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Optimal exploitation of renewable resource stocks:
necessary conditions
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SUMMARY

We study a model for the exploitation of renewable stocks developed in Clark et al. (Econometrica 1979;
47:25–47). In this particular control problem, the control law contains a measurable and an impulsive
control component. We formulate Pontryagin’s maximum principle for this kind of control problems,
proving first-order necessary conditions of optimality. Manipulating the correspondent Lagrange
multipliers we are able to define two special switch functions, that allow us to describe the optimal
trajectories and control policies nearly completely for all possible initial conditions in the phase plane.
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1. INTRODUCTION

1.1. Description of the model

Consider a bio-economic model of the commercial fishery under sole ownership. The model is
governed by the quantities described in Table I.

The model is based on the following assumptions:

* hðtÞ ¼ qEðtÞxðtÞ; q is a catch coefficient;
* x0ðtÞ ¼ FðxðtÞÞ�qE(t)x(t), t50, xð0Þ ¼ x0; F is the natural growth function;
* K0(t)¼�gK(t)+I(t), t50, K(0)¼K0; g50 is the rate of depreciation;
* constraints: 04x(t), K(t), E(t); E(t)4K(t);
* non-malleability: 04I(t)41, t50;
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* existence of two biological equilibrium points: F(0)¼F( %xx)¼ 0, %xx>0;
* properties of the production function

F 2 C2½0;1Þ; FðxÞ > 0; 05x5 %xx; F 00ðxÞ50; 04x4 %xx

* objective function (discounted cash flow):
R1
0 e�dtfphðtÞ � cEðtÞ � rIðtÞg dt; d>0 is the

instantaneous rate of discount, p50 is the price of landed fish, c50 is the operating cost
per unit effort, r50 is the price of capital.

A concrete production function satisfying the assumption above is given by the logistic
mapping F(x) :¼ ax(1�x/k) (with a>0, k>0). In our figures we use this production function.

1.2. The optimal control problem

We set E¼ uK and consider u as a second control variable. Without loss of generality we use
q¼ 1. After this manipulation, the problem we want to consider is the following optimal control
problem:

Qðx0;K0Þ

minimize Jðx0;K0; I ; uÞ :¼
R1
0 e�dtfrI ðtÞ þ cuðtÞKðtÞ � puðtÞKðtÞxðtÞg dt

subject to

x0 ¼ FðxÞ � uðtÞKðtÞx; t50; xð0Þ ¼ x0

K 0 ¼ �gK þ IðtÞ; t50; Kð0Þ ¼ Kð0Þ

04xðtÞ;KðtÞ; 04uðtÞ41; IðtÞ50; t 2 ½0;1Þ

8>>>>>>>><
>>>>>>>>:

This problem is considered in Reference [1] along the ‘royal road’ of Carath!eeodory. But the
analysis is not rigorous in the details (see Section 1.3). In Reference [2] the problem is given as an
illustration for the problem of the type considered in the paper but the results are not applicable
(for proving existence).

In Reference [3] there is also a hint to this problem and finally, we find the problem in
Reference [4] considered as an example for the application of the maximum principle, but
nothing has been made rigorous. For the background in fishery management see References
[5–7].

It is known, see e.g. Reference [2], that control problems may have no solution if the control
variable is unbounded and both the cost functional and the dynamics depend linearly on the
control. This situation is given here with respect to the control I. In order to avoid non-existence
we have to replace the conventional control I by an impulse control, i.e. jumps in the state are

Table I. Main relevant variables

t Time variable

x(t) Population biomass at time t
h(t) Harvest rate at time t
E(t) Fishing effort at time t
K(t) Amount of capital invested in the fishery at time t
I(t) Investment rate at time t
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allowed. Therefore, we consider I as a Borel measure and the capital function K as a function of
bounded variation. Then, problem Q(x0, K0) becomes

Pðx0;K0Þ

minimize Jðx0;K0; m; uÞ :¼
R1
0

e�dtrmðdtÞ þ
R1
0

e�dtfc� pxðtÞguðtÞKðtÞ dt

subject to ðu;mÞ 2 Uad � Cn and

x0 ¼ FðxÞ � uðtÞKx; xð0Þ ¼ x0

dk ¼ �gK dtþ mðdtÞ; Kð0Þ ¼ K0

8>>>>><
>>>>>:

Here

Uad :¼ fv 2 L1½0;1Þj04vðtÞ41 a:e: in½0;1Þg

Cn :¼ fmjm a non-negative Borel measure on ½0;1Þg

Note that the constraints 04x(t), K(t), t 2 [0, 1), are satisfied due to the assumptions above if
x050, K050.

The initial value problem

dK ¼ �gK dtþ mðdtÞ;Kð0Þ ¼ K0 ð1Þ

has to be considered as differential equation with a measure: a function K: [0, t1)!R (t1 2 (0,1])
is a solution if

KðtÞ ¼ K0 �
Z t

0

gKðsÞ dsþ
Z
½0;t�

mðdsÞ; 04t5t1 ð2Þ

This implies that K is right continuous in (0, t1) and K(0)¼ K0;þm({t0}) where K0,+ denotes
limt#0K(t).

Remark 1

Owing to the fact that the coefficients in front of the control measure m does not depend on the
state we may use the solution concept as given above, the so-called Young solutions (see
Reference [8]). Otherwise we would have to use the concept of robust solutions considered in
References [9–13].

We set k :¼ d+g, r0 :¼ rk, cn :¼ c+r0 and define functions g, c, cn on (0, %xx) by

gðxÞd� F 0ðxÞ þ
FðxÞ
x

cðxÞðpx� cÞðd� F 0ðxÞÞ �
cFðxÞ
x

cnðxÞðpx� cnÞðd� F 0ðxÞÞ �
cnFðxÞ

x

Further we consider the following conditions:

(V1) F 2C2[0,1)\C3(0, %xx); F(0)¼F( %xx)¼ 0; F(x)>0, 05x5 %xx; F 00(x)50, 04x4 %xx
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(V2) d>0, r>0, c>0, g>0
(V3) cn�p %xx50
(V4) There exist %xx, xn 2 (0, %xx) with

cðxÞ50; 05x5 *xx; cð *xxÞ ¼ 0; cðxÞ > 0; *xx5x5 *xx

cnðxÞ50; 05x5xn; cnðx
nÞ ¼ 0; cnðxÞ > 0; xn5x5 %xx

(V5) c0(x)>0, x 2 (0, *xx), c0
n
ðxÞ > 0;x 2 ð *xx; %xxÞ

(V6) g0(x)>0, x 2 (0, %xx)

Remark 2

Note that the conditions (V1), . . . , (V6) are satisfied for the logistic production function if the
constants are chosen appropriately. Note too that (V4), (V5) contain redundant information.

Remark 3

In the subsequent analysis it is very important that x ¼ %xx is an attracting equilibrium point in
the differential equation x0 ¼ FðxÞ, while x ¼ 0 is an unstable equilibrium point.

At this point we define *KK :¼F( *xx)/ *xx and Kn :¼F(xn)/xn. Owing to assumption (V1), follows
g(x)>0 in [0, %xx]. Therefore, we have c(x)>cn(x) and, consequently, *xx5xn, *KK>Kn must hold.

Under assumptions (V1), . . . , (V6) one can prove existence of optimal solutions of P(x0, K0);
see, e.g. Reference [14].

1.3. The verification approach

As already mentioned the problem P(x0, K0) is considered in Reference [1]. Using a Hamilton–
Jacobi–Bellman equation on (0, *xx)� (0, 1) a candidate for an optimal control policy is defined
for each (x0, K0) 2 (0, %xx)� (0, 1). This results in the definition of a function

S : ð0; %xxÞ � ð0;1Þ ! R

such that for all (x, K) 2 (0, %xx)� (0, 1), for all u 2 [0, 1] and for all I50, controls with jumps are
avoided by considering them as ‘limits’ of regular controls,

dSðx;KÞ þ FðxÞSxðx;KÞ � gKSK ðx;KÞ5IðSK ðx;KÞ þ rÞ þ uKfqxSxðx;KÞ � pqxþ cg ð3Þ

holds. Then it is stated that S is the value function V where the value function V is given here by

Vðx0;K0Þ :¼ inffJðx0;K0; I ; uÞjðI ; uÞ admissibleg; ðx0;K0Þ 2 ð0; %xxÞ � ð0;1Þ

Implicitly there are only used controls which result in states x, K such that

limt!1

Z 1

t

e�dtSðxðtÞ;KðtÞÞ dt ¼ 0

One can follow the analysis in Reference [1] partly but for some steps the assumptions are not
sufficient and some arguments are not complete. Since S is not differentiable everywhere they
use the argument that each problem P(x0, K0) may be approximated by the problem Q(x0, K0).
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This density argument is a very deep topological argument and no results to make this argument
rigorous are available from the literature. It is open whether on this road the verification of
optimal controls is possible. Thus, the verification of the optimal policy in Reference [1] has to
be considered as an open problem. Two different ways may be considered in order to circumvent
these difficulties: Firstly, extension of the so-called Hamilton–Jacobi–Bellman equation such
that jumps are allowed. Secondly, proof of the closure property inherent in the density
argument.

1.4. Outline of the paper

In Section 2, we study the necessary conditions, furnished by a special version of Pontryagin’s
maximum principle (see Appendix A). Through manipulation of the Lagrange multipliers we
manage to define two special switch functions. The first switch helps to determine the bang–
bang behaviour of the measurable component of the control policy, while the second one is a
jump switch, which gives us a necessary condition for discontinuities in the state variables.

In Section 3, we use the necessary conditions of optimality, rewritten for the switch functions,
in order to detect both optimal and non-optimal behaviour of the admissible processes.
Following trajectories backwards in time and observing the evolution of the switches, we are
able to construct auxiliary curves in the phase plane (x, K), that are very useful to determine
optimal behaviour. Particularly we are able to detect two jump curves in the phase plane. This
shows that the application of the Pontryagin maximum principle can be used in order to
construct the extremals of the problem.

In Section 4, we put all arguments together and summarize the obtained results in the form of
Theorem 27. The next two theorems, 28 and 29, treat some special initial conditions, which may
occur. However, the argumentation follow the spirit of Theorem 27.

It is worth to mention that our results are in agreement with the conclusions in Reference [1].

1.5. Interpretation of the main results

In this section, we provide the economic interpretation of our main result, which is obtained
in Theorem 27 and auxiliary Theorems 28 and 29. These theorems describe optimal behaviour
of processes and corresponding Lagrange multipliers for all initial conditions in the state space
[0, %xx]� [0, 1).

For details on the notation, particularly the definition of the curves Sn, *SS, Ss; S0, G1, G2, G3,
G4, the reader should refer to Section 3 (see also to Figure 3). The main regions (R1), . . . , (R5)
are defined in Section 4 and are illustrated in Figure 4.

Case 1 (x0, K0)¼ (xn, Kn): One should invest with constant rate (m¼ gKn dt) and fish
with maximal effort (u¼ 1) for all t50. Consequently, the optimal trajectory satisfies
(x(t), K(t))¼ (xn, Kn) for all t50 (this is the first singular arc).

Case 2 (x0, K0) 2S
n: At the initial time t¼ 0 one should make an impulsive investment, in such

a way that (x0, K0,+)¼ (xn, Kn). Then one should proceed as in Case 1.
Case 3 (x0, K0) 2 (R2): One should not invest (m¼ 0) and fish with maximal effort (u¼ 1) until

the optimal trajectory reaches the curve Sn. Then one should proceed as in Case 2.
Case 4 (x0, K0) 2 (R1): At the initial time t¼ 0 one should make an impulsive investment, in

such a way that (x0, K0,+) 2Ss, the so-called jump curve. Then one should proceed as in Case 3.
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Case 5 (x0, K0) 2 (R3): One should not invest (m¼ 0) and should not fish (u¼ 0) until the
optimal trajectory reaches the curve S0 (this configures (R3) as a moratorium region). Then one
should proceed as in Case 3.

Case 6 (x0, K0) 2 *SS: One should not invest (m¼ 0) and should fish with moderate effort
u(t)¼K(t)�1F( *xx) *xx�1 until the optimal trajectory reaches the state ð *xx; *KK* Þ (second singular arc).
Note that the fish population remains constant (x ¼ *xx) during this first time interval. Then one
should proceed as in Case 3.

Case 7 (x0, K0) 2 (R4): One should not invest (m¼ 0) and should not fish (u¼ 0) until the
optimal trajectory reaches the curve *SS (this configures (R4) as a moratorium region). Then one
should proceed as in Case 6.

Case 8 (x0, K0) 2 (R5): One should not invest (m¼ 0) and should fish with maximal
effort (u¼ 1) until the optimal trajectory reaches the curve *SS. Then one should proceed as
in Case 6.

Case 9 (x0, K0) 2S0[Ss[G3: This case is analogue to Case 3.
Case 10 (x0, K0) 2G4: This case is analogue to Case 7.

2. NECESSARY CONDITIONS

In this section, we use the maximum principle to derive first-order necessary conditions for
problem P(x0, K0) and define, with the aid of the Lagrange multipliers, two auxiliary functions
(switches) that play a key rule in the analysis of the optimal trajectories. We start defining the
Hamilton function *HH by

*HHðt; &xx; &KK ;w; *ll1; *ll2; ZÞ :¼ *ll1ðFð &xxÞ � w &KK &xxÞ � *ll2g &KK � Ze�dtðc� p &xxÞw &KK

Let (u, m) be an optimal control policy for P(x0, K0) and let (x, K) be the associated state. From
the maximum principle in Appendix A we obtain constants *ll1,0, *ll2,0, Z 2R and adjoint functions
*ll1, *ll0: [0, 1)!R such that

*ll21;0 þ *ll22;0 þ Z2= 0; Z50

x0 ¼FðxÞ � uðtÞKx; xð0Þ ¼ x0

dK ¼ � gK dtþ mðdtÞ; Kð0Þ ¼ K0

*ll01 ¼ � *ll1ðF 0ðxÞ � uðtÞKÞ � Ze�dtpuðtÞK ; *ll1ð0Þ ¼ *ll1;0

*ll02 ¼ *ll1xuþ g*ll2 þ Ze�dtðc� pxÞuðtÞ; *ll2ð0Þ ¼ *ll2;0

*ll2ðtÞ � Ze�dtr4 0 for all t 2 ½0;1Þ

*ll2ðtÞ � Ze�dtr ¼ 0 m� a:e: in ½0;1Þ

*HHðt;xðtÞKðtÞ; uðtÞ; *ll1ðtÞ; *ll2ðtÞ; ZÞ ¼ max
w2½0;1�

*HHðt;xðtÞ;KðtÞ;w; *ll1ðtÞ; *ll2ðtÞ; ZÞ a:e in ½0;1Þ
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Now we set

l1ðtÞ :¼ *ll1ðtÞedt; l2ðtÞ :¼ *ll2ðtÞedt; l1;0 :¼ l1ð0Þ; l2;0 :¼ l2ð0Þ

Hðt; &xx; &KK ;w; l; ZÞ :¼ ð�l &xxþ Zðp &xx� cÞÞ &KKw

Next we define the auxiliary functions z, l : [0, 1)!R

z :¼ �l1xþ Zðpx� cÞ; l :¼ l2; z0 :¼ l1;0; l0 :¼ l2;0

that are used to reinterpret the necessary conditions. We call z and l switch variables.
Note that z defines along the maximum condition the value of u(t), namely u(t)¼ 0 if z(t)50
and u(t)¼ 1 if z(t)>0. If z(t) vanishes, then the value of u(t) has to be determined by
other means. The function l defines a jump switch, since m({t})>0 for some t 2 [0, 1)
implies l(t)¼ Zr.

Finally we are able to rewrite the necessary optimality conditions in the form

z20 þ l20 þ Z2= 0; Z50

x0 ¼FðxÞ � uðtÞKx; xð0Þ ¼ x0

dK ¼ � gK dtþ mðdtÞ; Kð0Þ ¼ K0

z0 ¼ zgðxÞ � ZcðxÞ; zð0Þ ¼ z0

l0 ¼ kl� zuðtÞ; lð0Þ ¼ l0

lðtÞ � Zr4 0 for all t 2 ½0;1Þ

lðtÞ � Zr ¼ 0 m� a:e: in ½0;1Þ

zðtÞKðtÞuðtÞ ¼ max
w2½0;1�

zðtÞKðtÞw a:e in ½0;1Þ

We want to exclude the irregular case Z¼ 0. This is prepared by

Lemma 4

A policy (u, m) such that there exists t>0 with m(A)¼ 0 for each measurable subset A of (t,1) is
not optimal for each (x0, K0) 2 (0, %xx)� (0, 1).

Proof

Suppose (u, m) is a policy with the property that for each r>0 we have m(A)¼ 0 for
all measurable subsets A � [t, 1). Then we have for the resulting trajectory (x, K):
limt!1 xðtÞ ¼ %xx; limt!1 KðtÞ ¼ 0: Therefore it is enough, due to Belman’s principle of
optimality, to show that such a trajectory for initial data (x0, k0) in a neighbourhood of
( %xx, 0) cannot be optimal.
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We choose a>0 and x1 2 (x
n, %xx) with cn�px4�a for x 2 [x1, %xx]; this is possible due to

assumption (V3). Let n 2N be with �na+p %xx50 and set K1 :¼F(x1)/x1.
Let (x, K) be the trajectory associated with (u, m), i.e.

x0ðtÞ ¼ FðxðtÞÞ � uðtÞK0e
�gtxðtÞ; t > 0; xð0Þ ¼ x0

where x05x1, K0 2 (0, K1/(n+1)). We are able to describe a better policy ( &xx, &KK , &uu, &mm), namely,

&xx0ðtÞ ¼ Fð &xxðtÞÞ � &uuðtÞ &KK &xxðtÞ; &xxð0Þ ¼ x0; d &KKðtÞ ¼ �g &KK þ &mmðdtÞ; &KKð0Þ ¼ K0

where $uu� 1 and &mm describes a jump at time t¼ 0 of height h. Note that we have &xx(t)5x1,
(K0+h)e�gt4K1 for all t50. We compare the values of the objective function:

rhþ
Z 1

0

e�dtðc� p &xxðtÞÞ &uuðtÞ &KKðtÞ dt�
Z 1

0

e�dtðc� pxðtÞÞuðtÞK0e
�gt dt

4rhþ
Z 1

0

e�dtðc� p &xxðtÞÞðK0 þ hÞe�gt dt�
Z 1

0

e�dtðc� pxðtÞÞK0e
�gt dt

¼ rhþ
Z 1

0

e�ðdþgÞtðc� p &xxðtÞÞðK0 þ hÞ dt�
Z 1

0

e�ðdþgÞtðc� p &xxðtÞÞK0 dt

þ
Z 1

0

e�ðdþgÞtðc� p &xxðtÞÞK0 dt�
Z 1

0

e�ðdþgÞtðc� pxðtÞÞK0 dt

¼ h

Z 1

0

e�ðdþgÞtr0 dtþ h

Z 1

0

e�ðdþgÞtðc� p &xxðtÞÞ dtþ K0p

Z 1

0

e�ðdþgÞtðxðtÞ � &xxðtÞÞ dt

¼ h

Z 1

0

e�ðdþgÞtðcn � p &xxðtÞÞ dtþ K0p

Z 1

0

e�ðdþgÞtðxðtÞ � &xxðtÞÞ dt

4� haðdþ gÞ�1 þ K0p %xxðdþ gÞ�1 ¼ K0ðdþ gÞ�1ð�naþ p %xxÞ50 &

Corollary 5

Let (x, K, u, m) be an optimal process with adjoint variables Z, z, l. If Z¼ 0, then there exists for
any t>0 some t>t with l(t)¼ 0.

Proof

If there exists a t>0 such that l(t)50, for all t>t, then m(A)¼ 0 for each measurable subset A
of (t, 1). This contradicts the optimality of the policy (u, m) (see Lemma 4), proving the
corollary. &

Theorem 6

Let (x, K, u, m) be an optimal process with adjoint variables Z, z, l. Then Z=0.
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Proof

If Z¼ 0, we have the necessary conditions z20 þ l20=0;

z0 ¼ zgðxÞ; zð0Þ ¼ z0

l0 ¼ kl� zuðtÞ; lð0Þ ¼ l0

lðtÞ4 0 for all t 2 ½0;1Þ

lðtÞ ¼ 0 m� a:e: in ½0;1Þ

We distinguish six cases according to the initial conditions (l0, z0):

(i) l0¼ 0, z0¼ 0: Here we have z(t)¼ 0, l(t)¼ 0, for all t>0. This contradicts the necessary
condition z20 þ l20=0:

(ii) l0¼ 0, z050: Clearly, l0(0)¼ 0 and z0(0)50. This implies z(f)50, u(t)¼ 0, l(t)¼ 0 for all
t>0. Therefore, the policy (u, m) is not better than (u, #mm) with #mm� 0. From Corollary 5 we
know that already this policy is not optimal.

(iii) l0¼ 0, z050: Note that z0(0)>0, l0(0)50 and we have z(t)>0, u(t)¼ 1, l(t)50 for all
t>0. From Corollary 5 we obtain that this policy is not optimal.

(iv) l050, z0¼ 0: We have z0(0)¼ 0, l0(0)50. This implies z(t)¼ 0, l(t)50 for all t>0. From
Corollary 5 follows that this policy is not optimal.

(v) l050, z050: We have z0(0)50, l0(0)50. This implies z(t)50, l(t)50 for all t>0 and
again due to Corollary 5 this policy is not optimal.

(vi) l050, z0>0: In this case z0(0)>0, l0(0)50 and we have z(t)>0, l(t)50 for all t>0.
Applying Corollary 5, we conclude that this policy is not optimal.

Therefore, in all cases we have a contradiction and the theorem is proved. &

3. EXPLOITATION OF THE NECESSARY CONDITIONS

An immediate consequence of Theorem 6 is the fact that the Lagrange multiplier Z can be
chosen equal to one. In this, case we have to analyse the following necessary conditions:

x0 ¼FðxÞ � uðtÞKx; xð0Þ ¼ x0

dK ¼ � gK dtþ mðdtÞ; Kð0Þ ¼ K0

z0 ¼ zgðxÞ � cðxÞ; zð0Þ ¼ z0

l0 ¼ ðl� rÞk� zuðtÞ þ r0; lð0Þ ¼ l0

lðtÞ4 r for all t 2 ½0;1Þ

lðtÞ ¼ r; m� a:e: in ½0;1Þ

zðtÞKðtÞuðtÞ ¼ max
w2½0;1�

zðtÞKðtÞw a:e: in ½0;1Þ
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The central problem in the analysis of the necessary conditions consists in finding out the initial
conditions l0¼ l(0), z0¼ z(0) which are in agreement with the condition

lðtÞ4r for all t 2 ½0;1Þ ðRÞ

One can easily check that if l(t)¼ t for some t>0, then l0(t)¼ 0 and l00(t)40. It is also clear
that K0,+=K0 at most if we have l(0)¼ t. Knowing that it is possible to chose Z¼ 1, we
formulate Corollary 5 again:

Corollary 7

Let (x, K, u, m) be an optimal process with adjoint variables z, l. Then for each t>0 there exists
t>t with l(t)¼ r.

Proof

See the proof for Corollary 5. &

The rest of this section is devoted to the analysis of the relationship between the initial states
(x0, K0) and the initial conditions (z0, l0) of the adjoint variables. We prove a series of auxiliary
lemmas, that will allow us in the next section to detect the optimal trajectories and
correspondent policies.

Lemma 8

Let (x, K, u, m) be optimal with adjoint variables z, l. Then there exists no t>0 with x(t)>xn

and F(x(t))5K(t)x(t).

Proof

Assume the contrary. We consider two cases separately:

(i) If l(t)¼ r, then it follows from (R) that l0(t)¼ 0. Consequently, z(t)u(t)¼ r0 and z(t)¼ r0

Now, it follows from (V4) and the assumption x(t)>xn that cn (x(t))>0 and substituting
in the dynamic of z we have

z0ðtÞ ¼ ðzðtÞ � r0ÞgðxðtÞÞ � cnðxðtÞÞ50

Because of l00(t)¼�z0(t)>0 we have a contradiction to (R).
(ii) If l(t)5r, then we obtain from Corollary 7 a t1>t with l(t1)¼ r, l(t)5r, for t 2 [t, t1).

Observing the dynamic of the pair (x(t), K(t)), we conclude that
04F(x(t))�K(t)x(t)4x0(t), t5t. Then for t¼ t1 we have F(x(t1))5K(t1)x(t1),
x(t1)5x(t)>xn. To obtain a contradiction, we argument as in (i), setting t :¼ t1. &

Lemma 9

Let (x, K, u, m) be optimal with adjoint variables z, l. Then for x0¼ xn, K0>Kn the initial
conditions l0¼ r, z05r0 are not possible.
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Proof

Assume that l0¼ r, z¼ r0. From the differential equations for x, l and z follows x0(0)50,
l0(0)¼ 0, z0(0)¼ 0. Then we have

l00ð0Þ ¼ l0ð0Þk� z0ð0Þ ¼ 0; l000ð0þÞ ¼ c0
n
ðxnÞ½FðxnÞ � K0;þx

n�50

Therefore, l(t)� r does not occur. This holds also if z0>r0 since in this case we have l0(0)50.
Owing to Corollary 7, l(t)5r for all t>0 is not possible. Let

t :¼ supfs50jlðtÞ5r; 05t5sg

We know that t51, l(t)¼ r, l0(t)¼ 0, z(t)¼ r0. Since x0¼xn and x0(0)50, we have three
possible cases:

(i) If x(t)5xn for all t 2 (0, t], then z0(t)>0, for t 2 [0, t) and z(0)¼ z(t)¼ r0 which is not
possible.

(ii) If x(t)5xn, for all t 2 (0, t) and x(t)¼ xn, then we may argument as in (i).
(iii) If x(t)5xn, then we can choose s 2 (0, t) with x(t)5xn, for t 2 [0, s), and x(s)¼ xn.

Note that z(t)>r0 (and consequently u(t)¼ 1) for t 2 (0, s]. From the definition of s we have
x0(s)50, i.e. K(s)4F(xn)/xn. Now, arguing as in case (ii) in the proof of Lemma 8, we obtain the
inequality K(s)>F(xn)/xn, again a contradiction.} &

Lemma 10

Let (x, K, u, m) be optimal with adjoint variables z, l. If x0¼ xn, K0¼Kn, then m¼ gKn dt and
x(t)¼ xn, K(t)¼Kn, l(t)¼ r, z(t)¼ r0, u(t)¼ 1, for t50.

Proof

Assume l05r. From Corollary 7 we obtain t>0 with l(t)¼ r, l(t)5r, for t 2 (0, t). Condition
(R) implies l0(t)¼ 0 and therefore z(t)¼ r0; especially we have u(t)� 1 in a neighborhood of
t¼ r. From x0 ¼F(x)�Kx we obtain x(t)>xn and l00(r)¼�z0(t)¼cn(x(t))>0, contradicting
(R). Therefore, we must have l0¼ r. Next verify that z0¼ r0:

(i) If z05r0, then l0(0)¼ r0�z0>0, contradicting (R).
(ii) If z0>r0, then l0(0)50. Arguing with Corollary 7 (see the beginning of this proof), we

obtain a t>0 with l(t)¼ r, l0(t)¼ 0 but l00(t)>0, again contradicting (R).

Therefore, we must have z0¼ r0. Now define

t :¼ supfs50jlðtÞ ¼ r; 04t4sg

If t¼ 0, then l0(0)50 and arguing as in (ii) above we obtain a contradiction. Therefore,
we must have t>0. Note that if s 2 (0, t), then l(t)¼ r, l0(t)¼ 0, z(t)¼ r0, z0(t)¼ 0, for t 2 [0, s].
It follows cn(x(t))¼ 0, for t 2 [0, s], and with condition (V4) we have x(t)¼ xn, for t 2 [0, s].

}One should note that the development in case (ii) in the proof of Lemma 8 still holds if xðrÞ ¼ xn
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From the differential equation x0 ¼F(x)�Kx follows K(t)xn¼F(xn), for t 2 [0, s], and with
dK¼�gKdt+m(dt) we finally obtain mj½0;s� ¼ �gKn dt:

Clearly, it is enough to prove t¼1. If this were not the case, we would have either
K(t+)>Kn or K(t+)¼Kn. Owing to Lemma 9, K(t+)>Kn is not possible. The other case,
K(t+)¼Kn, cannot be true, since otherwise we could repeat the complete argumentation for the
initial time t¼ t, contradicting the maximality of t. &

Lemma 11

Let (x, K, u, m) be optimal with adjoint variables z, l. Then for x0 ¼ xn; K04Kn we must have
the initial values l0¼ r, z0¼ r0, l0(0)¼ 0, z0(0)¼ 0. Further we have K0;þ ¼ Kn:

Proof

The equality l0(0)¼ 0, z0(0)¼ 0 follow from x0¼ xn, l0¼ r, z0¼ r0 in an obvious way.
Consequently, we only have to prove l0¼ r, z0¼ r0

If l05r, then there exists t>0 such that l(t)5r, for t 2 [0, t). Then K(t)5K04Kn for t 2 (0, t],
and consequently x(t)>xn, x0(t)¼F(x(t))�K(t)x(t)>0. But this cannot occur due to Lemma 8.
Therefore, l0¼ r.

If z05r0, then l0(0)50. Arguing as before (assumption l05r) we obtain a contradiction.
Therefore, z05r0. Next we exclude the case z0>r0.

If K0¼Kn, then Lemma 10 implies z0¼ r0 proving the theorem. If K05Kn, we consider the
following cases:

(i) K0,+>Kn is not possible due to Lemma 9.
(ii) If K0,+¼Kn, then z0¼ r0 follows from Lemma 10.
(iii) K0,+ 2 [K0, Kn). We obtain from the dynamics of the pair (x, K) some t>0

with x(t)>xn, F(x(t))�K(t)x(t)>0. But this is not possible due to Lemma 8.

Therefore, only K0,+¼Kn is possible and the theorem is proved. &

Lemma 12

Let (x, K, u, m) be optimal with adjoint variables z, l. If x0>xn and K05F(x0)/x0, then we must
have l0¼ r, z0¼ r0, K0,+>K0.

Proof

Since K0,+¼K0 is not allowed (see Lemma 8), we have K0,+>K0 and l0¼ r. Then l0(0)40, and
we obtain z05r0. If z0¼ r0, we would have z0(0)¼�cn(x0)50, l0(0)¼ 0 and l00(0)¼�z0(0)>0.
This however contradicts condition (R). &

Let (x, K) be a solution of the system

x0 ¼ �FðxÞ þ Kx; xð0Þ ¼ xn

K 0 ¼ gK ; Kð0Þ ¼ Kn
ð4Þ
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with interval of existence [0, t). Since K(t)¼Knegt, x0(0)¼ 0 and x00(0)¼Knegtgxn>0, we have
(x(t), K(t)) 2 (xn, %xx) � (Kn,1) for t>0 small. Therefore, it is easy to see that there exists some
%tt 2 (0, t) with x(%tt )¼ %xx and xn4x(t)4 %xx, t 2 [0, %tt ]. The curve defined by

½0; %tt Þ{t ! ðxðtÞ; KðtÞÞ 2 ½xn; %xx � � ½Kn;1Þ

is denoted by G1. Note that at t¼ 0 we have (x0(0), K0(0))¼ (0,Kng), where Kng>0. In Figure 1,
we illustrate the construction of the curve G1 for the case of the logistic function.

Lemma 13

There exists a function h1:[x
n, %xx ]! [Kn,1) such that:

(a) G1¼ {(x, h1(x))|x 2 [x
n, %xx ]},

(b) h1 is twice continuous differentiate in (xn, %xx) and monotone increasing.

Proof

Note that system (4) can be transformed into the scalar equation:

dK

dx
¼

gK
�FðxÞ þ Kx

; KðxnÞ ¼ Kn ð5Þ

It becomes clear that G1 has a parameterization [xn, %xx ]{ x! (x, h1(x)) 2 [x
n, %xx]� [Kn,1) and the

assertions follow. &

Lemma 14

Let (x, K, u, m) be optimal with adjoint variables z, l. For x0>xn and K05h1(x0), the initial
conditions have to satisfy l0¼ r, z0>r0, K0,+5h1(x0).

Proof

Assume l05r. We define t :¼ sup{s50|l(t)5r, t 2 [0, s)}. Owing to Corollary 7, t is positive and
finite. Then we have l(t)¼ r, l0(t)¼ 0, z(t)¼ r0. Considering the definition of G1, we obtain

Figure 1. Curves G1 and Sn:
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x(t)>xn, t 2 (0, t] due to the values of l. Now, from assumption (V4), the differential equation
for z and x(t)>xn, follow z0(t)50. Again from the differential equation for z we obtain z(t)>r0,
t 2 (0, t]. This implies l0(t)50, t 2 (0, t], which is a contradiction to the definition of t. Therefore,
l0¼ r must occur. This implies 05l0(0)¼ r0�z0 and z05r0 follows.

If z0¼ r0, we would have z0(0)¼�cn(x0)50, l0(0)¼ 0 and l00(0)¼�z0(0)>0. This however
contradicts condition (R). Therefore, we must have z0>r0.

Assume K0,+¼K0. We know already that z0>r0. Then l0(0)50 holds and by the same
arguments as above (see l05r) we obtain a contradiction. Therefore, K0,+>K0 must hold. If
K0,+ 2 (x0, h1(x0)) we repeat the argumentation above with K0 :¼K0,+5h1(x0), obtaining again a
contradiction. Thus, we must have K0,+5h1(x0). &

We denote the curve

½0;Kn�{K ! ðxn;KÞ 2 ½0;1Þ � ½0;Kn�

by Sn: Next we verify that when an optimal trajectory meets the curve Sn; some properties have
to be satisfied.

Lemma 15

Let (x, K, u, m) be optimal with adjoint variables z, l. Let x(s)¼ xn, K(s) 2 (0, Kn) for some s>0.
Then

lðsÞ ¼ r; l0ðsÞ ¼ 0; zðsÞ ¼ r0; z0ðsÞ ¼ 0

Proof

Assume l(s)5r. From the differential equation for x and K we obtain t>s with

xðtÞ > xn; FðxðtÞÞ � KðtÞxðtÞ > 0

which is in contradiction to Lemma 8. Thus, we must have l(s)¼ r. Therefore, l0(s)¼ 0,
z(s)¼ r0. Finally, z0(s)¼ 0 follows from cn(x

n)¼ 0. &

In the neighbourhood of G1 and Sn we have obtained a lot of information concerning the
behaviour of an extremal trajectory. Lemma 14, ensures that if x0>xn and K05h1(x0), there
must be a jump at t¼ 0. Furthermore, Lemma 8 says that an optimal trajectory (x(t), K(t)) does
not enter the dashed region in Figure 1.

Our next step is to analyse the behaviour of the optimal trajectories that meet the curve Sn;
i.e. (x(t), K(t)) 2Sn for some t>0. Since the curve Sn is reached by an optimal trajectory with
z¼ r0, l¼ r, x¼ xn and K 2 [0, Kn], we use this information to solve the differential equations for
x, K, z and l backwards in time:

x0 ¼ �FðxÞ þ Kx; xð0Þ ¼ xn

K 0 ¼ gK ; Kð0Þ ¼ K1

z0 ¼ �ðz� r0ÞgðxÞ þ cnðxÞ; zð0Þ ¼ r0

l0 ¼ �ðl� rÞkþ z� r0; lð0Þ ¼ r
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where K1 2 [0, K
n]. Such a trajectory eventually comes close to (x, K)¼ (0, 0) where we expect an

optimal control u� 0. Therefore, the zeros of the switching variable z are of interest in this
region. Since for z(t)5r0 a value l(t)¼ r is not allowed, the behaviour of the adjoint variable l is
therefore not so important in this region.

Lemma 16

For each K1 2 [0, K
n], let (x, z) be the solution of

x0 ¼ �FðxÞ þ K1e
gtx; xð0Þ ¼ xn

z0 ¼ �ðz� r0ÞgðxÞ þ cnðxÞ; zð0Þ ¼ r0
ð6Þ

Then there exists for each K1 2 (0, Kn) t :¼ tK1
> 0 with x(t)¼ xn. Moreover, there exists

*KK1 2 (0, K
n) such that the following assertions hold:

(a) If K1 2 (0, *KK1), then z has a uniquely determined zero s 2 (0, t), where z0(s)50 and
x(s) 2 (0, *xx);

(b) If K1 2 ( *KK1, K
n), then z(t)>0 for all t 2 [0, t];

(c) If K1¼ *KK1, then there is a uniquely determined s in (0, t) with z(s)¼ z0(s)¼ 0; moreover,
x(s)¼ *xx and *KK :¼ *KK1e

gs > Fð *xxÞ= *xx ¼ *KK :

Proof

Consider the solution (x, z) of (6) with K1¼ 0. Since x0¼ 0 is an attracting equilibrium point of
x0 ¼ �FðxÞ (see Remark 3), the solution x exists for all times t50 and limt!1 xðtÞ ¼ 0: Owing
to this fact z is also defined for all t50. Assume z(t)>0 for all t>0. As we know, the differential
equation may be formulated as z0 ¼ �zgðxÞ þ cðxÞ: Since c is negative and continuous in [0, *xx)
(see (V4)), there exists some a>0 such that

cðxÞ4� a; for x 2 0;
*xx

2

� �

Since limt!1 x(t)¼ 0, there is some t0>0 with x(t) 2 [0, *xx/2], t5t0. This implies for t5t0

zðtÞ � zðt0Þ ¼
Z t

t0

½�zðsÞgðxðsÞÞ þ cðxðsÞÞ� ds4
Z t

t0

cðxðsÞÞ ds4� aðt� t0Þ

But this contradicts the hypothesis on z. Thus, there must be a s>0 with z(s)¼ 0 and z(t)>0,
t 2 [0, s). Then z0(s)40, c(x(s))40, and therefore x(a)5 *xx. Owing to

04z00ðsÞ ¼ �z0ðsÞgðxðsÞÞ þ c0ðxðsÞÞx0ðsÞ ¼ �z0ðsÞgðxðsÞÞ � c0ðxðsÞÞFðxðsÞÞ

and assumption (V5), z0(s)¼ 0 cannot occur. Therefore, z0(s)50, x(s)5 *xx and z(t)50 for t>s
due to the differential equation for z. By continuity arguments, we may choose a maximal
*KK1>0 such that for the solution (x, z) of (6) with K1 2 [0, *KK1) there exists t>0 and s 2 (0,t]
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with x(t)¼ xn,

zðtÞ > 0; t 2 ½0;sÞ; zðsÞ ¼ 0; zðtÞ50; t 2 ðs; t�

proving (a) and (b).
Now we prove (c). From the construction of *KK1 and due to the differential equation for x we

obtain z(s)¼ 0 and x(s)>0. Since *KK1 is maximal, we have z(s)¼ z0(s)¼ 0. We cannot have
x(s)> *xx, since z0(s)¼�c(x(s))50. The case x(s)5 *xx cannot occur, since z0(s)¼�c(x(s))>0.
Therefore, we must have x(s)¼ *xx.

We cannot have K(s)x(s)5F(x(s)) since, due to z00(s)¼c0(x(s))x0(s)50, z would be negative
in a neighbourhood of s. Otherwise, if we had K(s)x(s)¼F(x(s)), i.e. K(s) *xx¼F( *xx), then z
would be positive in a neighbourhood of s, due to z00(s)¼ 0 and z000(s)¼c0(x(s))x00(s)¼c0(x(s))
gF( *xx)>0. Thus, we must have K(s)>F( *xx)/ *xx and (c) is proved. &

Corollary 17

Let *KK1 2 (0, K
n) be chosen as in Lemma 16. Let K1 2 [0, *KK1] and (x, z) the corresponding solution

of (6). Then there exists a continuous mapping l : [0, *KK1]! (0, 1) and &xx 2 (0, *xx), such that:

(a) x(l(0))¼ &xx, x(l( *KK1))¼ *xx;
(b) z(l(K1))¼ 0, K1 2 [0, *KK1], z

0(l(K1))50, K1 2 (0, *KK1), z
0(l( *KK1))¼ 0;

(c) l is continuous differentiate in (0, *KK1) and l0(K1)>0, K1 2 (0, *KK1).

Proof

Let K1¼ 0 and let s>0 with z(s)¼ 0 (see proof of Lemma 16). Now define &xx :¼ x(s). Given
K1 2 (0, *KK1), we denote by x :¼ x( � ; K1), z :¼ z( � ; K1) the corresponding solution of (6) and define
l(K1) :¼ s, where s>0 is the uniquely determined zero of z( � ; K1) (see Lemma 16); then
(b) holds. The mapping K1/l(K1) is continuous since z depends continuously on K1

(note that z0(s)50). Now we may extend l:(0, *KK1)! (0, 1) to a continuous map on [0, *KK1],
proving (a). Note that the mapping C: [0, t]� [0, *KK1]!R defined by C(s, K1) :¼ z(s; K1) is
differentiate and

@C
@s

ðs;K1Þ ¼ z0ðs;K1Þ;
@C
@K1

ðs;K1Þ ¼ vðs;K1Þ

where v :¼ v( � ; K1) :¼ @z/@K1( � ;K1) is the solution of the initial value problem

v0 ¼ �vgðxðt;K1ÞÞ þ ½�ðzðt;K1Þ � r0Þg0ðxðt;K1ÞÞ þ c0
*
ðxðt;K1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðnÞ

w; vð0Þ ¼ 0

and w :¼ @x/@K1 solves

w0 ¼ ½�F 0ðxðt;K1ÞÞ þ K1e
gtxðt;K1Þ�wþ egtxðt;K1Þ; wð0Þ ¼ 0

By the implicit function theorem applied on C(l(K1), K1)¼ 0 for K1 2 (0, *KK1) we have

z0ðlðK1Þ;K1Þl0ðK1Þ ¼ �vðlðK1Þ;K1Þ; z0ðlðK1Þ;K1Þ50; K1 2 ð0; *KK1Þ ð7Þ
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It is obvious that v(t)>0 for all t>0, since (*) as well as w(t) are positive for t 2 (0, l(K1)). From
(7) we obtain l0(K1)>0, K1 2 (0, *KK1), and (c) is proved. &

Corollary 17 allow us to define a curve S0, parameterized by

x : ½0; *KK1� ! ½0; *xx� � ½0; **KK*KK �; K1/ðxðlðK1Þ;K1Þ; K1e
glðK1ÞÞ

(see the proof of Corollary 17 for the notation). From Lemma 16 and Corollary 17 we conclude
that for the solutions (x, K, z) of

x0 ¼ � FðxÞ þ Kx; xð0Þ ¼ xn

z0 ¼ � ðz� r0ÞgðxÞ þ cnðxÞ; zð0Þ ¼ r0

K 0 ¼ gK ; Kð0Þ ¼ K1 2 ½0;Kn�

one of the following alternatives holds:

(i) if K1 2 ( *KK1, K
n ], then z(t)>0, for all t50 (see curve g1 in Figure 2);

(ii) if K1¼ *KK1, then z(t)>0 except at a single time point, where ðx;KÞ ¼ ð *xx; **KK*KKÞ holds; (see
curve g2 in Figure 2);

(iii) if K1 2 [0, *KK1), then z(t)>0, before the trajectory intercept S0 and z(t)50 after that (see
curve g3 in Figure 2).

Corollary 18

Let *KK1,
**KK*KK ; &xx and l be defined as in Lemma 16 and in the proof of Corollary 17. Then there exists

*xx 2 ( &xx, *xx), #KK > 0 and a continuous mapping h0 : ½ #xx; *xx� ! ½ #KK ; **KK*KK � with

S0 \ fðx0;K0ÞjFðx0Þ4K0x0g ¼ fðx0; h0ðx0ÞÞjx0 2 ½ #xx; *xx�g

Figure 2. Curve S0:
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Moreover:

(a) h0ð #xxÞ ¼ #KK ; h0ð *xxÞ ¼
**KK*KK ; Fð #xxÞ ¼ #KK #xx;

(b) h0 is continuous differentiable in ( #xx, *xx) and h00ðxÞ > 0; x 2 [ #xx, *xx).

Proof

Consider the mapping

x : ½0; *KK1�{K1/ðxðlðK1Þ;K1Þ; zðlðK1Þ;K1ÞÞ 2 ½0; *xx� � R

where x( � ; � ) and z( � ; � ) are defined as in the proof of Corollary 17. Then

x0ðK1Þ ¼ x0ðlðK1Þ;K1Þl0ðK1Þ þ
@xð� ; �Þ
@K1

ðlðK1Þ;K1Þ; z0ðlðK1Þ;K1Þl0ðK1Þ þ
@zð� ; �Þ
@K1

ðlðK1Þ;K1Þ
� �

and we see by the implicit function theorem that the region S0\ {(x0, K0)|F(x0)4K0� x0}
may be reparameterized by a function h0. Note that the implicit function theorem may
be used due to Corollary 17. The condition h00ðxÞ > 0 follows from the same corol-
lary. &

Let (x, K) be the solution of the initial value problem

x0 ¼ � FðxÞ þ Kx; xð0Þ ¼ *xx; K 0 ¼ gK ; Kð0Þ ¼ **KK*KK ð8Þ

in the interval [0, t). Similar to the definition of G1 we obtain %tt 2 (0, t) with x(%tt )¼ %xx. We denote
the curve

½0; %tt �{t/ðxðtÞ;KðtÞÞ 2 ½ *xx; %xx � � ½ **KK*KK ;1Þ

by G3. (In Figure 2, one can recognize G3 as the part of the curve g2 with x> *xx
and K > **KK*KK :)

Now let (x, K) be the solution of the initial value problem

x0 ¼FðxÞ � Kx; xð0Þ ¼ *xx; K 0 ¼ �gK ; Kð0Þ ¼ **KK*KK ð9Þ

This solution meets the curve Sn in (xn, *KK1) for some t>0 (see Lemma 16). The curve
denned by this trajectory is called G2. (In Figure 2, the curve G2 corresponds to the
part of g2 with K5 **KK*KK :) The last curve we define is G4, which is parameterized by the solution
(x, K) of

x0 ¼ � FðxÞ; xð0Þ ¼ *xx; K 0 ¼ gK ; Kð0Þ ¼ **KK*KK ð10Þ

Note that the solution exists in [0, 1) and x0(0)50, K0(0)>0 (see Figure 3).
Now we come back to the region x>xn, more specifically, above the curve G1. We

already know that if the initial condition (x0, K0) lays below G1, then K0,+5h1(x0) must
hold. We want to determine a curve Ss; above G1, upon which the trajectories must
jump for this initial conditions, i.e. (x0, K0,+) 2Ss: In order to be able to construct such
a curve Ss; we need the fact that there exists (x0, K0) 2 (x

n, %xx)� (Kn, 1) such that the
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solution (x, K, z, l) of

x0 ¼FðxÞ � Kx; xð0Þ ¼ x0

K 0 ¼ � gK ; Kð0Þ ¼ K0;þ

z0 ¼ ðz� r0ÞgðxÞ � cnðxÞ; zð0Þ ¼ z0

l0 ¼ ðl� rÞk� zþ r0; lð0Þ ¼ r

meets the curve Sn.

Lemma 19

There exists *KK2 2 ð0; *KK1Þ; *KK3 2 ð *KK1;KnÞ and a>0 such that the solution (x( � ; K1), z( � ; K1), l
( � ; K1)) of the system

x0 ¼ � FðxÞ þ K1e
gtx; xð0Þ ¼ xn

z0 ¼ � ðz� r0ÞgðxÞ þ cnðxÞ; zð0Þ ¼ r0

l0 ¼ � ðl� rÞkþ z� r0; lð0Þ ¼ r ð11Þ

exists in [0, a] for each K1 2 ( *KK2; K
n). Moreover, for each K1 2 ( *KK3; K

n) there exist numbers r(K1),
s(K1), t(K1) with:

(a) 05r(K1)5s(K1)5t(K1)5a;
(b) x(t; K1)4xn, t 2 (0, r(K1)), x(r(Kl); Kl)¼ xn, x(t; K1)>xn, t 2 (r(K1), a], and x(a; K1)5 %xx;
(c) 05z(t; K1)5r0, t 2 (0, s(K1)), z(s(K1); K1)¼ r0, z(t; K1)>r0, t 2 (s(K1), a];
(d) l(t; K1)5r, t 2 (0, t(K1)), l(t(K1); K1)¼ r, l0(t(K1); K1)>0;
(e) lim

K1"K
n t(K1)¼ 0.

Figure 3. Main curves.
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Proof

Since the trajectory for K1 :¼Kn corresponds to G1 we can choose a>0 and *KK2 2 (0, *KK1) with
x(a; K1)5 %xx, K1 2 ( *KK2, K

n). It follows from the differential equations for z and l that z(t; Kn)>r0,
l(t; Kn)>r, t 2 (0, a].

Let e 2 (0, a) be given. Choose b>0 and *KK3 2 ( *KK1, K
n) such that for each K1 2 ( *KK3, K

n)

zðt;K1Þ5r0 þ b; lðt;K1Þ5rþ b; t 2 ½e; a�

This can be done due to the fact that the solution of (11) depends continuously on the
parameter K1.

Let K1 2 ( *KK3, K
n) and set (x, z, l) :¼ (x( � ; K1), z( � ; K1), l( � ; K1)). Then we see that there exists

r(K1)>0 with the property in (b).
Since z00ð0Þ ¼ c0

n
ðxnÞx0ð0Þ50 and since z(a)5r0+b, we obtain s(K1)>0 with z(s(K1))¼ r0

and 05z(t)5r0, t 2 (0, s(K1)). s(K1)5r(K1) cannot hold since z0(s(K1))¼cn(x(s(K1)))50.
s(K1)¼ r(K1) cannot hold since z00(s(K1)¼ z00(r(K1))¼cn(x

n)x0(r(K1))>0. From the differen-
tial equation for z and the fact that r(K1)5s(K1) we conclude z(t)>r0, t>s(K1). Repeating
the argumentation above we obtain t(K1) with l(t(K1))¼ r, l(t)5r, 05t5t(K1). t(K1)5
s(K1) cannot hold since l0(t(K1))¼ z(t(K1))�r050. Assume t(K1)¼ s(K1). Then l0(t(K1))¼
z0(s(K1))¼cn(x(s(K1)))>0. This contradicts the fact that l(t)5r, t 2 (0, t(K1)). From the
differential equation for l and the fact that z(t)>r0, t 2 t(K1), we obtain l(t)>r, t>t(K1).
Clearly, from the continuous dependency we obtain limK1"KntðK1Þ ¼ 0: &

The value t(K1) according to Lemma 19 is locally uniquely determined and the same is true
for K(t(K1)). We want to identify K(t(K1)) as a value K0,+, when an extremal trajectory starts in
the initial value (x0, K0) 2 (x

n, %xx)� [0, 1), with K05h1(K0). To do this we need more
information concerning the mapping K1/t(K1).

Consider system (11) for K1 2 ( *KK3, K
n) and let (x, l, z) be the corresponding solution. To make

clear the dependence of l on K1, we denote it by G( � ; K1). The equation

Gðt;K1Þ ¼ r ð12Þ

describes the fact that the solution G( � ; K1) has the value r at time t. In order to find the jump
curve Ss we try to resolve (12) with respect to t. Note that from Lemma 19, we know that there
are solutions of (12).

Lemma 20

Using the notations of Lemma 19 the following assertions hold:

(a) There exists #KK1 2 [ *KK1, K
n) and a continuous differentiable mapping gr: ( #KK1, K

n)! (0, 1)
with

GðgtðK1Þ;K1Þ ¼ r; K1 2 ð #KK1;K
nÞ ð13Þ

(b) g0tðK1Þ50 for all K1 2 ( #KK1, K
n);

(c) xðgtð #KK1Þ; #KK1Þ 2 G3 or #KK1 ¼ *KK1 and xðgtð #KK1Þ; #KK1Þ ¼ %xx:
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Proof
Let K1 2 ( *KK3; K

n). Since l¼G( � ; K1), the function G is obviously differentiable and we have

@G

@t
ðtðK1Þ;K1Þ ¼ l0ðtðK1ÞÞ > 0

(see Lemma 19). With the implicit function theorem we obtain a neighbourhood U of K1 and a
function gt : U! (0, 1) such that G(gt (K1); K1)¼ r, K1 2U holds. The implicit function
theorem implies more: gt can be extended in a maximal way to ( #KK , Kn) with #KK1 2 [ *KK1, K

n] and
(13) holds. The properties in (c) are a consequence of the maximality of the extension. Moreover,

l0ðgtðK1ÞÞg0tðK1Þ ¼ �vðgtðK1ÞÞ

where v :¼ @l/@K1( � ) solves

v0 ¼ �kvþ w; vð0Þ ¼ 0

w :¼ @z/@K1( � ) solves

w0 ¼ �wgðxðtÞÞ þ ½�ðzðtÞ � r0Þg0ðxðtÞÞ þ c0
n
ðxðtÞÞ�y; wð0Þ ¼ 0

and y :¼ @x/@K1( � ) solves

y0 ¼ ½�F 0ðxðtÞÞ þ K1e
gt� yþ egtxðtÞ; yð0Þ ¼ 0

Obviously y(t)>0, t 2 (0, gt(K1)]. Since �ðzðtÞ � r0Þg0ðxðtÞÞ þ c0
n
ðxðtÞÞ > 0 for each t 2 (0, gt(K1)],

we have w(t)>0, t 2 (0, gt(K1)], and therefore v(t)¼ @l/@K1(t)>0, t 2 (0, gt(K1)]. It follows
g0tðK1Þ50: &

Now, we have to distinguish two cases:

Case I: x(gt( #KK1);2G3 and x(gt( #KK1); #KK1)5 %xx;
Case II: x(gt( #KK1); #KK1)¼ %xx.

In each case we have a curve Ss defined by

½ #KK1;K
n�{K1/ðxðgtðK1Þ;K1Þ;K1e

ggtðK1ÞÞ 2 ½xn; %xx � � ½Kn;1Þ

In Case II, this curve ends at the ‘boundary’ x¼ %xx. In Case I, we want to continue this curve
such that the continuation ends at the ‘boundary’ x¼ %xx too. For this continuation the
trajectories starting in ( *xx, K), K5 **KK*KK come into consideration. To analyse the situation we need
the curve *SS which is defined by

*SS½0;1Þ{K/ð *xx;KÞ 2 ½0; %xx � � ½0;1Þ

(See Figure 3). As we will see in Theorem 29 an optimal trajectory (x, K) with adjoint variables
(z, l) meets the curve *SS with the values

zðsÞ ¼ 0; z0ðsÞ ¼ 0; lðsÞ5r

This motivates the construction of the continuation of Ss in the following way: Compute
trajectories (x, K, z) backwards in time starting with initial values

xð0Þ ¼ *xx; Kð0Þ ¼ K0 >
**KK*KK ; zð0Þ ¼ 0
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Lemma 21

There exists **KK*KK1 >
**KK*KK and a>0 such that for each K15

**KK*KK1;

xða;K1Þ ¼ %xx; zðt;K1Þ5r0; t 2 ½0; a�

where (x( � ; K1), z( � ; K1)) is the solution of

x0 ¼ � FðxÞ þ K1e
gtx; xð0Þ ¼ *xx; z0 ¼ �ðz� r0ÞgðxÞ þ cnðxÞ; zð0Þ ¼ 0 ð14Þ

Proof

Let e>0. It follows from the differential equation for x that the solution x( � ; K1) reaches x¼ %xx
for a time t15e if K1 is sufficiently large. Since the differential equation for z may be considered
as a linear equation (if we plug in x( � ; K1)) the value z¼ r0 cannot be reached in the time interval
[0, e] if K1 is sufficiently large. &

As we know from the results above an optimal trajectory (x, K) with adjoint variables (z, l)
starts in ð *xx; **KK*KKÞ in the following way:

xð0Þ ¼ *xx; Kð0Þ ¼ **KK*KK ; zð0Þ ¼ 0; z0ð0Þ ¼ 0; *ll :¼ lð0Þ5r

For each K1 >
**KK*KK there exists a time x¼ x(K1) with K1e

�gx ¼ **KK*KK : Set L(K1) :¼ l(x; K1) where
l( � ; K1) is the solution of

l0 ¼ �ðl� rÞk� r0; lð0Þ ¼ *ll

Now consider for each K1 >
**KK*KK the solution of

x0 ¼ � FðxÞ þ K1e
gtx; xð0Þ ¼ *xx

z0 ¼ � ðz� r0ÞgðxÞ þ cnðxÞ; zð0Þ ¼ 0

l0 ¼ � ðl� rÞkþ z� r0; lð0Þ ¼ LðK1Þ ð15Þ

We want to find for K1 >
**KK*KK some time t(K1) such that l(t(K1); K1)¼ r holds. Again we use the

notation G( � ; K1) :¼ l( � ; K1).

Lemma 22

In case I the following assertions hold:

(a) There exists **KK*KK1 2 ð **KK*KK ;1Þ and a continuous differentiable mapping gt : ð
**KK*KK ; **KK*KK1Þ ! ð0;1Þ

with

GðgtðK1Þ;K1Þ ¼ r; K1 2 ð **KK*KK ; **KK*KK1Þ ð16Þ

(b) g0tðK1Þ50 for all K1 2 ð **KK*KK ; **KK*KK1Þ:
(c) xðgtð

**KK*KK1Þ;
**KK*KK1Þ ¼ %xx:
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Proof

This can be proved similar to Lemma 20. The main observation is that we have z(t; K1)>r0 if
l(t; K1)¼ r. The result of (c) is a consequence of Lemma 21. &

Now we have constructed a curve Ss connecting (xn, Kn) with ( %xx, %KK), where %KK :¼ **KK*KK1e
ggtð

**KK*KK1Þ:
Since this curve should be used as a jump curve in the region [xn, %xx]� [0, 1), we want to
reparameterize this curve in such a way that [xn, %xx ] is the parameter interval. But to do this we
need the fact that the following function:

½ #KK1;K
n� [ ½ **KK*KK ; **KK*KK1�{K1/xðgtðK1Þ;K1Þ 2 ½xn; %xx �

is monotone increasing. Unfortunately, we are not able to prove this. The fact we can prove is
that the mapping

H : ½ #KK1;K
n�{K1/xðgtðK1Þ;K1Þ 2 ½xn; %xx �

is monotone increasing in a neighbourhood of Kn.

Lemma 23

There exists K+ 2 [ **KK*KK ; Kn) and m0, m1>0 such that

(a) t(Kn)¼ 0;
(b) t0(Kn)¼�4/gKn, t is differentiable in [K+, Kn ];
(c) �m1(K

n�K)4t(K)4�m0(K
n�K) for all K 2 [K+, Kn ].

Proof

Item (a) is obvious. Clearly, t is differentiable in [K+, Kn). From the identity

lðtðKÞ;KÞ ¼ 0; K 2 ½ #KK1;K
n�

we obtain

l0ðtðKÞ;KÞt0ðKÞ þ vðtðKÞ;KÞ ¼ 0; K 2 ½ #KK1;K
nÞ

Here we have used the notation of Lemma 19. Owing to the fact that l0(t(K); K)>0 for each
K 2 [ **KK*KK ; Kn) we have

t0ðKÞ ¼ �
vðtðKÞ;KÞ
l0ðtðKÞ;KÞ

; K 2 ½ #KK1;K
n�

Using Taylor’s expansion for v and l we obtain

r0ðKÞ ¼
1
6
vð

000Þðx;KÞ
1
24
lðivÞðZ;KÞ

; K 2 ½ #KK1;K
nÞ
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where x, n, 2 (0, t(K)). From this we can conclude

t0ðKnÞ ¼ � � 4
vð

000Þð0;KnÞ

lðivÞð0;KnÞ
¼ �

4

gKn

The result in (c) is a consequence of the estimate in (b) by using continuity arguments. &

Lemma 24

There exists K+ 2 [ #KK1; K
n) such that

HðKnÞ ¼ xn; H 0ðKnÞ ¼ 0;H 0ðKÞ > 0; K 2 ðKþ;K
nÞ

Proof

Let K+ be chosen as in Lemma 23. We have

H 0ðKÞ ¼ x0ðtðKÞ;KÞt0ðKÞ þ yðtðKÞ;KÞ; K 2 ½Kþ;K
n�

and by Lemma 23 we have H0(Kn)¼ 0. From the differential equation for y we obtain that there
exists M>0 such that

yðtðKÞ;KÞ5MtðKÞ; K 2 ½Kþ;K
n�

Since t0 is bounded in [K+, Kn] and since x0(t(K); K)¼ 0 we obtain the assertion, eventually by
making K+ larger.

Corollary 25

There exists xs 2 ðxn; %xx ] and a continuously differentiable mapping hs: ½xn;xs� such that

ðx; hsðxÞÞ 2 Ss; x 2 ½xn;xs�

Proof

The mapping hs can be found by reparameterizing the curve

K1/ðxðgtðKÞ;KÞ; KðgtðKÞ;KÞÞ

using the results of Lemma 24. &

Now the jump curve Ss allow us to find, given (x0, K0) with x02 ðxn;xsÞ and K05hs(x0), the
optimal initial value K0,+ :¼ hs(K0). Note that in the region around G1, S

n; and Ss; the behaviour
of the extremals is rather clear. Also, Note that hs(x)>h1(x), for x 2 (x

n, %xx), since Ss is above G1.
From the construction of Ss and G3, we may have two cases: Ss and G3 have a point in common;
Ss and G3 do not intersect. In the next section, we are able to find for each initial condition (x0,
K0) 2 (0, %xx)� (0, 1) the corresponding optimal trajectory for the case where Ss and G3 do not
intersect; the other case can be handled in an analogous way.
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4. OPTIMAL TRAJECTORIES

In this section, we summarize the previous results, in order to design a complete picture
of the optimal trajectories. We are also able to determine the correspondent optimal
controls, based on the information we obtain from the switch variables. Let us consider the
regions defined by

Sn;S;Ss;S0;G1;G2;G3;G4

in [0, %xx]� [0, 1). In Figure 4, we present a sketch of the five main regions for the case of the
logistic function. Figure 4 shows the case that xs5 %xx holds. The analysis in the following is done
under the following assumption:

xs ¼ %xx

Unfortunately, we are not able to present reasonable conditions which imply this assumption.

Domain (R1): boundaries Sn;Ss; {(x, K) 2 [0, %xx]� [0, 1)|x¼ %xx};
Domain (R2): boundaries S0;Sn;Ss;G3 and eventually {(x, k) 2 [0, %xx]� [0, 1)|x¼ %xx};
Domain (R3): boundaries {(x, K) 2 [0, %xx]� [0, 1)|x¼ 0}, S0; G4;
Domain (R4): boundaries {(x, K) 2 [0, %xx]� [0, 1)|x¼ 0}, G4, S;
Domain (R5): boundaries S; G3, {(x, K) 2 [0, %xx]� [0, 1)|x¼ %xx}.

Remark 26
In the following we may assume, without loss of generality, that K0¼K0,+ holds since in the
case of K05K0,+ we may leave the region where we started or not. In the first case we have to
apply the discussion in another region, in the second case we have to repeat the analysis in the
same region with K0 :¼K0,+.

Figure 4. Main regions.
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Theorem 27

Let (x, K, u, m) be optimal with adjoint variables z, l. The following assertions hold:

(a) let (x0, K0) be in (R1). Then z0>r0, l0¼ r, (x0, K0,+) 2Ss and there exists t>0 with (x(t),
K(t))2Sn and u� 1, m� 0 in (0, t);

(b) let (x0, K0) be in (R2). Then z0>0, l05r and there exists t>0 with (x(t), K(t)) 2Sn and
u� 0, m� 0 in (0, t);

(c) let (x0, K0) be in (R3). Then z050, l05r and there exists t>0 with (x(t), K(t)) 2S0 and
u� 0, m� 0 in (0, t);

(d) let (x0, K0) be in (R4). Then z050, l05r and there exists t>0 with (x(t), K(t)) 2 *SS and
u� 0, m� 0 in (0, t);

(e) let (x0, K0) be in (R5). Then z0>0, l05r and there exists t>0 with (x(t), K(t)) 2 *SS and
u� 1, m� 0 in (0, t).

Proof

Ad (a): We actually prove only that if (x0, K0) is in (R1), then K0,+5hs(x0), i.e. we must jump
either to (R2) or to (R5). Later on, in the proof of items (b) and (e), we will see that the initial
condition l0¼ r is not allowed in these regions. The last possible case: (x0, K0,+) 2G3 is excluded
in Theorem 28.

From Lemma 14, it is enough to consider initial conditions (x0, K0) with K0>h1(x0). Assume
l05r. Then there exists a t>0 with l(t)¼ r and l(t)5r, t 2 [0, t). Consequently l0(t)¼ 0,
z(t)¼ r0, z0(t)¼�cn(x(t)).

We consider tree cases: (i) z0(t)50: then l00(t)>0, contradicting (R). (ii) z0(t)>0: then
x(t)5xn and ðxðtÞ;KðtÞÞ 2 [5

i¼2ðRiÞ [ *SS[ S0 [ G2 [ G3 [ G4: As we will see, the initial
condition l0¼ r is not allowed in these regions (curves), and again we have a contradiction.
(iii) z0(t)¼ 0: then x(t)¼ xn. From Lemma 9, K(t)>Kn cannot occur and we must have (x(t),
K(t)) 2Sn: From the differential equation for (x, K), follows the existence of s 2 (0, t) such that
(x(s), K(s)) 2Ss: However, l(s)5r, contradicting the construction of Ss; since the optimal
trajectory (x, K) hits the curve Sn:

Therefore, we must have l0¼ r, what implies z05r0. Note that z0¼ r0 is not possible, since we
would have l0(0)¼ 0 and l00(0)¼�z0(0)¼cn(x0)>0, contradicting (R). Finally, we exclude the
case K0,+5hs(x0). If this where not the case, we would obtain a contradiction arguing as in the
case l05r above.

Ad (b): Assume l(0)¼ r. Then l0(0)40 and z05r0.
If z0¼ r0, then l0(0)¼ 0 and we have three possible cases: (i) x0>xn: we have

l00(0)¼cn(x0)>0, contradicting (R); (ii) x0¼ xn: cannot occur, due to Lemma 9; (iii) x05xn:
then z0(0)>0 and l00(0)¼�z0(0)50. Since l(t)5r for all t>0 is not possible, there exists t>0
with l(t)¼ r, l(t)5r, t 2 (0, t). Then l0(t)¼ 0, z(t)¼ r0 and there exists s 2 (0, t) with z0(s)¼ 0,
z(s)>r0. From the differential equation for z we conclude with (V4) that x(t)5x(s)>xn. This is
a contradiction to Lemma 8, since it is easy to see that x(t)K(t)5F(x(t)).

For z0>r0 we have again three possible cases: (i) x0>xn; (ii) x0¼ xn; (iii) x05xn. Cases
(ii) and (iii) are excluded analogous as above. In case (i), since l0(0)50, there exists t>0
such that l(t)¼ r, l0(t)¼ 0, z(t)¼ r0, z0(t)¼�l00(t)50. Therefore, we have x(t)4xn. If x(t)5xn,
follows from (x0, K0) 2 (R2) and the fact that there are no jumps in interval (0, t) that
(x(t), K(t)) 2 (R2) must hold. In this case, a contradiction can be obtained arguing as in
the case l(0)¼ r and z(0)¼ r0 above. If x(t)¼ xn, follows from Lemma 9 that K(t)>Kn cannot
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occur. Thus, we must have (x(t), K(t)) 2Sn: However, from the construction of Ss; we know
that along every optimal arc that hits Sn (starting at (x0, K0) 2 (R2) with x05xn) we must
have l(t)5r, t 2 [0, t). In particular, l(0)5r must hold, which is a contradiction. Therefore,
we have l05r.

Since l(t)5r for all t>0 is not allowed, there exists t>0 with l(t)¼ r, l(t)5r, t 2 [0, t),
l0(t)¼ 0, z(t)¼ r0. Since the initial condition l(0)¼ r, is not allowed in (R2), we conclude that
the trajectory must leave (R2) at some time s4t. Since there are no jumps in the interval [0, t),
the trajectory can leave (R2) only through Ss or Sn: If (x(s), K(s)) 2Ss we have two possibilities:
(i) s5t: in this case we can find e>0 such that (x(s+e), K(s+e)) 2 (R1) and l(s+e)5r. From
item (a) above we know that this cannot occur. (ii) s¼ t: in this case we have (x(t), K(t)) 2Ss:
However, this is not in agreement with the inequality x(t)4xn, which follows from
z0(t)¼�l00(t)50 and z(t)¼ r0. Therefore, the trajectory must leave (R2) through Sn: If s5t,
then l(s)5r and we have a contradiction by Lemma 14. Thus the trajectory must leave (R2)
through Sn at the time t¼ t.

To complete the proof of (b), notice that from the construction of the curves Ss and S0 and
due to the fact that z(t)¼ r0, l(t)¼ r, we have z(t)>0 and l(t)5r for t 2 [0, t).

Ad (c): Assume l(0)¼ r. Then we have z05r0. If z0¼ r0, then l0(0)¼ 0 and l00(0)¼�z0(0)¼
cn(x0)50. Then, there exists t>0 with l(t)¼ r, l(t)5r, t 2 (0, t), l0(t)¼ 0, z(t)¼ r0.
Therefore exists s 2 (0, t) with z(s)>r0 and z0(s)¼ 0. From the differential equation for z
follows x(s)>xn. Now, note that (x0, K0) 2 (R3) implies (x0, K0,+) 2 (R3)[(R4); further, the
solution does not jump in (0, s] and u(t)¼ 1 in [0, s]. Therefore, from the construction of G2, we
obtain the existence of r 2 (0, s) with (x(r), K(r)) 2Sn (and even K(r)5 *KK1). However, since
l(r)5r, this contradicts Lemma 15. If z0>r0, then l0(0)50 and we obtain a contradiction
analogous to the case z0¼ r0.

Therefore, l05r. Assume z050. Then z0(t)¼ zg(x)�c(x)>0, for all t>0 such that x(t)5 *xx.
Consequently, z(t)>0 as long as x(t)5 *xx. We already know that l(t)5r as long as
(x(t),K(t)) 2 (R3) (i.e. no jumps in (R3)). Therefore, we conclude from the definition of G2

that (x, K) leaves (R3) through S0; i.e. exists s>0 with (x(s), K(s)) 2S0: From the definition of
S0; follows x(s)5 *xx. Thus, z(s)>0 must hold. Now, from l05r, follows the existence of t>0
with l(t)¼ r and z(t)¼ r0>0, z0(t)¼�l00(t)50 (obviously t5s). Then, since l(t)¼ r is not
allowed in (R3) [S0[ (R2), the case x(t)5xn can be excluded. Therefore, x(t)¼ xn must hold,
from what follows (x(t), K(t)) 2Sn: However, this cannot occur, since z(s)>0 is not in
agreement with Corollary 17.

Therefore, z050. Note that the optimal trajectory meets S0: Indeed, this follows from the
definition of G4 and the fact that l(t)5r and z(t)50 as long as (x(t), K(t)) 2 (R3).

Ad (d): The case l0¼ r is excluded arguing as in (c). Assume z050. Then z0(0)>0 and
z0(t)¼ zg(x)�c(x)>0, for all t>0 such that x(t)5 *xx. From the differential equation for (x, K),
follows that the solution reaches (R3) with z(t)>0. From item (c) we know that this is not
possible. Therefore, we have l05r and z050. Further, we have l(t)5r and z(t)50 as long as
(x(t), K(t)) 2 (R4), since otherwise we could repeat the arguments above. From the construction
of G4, we conclude that the solution meets *SS:

Ad (e): Assume l(0)¼ r. Then we have z05r0.
If z0¼ r0, then l0(0)¼ 0 and we consider three cases: (i) x0>xn: we have l00(0)¼cn(x0)>0,

contradicting (R); (ii) x0¼ xn: cannot occur, due to Lemma 9; (iii) x05xn: we have z0(0)>0,
l00(0)50. Since l(t)5r for all t>0 is not possible, there exists t>0 with l(t)¼ r, l(t)5r, t 2 (0,
t), l0(t)¼ 0, z(t)¼ r0.
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Then there exists s 2 (0, t) with z0(s)¼ 0, z(t)>r0>0, t 2 (0, s]. Consequently, cn(x(s))>0 and
x(s)>xn. Since (x0, K0) 2 (R5), then (x0, K0,+) 2 (R5) too. This fact together with u(t)¼ 1 in [0, s]
and the differential equation for (x, K), implies K(s)5F(x(s))/x(s), contradicting Lemma 8. If
z0>r0, then l0(0)50 and we have again a contradiction.

Therefore, l05r. Consequently, there exists t>0 with l(t)¼ r and z(t)¼ r0>0. Next we
exclude two cases: (i) z050: there exists s 2 (0, t) such that z(s)¼ 0, z0(s)50 and z(t)50,
t 2 [0, s). Then x(s)4 *xx must hold. However, since u(t)¼ 0 in [0, s), we have x0(t)¼F(x)>0,
t 2 [0, s). Thus we obtain x(s)>x0> *xx, which is a contradiction, (ii) z0¼ 0: if z0(0)50 we obtain
a contradiction arguing as in (i). If z0(0)50 we have c(x0)40 and x04 *xx, contradicting
(x0, K0) 2 (R5).

Therefore, z0>0. Finally, we prove that the optimal trajectory meets *SS: We already
know that l05r. Then there exists t>0 with l(t)¼ r and z(t)¼ r0. We consider two cases:
(i) z(s)¼ 0, for some s 2 (0, t): without loss of generality, we can assume z0(s)40. If z0(s)¼ 0,
then x(s)¼ *xx and the proof is complete. If z0(s)50, then x(s)> *xx must hold. Moreover,
there exists r 2 (s, t) with z(r)¼ 0, z(t)50 in (s, r), z0(r)50. From x(s)> *xx and x0(t)¼F(x)>0,
for t 2 (s, r), follows x(r)> *xx. But this contradicts x(r)4 *xx, which follows from z(r)¼ 0,
z0(r)50. (ii) z(t)>0 in [0, t]: since l0¼ r is not allowed in (R5), the trajectory must leave (R5) at
some time s4t. From l(t)5r in [0, s) (i.e. no jumps in [0, s)), u(t)¼ 1 in [0, s] and the
differential equation for (x, K), we conclude that the trajectory must leave (R5) through *SS as
conjectured. &

Theorem 28

let (x, K, u, m) be optimal with adjoint variables z, l. The following assertions hold:

(a) if (x0, K0) is on the curve G4, then we may apply Theorem 27 (d);
(b) if (x0, K0) is on the curve G3, then we may apply Theorem 27 (e).

Proof

Follows along the argumentation above. &

Resuming, we know that each optimal trajectory meets S0; *SS or Sn:We now have to discuss
the behavior for points on these curves.

Theorem 29

Let (x, K, u, m) be optimal with adjoint variables z, l. The following assertions hold:

(a) let (x0, K0) be on Sn: Then z0¼ r0, l¼ r, (x0, K0,+)¼ (xn, Kn) and u� 1, m¼ gKdt;
(b) let (x0, K0) be on S0: Then z0¼ 0, l05r and there exists t>0 with (x(t), K(t)) 2Sn and

u�1, m�0 in (0, t);
(c) let (x0, K0) be on *SS: Then z0¼ 0, l05r and there exists t150, t2>t1 with ðxðt1Þ;

Kðt1ÞÞ ¼ ð *xx; **KK*KKÞ; ðxðt2Þ;Kðt2ÞÞ 2 Sn: Moreover,

mjð0;t1Þ � 0; uðtÞ ¼ KðtÞ�1Fð *xxÞ *xx�1; t 2 ð0; t1Þ; mjðt1;t2Þ � 0; ujðt1;t2Þ � 1

Proof

Note that (a) was already proved in Lemma 11. Item (b) is proved exactly in the same way as
Theorem 27 (b). Now we prove (c).
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Assume l(0)¼ r. Then z05r0. If z0¼ r0, then l0(0)¼ 0, z0(0)¼�cn( *xx)>0, l00(0)¼�z0(0)50. If
z0>r0, then l0(0)50. In each case there exists t>0 with l(t)¼ r, l(t)5r, t 2 (0, t), and we obtain
l0(t)¼ 0, z(t)¼ r0 and s 2 (0, t) with z0(s)¼ 0. Moreover, l(t)5r, t 2 (0, t), z(t)>r0, t 2 (0, t).
Thus, we arrive in (R4) with z(t)>0, l(t)5r. But this is not in agreement with the results for
domain (R4). Therefore, l05r must hold.

If z050, then the trajectory meets (R5) with z(t)50, l(t)5r, which is not possible due to the
results for (R5). If l05r and z0>0, the trajectory reaches (R4) with z(t)>0, l(t)5r, but this is
not allowed due the results for (R4).

Thus we have l05r, z0¼ 0 and, consequently, z0(0)¼ 0. Repeating the arguments above, we
conclude that the trajectory cannot leave *SS as long as KðtÞ5 **KK*KK holds. Therefore, there exists
t1>0 with x(t)¼ *xx, u(t)¼F( *xx) *xx�1K(t)�1, t 2 [0, t1]. In ð *xx; **KK*KKÞ the trajectory has to follow G2,
otherwise it would enter (R2) strictly above G2 and below G3 with z40 which is not allowed due
to Theorem 27 (b). Thus the trajectory meets Sn at a time t2>t1>0. &

APPENDIX A: MAXIMUM PRINCIPLE

The optimal control problem we want to consider is the following one:

Minimize Jðx0;K0; m; uÞ :¼
R1
0 e�dtrmðdtÞ þ

R1
0 e�dtfc� pxðtÞguðtÞKðtÞ dt

subject to ðu; mÞ 2 Uad � Cn and

x0 ¼ FðxÞ � uðtÞKx; xð0Þ ¼ x0 ðA1Þ

dK ¼ �gK dtþ mðdtÞ; Kð0Þ ¼ K0 ðA2Þ

where
Uad :¼ fv 2 L1½0;1Þ j 04vðtÞ41 a:e: in ½0;1Þg

Cn :¼ fm j m non-negative Borel measure on ½0;1Þg

This problem is denoted by P(x0, K0). Let (x, K, u, m) be a solution of the problem. The idea for
proving a maximum principle comes from References [15,16]. Halkin, however, uses a different
solution concept, avoiding the use of Bellman’s principle to analyse problems with infinite horizon.

Define the so-called Hamilton function *HH by

*HHðt; *xx; *KK ;w; *ll1; *ll2; ZÞ :¼ *ll1ðFð *xxÞ � w *KK *xxÞ � *ll2g *KK � Ze�dtðc� p *xxÞw *KK

Let ðTkÞk2N be a sequence in (0, 1) with limkTk ¼ 1 and consider for each k 2N the following
problem Pk(x0;K0):

Minimize Jðx0;K0; v;wÞ :¼
R Tk

0 e�dtrvðdtÞ þ
R Tk

0 e�dtfc� pyðtÞgwðtÞlðtÞ dt

subject to ðw; vÞ 2 Uad;k � Cn
k and

y0 ¼ FðyÞ � wðtÞly; yð0Þ ¼ x0; yðTkÞ ¼ xðTkÞ ðA3Þ

dl ¼ �gl dtþ vðdtÞ; lð0Þ ¼ K0; lðTkÞ ¼ KðTkÞ ðA4Þ
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where

Uad;k :¼ fv 2 L1½0;Tk� j 04vðtÞ41 a:e: in ½0;Tk�g

Cn

k :¼ fm j m non-negative Borel measure on ½0;Tk�g

Assumption

Tk is a point of continuity for each k 2N. (Clearly such a choice of (Tk)k2N is always possible
since K possesses only a countable number of jumps.)

Once one has proved the Bellman’s optimality principle for control problems with infinite
horizon (see [13]), one concludes that for each k 2N, ðxj½0;Tk�;Kj½0;Tk�;mj½0;Tk�; uj½0;Tk�Þ is a solution of
Pk(x0, K0). With the maximum principle proved in Reference [3], we obtain *ll1;0;k; *ll2;0;k; Zk 2R
such that there exists *ll1;k; *ll2;k with

*ll21;0;k þ *ll22;0;k þ Z2k ¼ 1; Zk50

x0 ¼FðxÞ � uðtÞKx; xð0Þ ¼ x0

dK ¼ � gK dtþ mðdtÞ; Kð0Þ ¼ K0

*ll01;k ¼ � *ll1;kðF 0ðxÞ � uðtÞKÞ � Zke
�dtpuðtÞK

*ll02;k ¼ *ll1;kxuþ g*ll2;k þ Zke
�dtðc� pxÞuðtÞ

*ll2;kðtÞ � Zke
�dtr4 0 for all t 2 ½0;Tk�

*ll1;kð0Þ ¼ *ll1;0;k; *ll2;kð0Þ ¼ *ll2;0;k

*ll2;kðtÞ � Zke
�dtr ¼ 0 m� a:e: in ½0;Tk�

*HHðt;xðtÞ;KðtÞ; uðtÞ; *ll1;kðtÞ; *ll2;kðtÞ; ZkÞ ¼ max
w2½0;1�

*HHðt;xðtÞ;KðtÞ;w; *ll1;kðtÞ; *ll2;kðtÞ; ZkÞ a:e: in ½0;Tk�

Without loss of generality we may assume that the sequences (*ll1;0;k; *ll2;0;k)k2N and (Zk)k2N
converge. Let

*ll1;0 :¼ lim
k!1

*ll1;0;k; *ll2;0 :¼ lim
k!1

*ll2;0;k; Z :¼ lim
k!1

Zk

Then, due to the continuous dependence of the solution on initial data and parameter (see
Reference [17]) we obtain

*ll1 :¼ lim
k!1

*ll1;k; *ll2 :¼ lim
k!1

*ll2;k

uniformly on each interval [0, T ], T>0. This gives the desired maximum principle
for P(x0, K0):
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There exist *ll1,0, *ll2,0, Z 2R such that there exists *ll1, *ll2 with

*ll21;0 þ *ll22;0 þ Z2= 0; Z50

x0 ¼FðxÞ � uðtÞKx; xð0Þ ¼ x0

dK ¼ � gK dtþ mðdtÞ; Kð0Þ ¼ K0

*ll01 ¼ � *ll1ðF 0ðxÞ � uðtÞKÞ � Ze�dtpuðtÞK

*ll02 ¼ *ll1xuþ g*ll2 þ Ze�dtðc� pxÞuðtÞ

*ll1ð0Þ ¼ *ll1;0; *ll2ð0Þ ¼ *ll2;0

*ll2ðtÞ � Ze�dtr4 0 for all t 2 ½0;1Þ

*ll2ðtÞ � Ze�dtr ¼ 0 m� a:e: in ½0;1Þ

*HHðt;xðtÞ;KðtÞ; uðtÞ; *ll1ðtÞ; *ll2ðtÞ; ZÞ ¼ max
w2½0;1�

*HHðt; xðtÞ;KðtÞ;w; *ll1ðtÞ; *ll2ðtÞ; ZÞ a:e: in ½0;1Þ
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