential) from
the LBIC image by least-squares formulation.

3.4. Inverse doping profile: Identification

In this subsection we consider the identification question related to the
inverse doping profile problem, i.e. we shall focus on the following funda-
mental issue concerning the parameter identification problems:

Is the available data enough to determine uniquely the doping pro-
file, or (alternatively) which set of data is sufficient to determine
uniquely the doping profile?

In the one-dimensional case (i.e. Ω = (0, L)) the identification problem
was considered in [13]. One can assume that the voltage is applied at x = 0
and the measurements of both current and capacitance are taken at x =
L. Therefore, a single measurement (reduced data) consists of two real
numbers and full data, in this case, correspond to measure the current
and/or the capacitance as a function of the applied voltage U ∈ (−r, r),
with appropriate r ∈ R.

Arguing with the dimensionality of the parameter and data spaces as
well as with structural properties of the operators ΣC and TC , the authors
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are able to fully analyze the one-dimensional inverse doping profile problem.
The corresponding results are summarized in the following proposition.

Proposition 3.4. Let us consider the inverse doping profile for system (2.17)-
(2.25) at the one-dimensional dimensional domain Ω = (0, L). The follow-
ing assertion hold:

1. If one has access only to restricted data, even if it is possible to measure
both, current and capacitance, the data are not sufficient to identify the
doping profile;

2. If one has access to full data, it is not possible to uniquely identify the
doping profile neither from current measurements nor from capacitance
measurements.

One should notice that the doping profile C = C(x) in this case is a
function of a one-dimensional space variable.

In the same paper, the authors also consider the transient case of the
one-dimensional inverse doping profile problem. They prove, under special
assumptions, that if both current and capacitance measurement are avail-
able, then the doping profile can be uniquely reconstructed from the data.
Since we consider only the stationary drift-diffusion system in this paper,
we shall not investigate this result here. For details, we refer to [13, Theo-
rem 3].

In the one-dimensional case, the special problem in which the doping
profile is a piecewise constant function of position is treated in [13]. In this
very particular case, the domain Ω can be split as Ω̄ = Ω̄n ∪ Ω̄p, such that
C(x) ≡ C+ in Ωn and C(x) ≡ C− in Ωp. This problem is also known as
identification of P-N junctions. The authors prove that reduced current
data suffice to uniquely identify the exact location of the P-N junctions
(i.e., Ω̄n ∩ Ω̄p) if the number of junctions is lower or equal to two (see [13,
Theorem 4]).

The two-dimensional case is considered in [12, 13]. Particularly inter-
esting is the inverse problem related to the V–C map for the linearized
unipolar case close to equilibrium (see Subsection 2.4), which can be di-
rectly related to the inverse problem in electrical impedance tomography.

The inverse problem in the unipolar case corresponds to the determi-
nation of the doping profile C from the map

Σ′
C(0) : H3/2(∂ΩD) → H1/2(Γ1)

U �→ (Ĵn · ν)|Γ1

(3.6)

where (u, V 0) is the solution of the system in (2.28).
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As already observed in Subsection 2.4, it follows from the fact that
V 0|∂ΩD

= Vbi is a known function, that the current data Jn · ν|Γ1 can
be directly substituted by the Neumann data uν |Γ1 . Therefore, the inverse
problem can be divided in 2 steps:

1) Define γ := eV 0
and identify γ in



div(γ∇u) = 0 in Ω
u = U on ∂ΩD

uν = 0 on ∂ΩN

from the Dirichlet-to-Neumann map: u|∂ΩD
�→ uν |Γ1 ;

2) Obtain the doping profile C(x) from: C = γ − λ2∆ (ln γ).

The identification problem in 1) corresponds to the electrical impedance
tomography (or inverse conductivity problem) in elliptic equations with
mixed boundary data. For the case of the full Dirichlet-to-Neumann op-
erator, i.e. Γ1 = ∂ΩD = ∂Ω, this inverse problem has been intensively
analyzed in the literature over the last fifteen years. Using different reg-
ularity assumptions on the conductivity γ, many authors proved that the
coefficient γ(x) of the elliptic equation ∇ · (γ∇u) = 0 is uniquely deter-
mined by the corresponding Dirichlet-to-Neumann map on the boundary
(a historical overview can be found in [9]).

In the sequel we mention a result due to A. Nachman for two-dimen-
sional domains. The proof of this theorem gives a constructive procedure
for recovering γ from the Dirichlet-to-Neumann map.

Proposition 3.5. [47, Theorem 1] Let Ω be bounded and Lipschitz. Further,
let γi ∈ L∞(Ω) ∩W 2,p(Ω), i = 1, 2, for some p > 1 with positive lower
bound. Then, the equality of the Dirichlet-to-Neumann maps

Λi : H1/2(∂Ω) → H−1/2(∂Ω)
u �→ uν

for the solutions of div(γi∇u) = 0, implies γ1 = γ2.

According to Proposition 2.3, H2-regularity of the solution (V, u, v) of
system (2.17)–(2.25) can be obtained under stronger regularity assumptions
on both the mixed boundary conditions, and the domain. Using this regular-
ity result, it is possible to adapt Proposition 3.5 for the identification prob-
lem in the unipolar case for the operator Σ′

C(0) : H3/2(∂ΩD) → H1/2(Γ1)
in the idealized case Γ1 = ∂ΩD = ∂Ω, as follows
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Proposition 3.6. [12, Theorem 4.2] Let Ω ⊂ R
2 be bounded and Lipschitz.

Further, let Γ1 = ∂ΩD = ∂Ω. Then, given two doping profiles C1, C2 ∈
D(F ), the equality Σ′

C1
(0) = Σ′

C2
(0) implies C1 = C2.

If we consider the solution of (2.17)–(2.25) to be only inH1 (see Propo-
sition 2.1), we can alternatively consider the following identifiability result
from Brown and Uhlmann for W 1,p(Ω), p > 2, conductivities:

Proposition 3.7. [11, Theorem 4.1] Let Ω be bounded and Lipschitz. Further,
let γ1 and γ2 be two conductivities with ∇γi in Lp(Ω), p > 2. Then, the
equality of the Dirichlet-to-Neumann maps

Λi : H1/2(∂Ω) → H−1/2(∂Ω)
u �→ uν

for the solutions of div(γi∇u) = 0, implies γ1 = γ2.

Using this identifiability result, it is possible to deduce, for the operator
Σ′

C(0) : H1/2(∂ΩD) → H−1/2(Γ1) an analog result to the one presented in
Proposition 3.6. Notice that this result is particularly interesting for the
case of zero space charge (see Subsection 3.1) for the V–C map, allowing
to prove identifiability of doping profiles C ∈ L∞(Ω) ∩W 1,p(Ω).

4. Numerical experiments

In this section we derive a numerical method to identify the doping profile
in the linearized unipolar case close to equilibrium (2.28). In this particular
case, due to the assumptions p ≡ 0 and Q ≡ 0, the Poisson equation and
the continuity equation for the electron density n decouple, and we have to
identify C = C(x) in


λ2 ∆V 0 = eV 0 − C(x) in Ω

V 0 = Vbi(x) on ∂ΩD

∇V 0 · ν = 0 on ∂ΩN




div (eV 0∇û) = 0 in Ω
û = U(x) on ∂ΩD

∇û · ν = 0 on ∂ΩN .

Notice that, due to the relation Ĵ · ν = µne
V 0
û, the Neumann boundary

condition Ĵn ·ν|∂ΩN
= 0 in (2.28) can be substituted by ∇û ·ν = 0 on ∂ΩN .

As already observed in Subsection 3.4, we can write γ(x) := eV 0(x); solve
the parameter identification problem




div (γ∇û) = 0 in Ω
û = U(x) on ΩD

∇û · ν = 0 on ΩN ,
(4.1)
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for the function γ; and finally evaluate

C(x) = γ − λ2 ∆(ln γ) .

Since the evaluation of C from γ can be explicitely performed (a direct
problem) and is a well posed procedure, we shall focus on the problem of
identifying the function parameter γ in (4.1). Therefore, the inverse prob-
lem of identifying the doping profile C(x) in the linearized unipolar model
(2.28) corresponds to the identification of γ(x) in (4.1) from the Dirichlet
to Neumann (DtN) map

Λγ : H3/2(∂ΩD) → H1/2(Γ1)

U �→ γ
∂u

∂ν

∣∣∣
Γ1

As we saw in Subsection 3.4, the DtN operator is given by Λγ = Σ′
C(0).

Notice that, due to the nature of the physical problem related to the
drift-diffusion equations, we can consider as inputs for the DtN map only
functions of the type:

U =
{
Ũ , at ∂ΩD\Γ1

0, at Γ1
.

Furthermore, the outputs or measurements are only available at Γ1. This is
the basic difference between the parameter identification problem in (4.1)
and the inverse problem in electrical impedance tomography, i.e. the fact
that both Dirichlet (input) and Neumann (output) are prescribed only at
specific parts of the boundary. For this special inverse problem (with mixed
boundary data) there are so far no analytical results concerning identifia-
bility and the few numerical results in the literature are those discussed in
[12, 13, 25].

We shall work with a reduced set of data, as described in Subsec-
tion 3.1, i.e. within the following framework:

1) Parameter: γ = γ(x) ∈ H2(Ω) =: X ;
2) Input (fixed): Uj ∈ H1/2(∂ΩD), Uj |Γ1 = 0, 1 ≤ j ≤ N ;
3) Output (data): Y =

{
γ

∂ûj

∂ν |Γ1

}N

j=1
∈ [L2(Γ1)]N =: Y ;

(here uj is the solution of (4.1) for U = Uj)
4) Parameter-to-output map: F : X → Y .

The domain of definition of the operator F is

D(F ) := {γ ∈ H2(Ω); γ(x) ≥ γ− > 0, in Ω} ,
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where γ− is an appropriate positive constant. We shall denote the noisy
data by Y δ and assume that the data error is bounded by

‖Y − Y δ‖ ≤ δ .

Thus, we are able to represent the inverse doping problem in the abstract
form

F (γ) = Y δ . (4.2)

A common technique to solve the inverse problem in (4.2) is the out-
put least-square family of methods. Basically, all output least-square meth-
ods minimize iteratively the residual functional related to (4.2) with some
Newton-type method [1, 2, 3, 4, 5, 16, 19, 29, 33, 36, 37, 51]. In the liter-
ature, one can find several applications of such methods for the electrical
impedance tomography problem (see, e.g., [10, 17, 18, 57]).

A simple and robust iterative method to solve the problem in (4.2)
is the so called Landweber iteration [16, 19, 21, 31], in which the k-step is
described by

γδ
k+1 = γδ

k − F ′(γδ
k)

∗(F (γδ
k)− Y δ

)
.

This iteration is known to generate a regularization method for the inverse
problem, the stopping index playing the rule of the regularization parameter
(for regularization methods see, e.g., [19, 20, 21, 46, 55]).

For our numerical experiments, we propose an iterative method of
adjoint type in order to solve the identification problem (4.1), the so called
Landweber–Kaczmarz method. This method derives from the coupling of
the strategies of the Landweber iteration and the Kaczmarz method. The
Kaczmarz method is a fixed point algorithm which has been proven to be
efficient for solving inverse problems in Tomography [7, 8, 27, 39, 48]. For a
detailed analysis of the method we refer to [7, 45] for the finite dimensional
setting and to [6, 43, 44] for the infinite dimensional setting.

A detailed analysis of the Landweber–Kaczmarz method can be found
in [40]. It is worth mentioning that this method has already been suc-
cessfully applied to the electrical impedance tomography problem [47]. To
formulate the method, we need first define the parameter-to-output maps

4’) Operators Fj for j = 1, . . . , N :

Fj : H2(Ω) → L2(Γ1)
γ �→ γ

∂ûj

∂ν |Γ1
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Now, setting Yj := Fj(γ) for 1 ≤ j ≤ N , the Landweber–Kaczmarz itera-
tion can be written as:

γδ
k+1 = γδ

k −F ′
k(γ

δ
k)

∗(Fk(γδ
k)− Y δ

k

)
, (4.3)

for k = 1, 2, . . . , where we adopted the notation

Fk := Fj, Y δ
k := Y δ

j , with k = i ·N + j, and
{
i = 0, 1, . . .
j = 1, . . . , N

.

Each step of the Landweber–Kaczmarz method consists in one step of
the Landweber iteration with respect to the j-th component of the residual
F (γ) − Y . These steps are performed in a cyclic way for each one of the
residual components Fj(γ)− Yj, j = 1, · · · , N .

As far as the implementation of the method is concerned, it is enough
to describe the general step of the Landweber iteration. The variational
formulation of the iterative step in (4.3) reads

〈γk+1 − γk, h〉L2(Ω) = −〈F ′
k(γk)h, Fk(γk)− Yk〉L2(Ω) , (4.4)

where h ∈ H1(Ω) is a test function (to simplify the notation we set δ = 0,
i.e. Y δ

k = Yk and γδ
k = γk).

In order to compute the inner product on the right hand side of (4.4),
we use the identity:

〈F ′(γ)h, z〉L2(Γ1) =
∫

Ω
h∇G(γ) · ∇Φ(γ) dx, (4.5)

for z ∈ L2(Γ1), where the H1(Ω)-function Φ(a) solves


−∇(a(x)∇w) = 0, in Ω

w = z, on Γ1

w = 0, on ∂Ω/Γ1

and the H1(Ω)-function G(a) solves

−∇(a(x)∇w) = 0, in Ω

a(x)wν = 0, on ∂ΩN

w = g, on ∂ΩD

Indeed, since the Fréchet derivative of the operator

Ψ : H2(Ω) → H1/2(∂Ω)
a �→ awν |∂Ω

where
{
−∇(a(x)∇w) = f, in Ω

w = g, on ∂Ω

in the direction h ∈ H2(Ω) is given by

Ψ′(a) · h = (hGν(a) + aψν) ,
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where {
−∇(a(x)∇ψ) = ∇(h(x)∇G(a)), in Ω

ψ = 0, on ∂Ω
we have

〈F ′(γ)h, z〉L2(Γ1) =
∫

Γ1

z
(
h(G(γ))ν + γψν

)

=
∫

Γ1

z h (G(γ))ν +
∫

Γ1

Φ(γ)γψν +
∫

∂ΩD/Γ1

Φ(γ)γψν +
∫

∂ΩN

Φ(γ)γψν

=
∫

Γ1

z h (G(γ))ν +
∫

Ω
∇(γ∇ψ)Φ(γ) +

∫

Ω
γ∇ψ · ∇Φ(γ)

=
∫

Γ1

z h (G(γ))ν −
∫

Ω
∇(h∇G(γ))Φ(γ) +

∫

∂Ω
ψ
(
γ(Φ(γ))ν

)

−
∫

Ω
ψ∇
(
γ∇Φ(γ)

)

=
∫

Γ1

z h (G(γ))ν −
[∫

Γ1

h (G(γ))νΦ(γ) +
∫

∂Ω/Γ1

h (G(γ))νΦ(γ)

]

+
∫

Ω
h∇G(γ) · ∇Φ(γ)

and (4.5) follows. Therefore, the term on the right hand side of (4.4)can be
evaluated by using formula (4.5) with z = Fk(γk)− Yk.

For the concrete numerical test performed in this paper, Ω ⊂ R2 is
the unit square, and the boundary parts are defined as follows

Γ1 := {(x, 1) ; x ∈ (0, 1
2)} , ∂ΩD := Γ1 ∪ {(x, 0) ; x ∈ (0, 1)}

∂ΩN := {(0, y) ; y ∈ (0, 1)} ∪ {(1, y) ; y ∈ (0, 1)} ∪ {(x, 1) ; x ∈ (1
2 , 1)} .

The fixed inputs Uj ∈ H1/2(∂ΩD), are chosen to be piecewise linear func-
tions supported in ∂ΩD/Γ1

Uj(x) :=
{

1− 1
h |x− xj |, |x− xj | ≤ h

0, else

where the points xj are equally spaced in the interval (0, 1). The doping
profile C = C(x) to be reconstructed corresponds to the function γ̄(x)
shown in Figure 4.1 (a). In this figure, as well as in the forthcoming ones,
Γ1 appears in the lower right part of the picture and ∂ΩD/Γ1 appears on
the top (the origin corresponds to the upper right corner).
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(a) (b)

Figure 4.1. Picture (a) shows the exact coefficient γ̄(x) to
be reconstructed. On picture (b), the initial condition for
the Landweber-Kaczmarz iteration is shown.

To generate the problem data, one has to solve the direct problem in
(4.1) for each input function Uj , j = 1, · · · , N . In order to avoid the so
called inverse crimes, these problems are solved using adaptive mesh reg-
ularization and a piecewise linear finite element base with approximately
8000 nodal points. This mesh is different from the one used to solve the
mixed elliptic boundary value problems, related to the implementation
of the Landweber–Kaczmarz method. These problems are solved using a
multigrid finite element method at uniformly refined grids with approxi-
mately 2000 nodal points.

We still have to take into account an important issue concerning the
stability of the numerical implementation. Due to the particular geome-
try of Ω (note that ∂ΩD and ∂ΩN meet at angles of π and π/2), both
the solution of the direct elliptic (mixed) problems as well as the solu-
tion of the boundary value problems involved in the implementation of the
Landweber–Kaczmarz method are not in H2(Ω) (see remark at the end of
Subsection 2.2).

Because of this lack of regularity in the solution of the elliptic boundary
value problems, the numeric implementation of the Landweber–Kaczmarz
method has shown to be very unstable. After a few iterative steps the
sequence γk became unbounded, the main singularity appearing near the
boundary (note that we assume C, or equivalently γ, to be known at the
boundary) close to the contact points between ∂ΩD and ∂ΩN . This phenom-
ena could be observed even if we started the iteration with γ0(x) = γ†(x),
the exact solution of the inverse problem.
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(a) (b)

Figure 4.2. Pictures (a) and (b) show different pairs of
(Dirichlet,Neumann) data used in separate runs of the
Landweber–Kaczmarz iteration.

In order to avoid the instability described above, we make the addi-
tional assumption that the doping profile is known in a thin strip close to
∂Ω. Therefore, we only have to reconstruct the values of γ(x) at a subdo-
main Ω̃ ⊂⊂ Ω. With this extra assumption, the numerical implementation
becomes stable and we are able to characterize (numerically) the exact so-
lution γ†(x) as a fixed point of the Landweber–Kaczmarz iteration. It is
worth mentioning that this sort of assumption is very common in the lit-
erature (see, e.g., [9] and the references therein) and has been used since
the early investigations of the electrical impedance tomography, in order to
insure extra regularity for both numerical and analytical approaches (see
[52]).

In Figure 4.1 (b) the initial condition for the Landweber–Kaczmarz
method is shown. Comparing the initial condition with the exact solution,
one can observe that the values of γ0(x) and γ†(x) coincide close to ∂Ω.
This is in accordance with the assumption above. Close to the boundary
∂Ω, the values of γk are not iterated, and we actually have γk = γ† at Ω/Ω̃.

Concerning the amount of information used in the reconstruction, we
implemented (for comparison purposes) the Landweber–Kaczmarz iteration
in the case where a single pair of Dirichlet and Neumann data was available.
In this case, the Landweber–Kaczmarz method reduces to the Landweber
iterative method. This experiment is interesting, since it shows that the
quality of the reconstruction is better at the part of the domain Ω which is
closer to the support of the applied voltage. In Figure 4.3 we present the
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evolution of the Landweber iteration for N = 1 and

U1(x) :=
{

1− 8|x− 6
8 |, |x−

6
8 | ≤

1
8

0, else

The solution of the direct problem corresponding to this choice of U1 is
shown in Figure 4.2 (a).

In Figure 4.4 we present the evolution of the Landweber iteration for
N = 1 and

U1(x) :=
{

1− 8|x− 2
8 |, |x−

2
8 | ≤

1
8

0, else
The solution of the direct problem corresponding to this choice of U1 is
shown in Figure 4.2 (b).

In Figure 4.5 we present the reconstruction results obtained by the
Landweber–Kaczmarz iteration for N = 9, i.e. nine pair of Dirichlet and
Neumann Data. We implemented the method with different amounts of
data (i.e. different values of N). For N ≥ 5 the numerical results were very
close. The results correspond to exact data, i.e. no noise was introduced.
The numerics have shown to be sensible with respect to noise. Even though,
we were able to obtain some acceptable results for noisy data. In Figure 4.6
we present the results obtained with a noise level of 10% (white noise).
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