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� In this paper, we consider new regularization methods for linear inverse problems of dynamic
type. These methods are based on dynamic programming techniques for linear quadratic optimal
control problems. Two different approaches are followed: a continuous and a discrete one. We
prove regularization properties and also obtain rates of convergence for the methods derived from
both approaches. A numerical example concerning the dynamic EIT problem is used to illustrate
the theoretical results.
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1. INTRODUCTION

1.1. Inverse Problems of Dynamic Type

We begin by introducing the notion of dynamic inverse problems.
Roughly speaking, these are inverse problems in which the measuring
process—performed to obtain the data—is time dependent. As usual, the
problem data corresponds to indirect information about an unknown
parameter, which has to be reconstructed. The desired parameter is
allowed to be itself time dependent.

Let X , Y be Hilbert spaces. We consider the inverse problem of finding
u : [0,T ] → X from the equation

F (t)u(t) = y(t), t ∈ [0,T ], (1.1)
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where y : [0,T ] → Y are the dynamic measured data and F (t) : X → Y
are linear ill-posed operators indexed by the parameter t ∈ [0,T ]. Notice
that t ∈ [0,T ] corresponds to a (continuous) temporal index. The linear
operators F (t) map the unknown parameter u(t) to the measurements y(t)
at the time point t during the finite time interval [0,T ]. This is called a
dynamic inverse problem.

If the properties of the parameter u do not change during the
measuring process, the inverse problem in (1.1) reduces to the simpler
case F (t)u = y(t), t ∈ [0,T ], where u(t) ≡ u ∈ X . We shall refer to this as
static inverse problem.

As one would probably expect at this point, a discrete version of (1.1)
can also be formulated. The assumption that the measuring process is
discrete in time leads to the discrete dynamic inverse problems, which are
described by the model

Fkuk = yk , k = 0, � � � ,N (1.2)

and correspond to phenomena in which only a finite number of
measurements yk are available. As in the (continuous) dynamic inverse
problems, the unknown parameter can also be assumed to be constant
during the measurement process. In this case, we shall refer to this
problems as discrete static inverse problems.

Because the operators F (t) are ill-posed, at each time point t ∈ [0,T ]
the solution u(t) does not depend on a stable way on the right-hand
side y(t). Therefore, regularization techniques have to be used in order
to obtain a stable solution u(t). It is convenient to consider time-dependent
regularization techniques, which take into account the fact that the parameter
u(t) evolves continuously with the time.

In this paper, we shall concentrate our attention on the (continuous
and discrete) dynamic inverse problems. The analysis of the static problems
follows in a straightforward way, as it represents a particular subclass of the
dynamic problems.

1.2. Some Relevant Applications

As a first example of dynamic inverse problem, we present the dynamical
source identification problem: Let u(x , t) be a solution to

�xu(x , t) = f (x , t) in �,

where f (x , t) represents an unknown source that moves around and
might change shape with time t . The inverse problem in this case is
to reconstruct f from single or multiple measurements of Dirichlet and
Neumann data (u(x , t), �nu(x , t)), on the boundary �� over time t ∈ [0,T ].



Regularization Methods for Inverse Problems 141

Such problems arise in the field of medical imaging, for example, brain
source reconstruction [1] or electrocardiography [17].

Many other “classical” inverse problems have corresponding dynamic
counterparts, for example, the dynamic impedance tomography problem consists
in reconstructing the time-dependent diffusion coefficient (impedance) in
the equation

� · (�(. , t)�)u(. , t) = 0, (1.3)

from measurements of the time-dependent Dirichlet to Neumann map
�� (see the review paper [7]). This problem can model a moving object
with different impedance inside a fluid with uniform impedance, for
instance the heart inside the body. Notice that in this case, we assume the
time scale of the movement to be large compared with the speed of the
electromagnetic waves. Hence, the quasi-static formulation (1.3) is a valid
approximation for the physical phenomena.

Another application concerning dynamical identification problems for
the heat equation is considered in [15, 16]. Other examples of dynamic
inverse problems can be found in [20, 22, 25–27]. In particular, for
applications related to process tomography, see the conference papers
by M.H. Pham, Y. Hua, N.B. Gray, M. Rychagov, S. Tereshchenko, I.G.
Kazantsev, I. Lemahieu in [19].

1.3. Inverse Problems and Control Theory

Our main interest in this paper is the derivation of regularization
methods for the inverse problems (1.1) and (1.2). In order to obtain
these regularization methods, we follow an approach based on a solution
technique for linear quadratic optimal control problems: the so-called
dynamic programming that was developed in the early 1950s. Among the
main early contributors of this branch of optimization theory we mention
R. Bellman, S. Dreyfus, and R. Kalaba (see, e.g., [3–6, 8]).

The starting point of our approach is the definition of optimal
control problems related to (1.1) and (1.2). Let’s consider the following
constrained optimization problem


Minimize J (u, v) := 1

2

∫ T

0
�〈F (t)u(t) − y(t),L(t)[F (t)u(t) − y(t)]〉
+〈v(t),M (t)v(t)〉	dt

s.t. u ′ = A(t)u + B(t)v(t), t ∈ [0,T ], u(0) = u0,
(1.4)

where F (t), u(t), and y(t) are defined as in (1.1) and v(t) ∈ X , t ∈
[0,T ]. Further, L(t) : Y → Y , M (t) : X → X , A(t),B(t) : X → X are given
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operators and u0 ∈ X . In the control problem (1.4), u plays the rule of
the system trajectory, v corresponds to the control variable, and u0 is the
initial condition. The pairs (u, v) constituted by a control strategy v and
a trajectory u satisfying the constraint imposed by the linear dynamic are
called admissible processes.

The goal of the control problem is to find an admissible process
(u, v), minimizing the quadratic objective function J . This is a quite well
understood problem in the literature. Notice that the objective function
in problem (1.4) is related to the Tikhonov functional for problem (1.1),
namely

∫ T

0

(‖F (t)u(t) − y(t)‖2
a + 
‖u(t)‖2

b

)
dt ,

where the norms ‖ · ‖a and ‖ · ‖b , as well as the regularization parameter

 > 0, play the same rule as the weight functions L and M in (1.4).

In the formulation of the control problem, we shall use as initial
condition any approximation u0 ∈ X for the least-square solution u† ∈ X of
F (0)u = y(0). The choice of the weight functions L and M in (1.4) should
be such that the corresponding optimal process (ū, v̄) satisfies F (t)ū(t) ≈
y(t) along the optimal trajectory ū(t).

In order to derive a regularization method for (1.1), we formulate
problem (1.4) for a family of operators L
,M
 indexed by a scalar
parameter 
 > 0 and obtain the corresponding optimal trajectories
ū
(t) = ūL
 ,M
(t). Each optimal process is obtained by using the dynamic
programming technique, where the Riccati equation [particular case of
the Hamilton-Jacobi (HJ) equation] plays the central rule. The optimal
trajectories ū
(t) are used in order to generate a family of regularization
operators for problem (1.1), in the sense of [9]. The choice of the
operators L
, M
 play the rule of the regularization parameter.

What concerns the discrete dynamic inverse problem (1.2), we define,
analogous as in the continuous case, a discrete optimal control problem of
linear quadratic type



Minimize J (u, v) :=

N−1∑
k=0

〈Fkuk − yk ,Lk(Fkuk − yk)〉 + 〈vk ,Mkvk〉
+ 〈FN uN − yN ,LN (FN uN − yN )〉

s.t. uk+1 = Akuk + Bkvk , k = 0, � � � ,N − 1, u0 ∈ X ,

(1.5)

where Fk , uk , yk are defined as in (1.2) and vk ∈ X , k = 0, � � � ,N − 1.
Further, the operators Lk : Y → Y , Mk : X → X , Ak ,Bk : X → X have the
same meaning as in the continuous optimal control problem (1.4). To
simplify the notation, we represent the processes (uk , vk)Nk=1 by (u, v).
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Again, using the dynamic programming technique for this discrete
linear quadratic control problem, we are able to derive an iterative
regularization method for the inverse problem (1.2). In this discrete
framework, the dynamic programming approach consists basically of the
Bellman optimality principle and the dynamic programming equation.

1.4. Literature Overview and Outline of the Paper

Continuous and discrete regularization methods for inverse problems
have been quite well studied in the past two decades and one can find
relevant information, for example, in [9–12, 18, 24] and in the references
therein.

So far, dynamic programming techniques have been mostly applied
to solve particular inverse problems. In [15], the inverse problem of
identifying the initial condition in a semilinear parabolic equation is
considered. In [16], the same authors consider a problem of parameter
identification for systems with distributed parameters. In [14], the dynamic
programming methods are used in order to formulate an abstract
functional analytical method to treat general inverse problems.

Concerning dynamic inverse problems, regularization methods were
considered for the first time in [21, 22]. There, the authors analyze discrete
dynamic inverse problems and propose a procedure called spatio temporal
regularizer (STR), which is based on the minimization of the functional

�(u) :=
N∑
k=0

‖Fkuk − yk‖2
L2 + �2

N∑
k=0

‖uk‖2
L2 + 
2

N−1∑
k=0

‖uk+1 − uk‖2
L2

(tk+1 − tk)2
. (1.6)

Notice that the term with factor �2 corresponds to the classical (spacial)
Tikhonov-Philips regularization, while the term with factor 
2 enforces the
temporal smoothness of uk .

A characteristic of this approach is the fact that the hole solution
vector �uk�

N
k=0 has to be computed at a time. Therefore, the corresponding

system of equations to evaluate �uk� has very large dimension. In the STR
regularization, the associated system matrix is decomposed and rewritten
into a Sylvester matrix form. The efficiency of this approach is based on
fast solvers for the Sylvester equation.

This paper is organized as follows: In Section 2 we derive the
solution methods discussed in this paper. In Section 3 we analyze some
regularization properties of the proposed methods. In Section 4 we present
numerical realizations of the discrete regularization method as well as a
discretization of the continuous regularization method. For comparison
purposes, we consider a dynamic EIT problem, similar to the one treated
in [22].
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2. DERIVATION OF THE REGULARIZATION METHODS

We begin this section considering a particular case, namely the
dynamic inverse problems with constant operator. The analysis of this
simpler problem allows us to illustrate the dynamic programming approach
followed in this paper. In Subsections 2.2 and 2.3, we consider general
dynamic inverse problems and derive a continuous and a discrete
regularization method, respectively.

2.1. A Tutorial Approach: The Constant Operator Case

In this subsection, we derive a family of regularization operators for the
dynamic inverse problem in (1.1), in the particular case where the operators
F (t) does not change during the measurement process, that is, F (t) = F :
X → Y , t ∈ [0,T ]. The starting point of our approach is the constrained
optimization problem in (1.4). We shall consider a very simple dynamic,
which does not depend on the state u, but only on the control v, namely:
u ′ = v, t ≥ 0. In this case, the control v can be interpreted as a velocity
function. The pairs (u, v) formed by a trajectory and the corresponding
control function are called admissible processes for the control problem.

Next we define the residual function �(t) := Fu(t) − y(t) associated
with a given trajectory u. Notice that this residual function evolves
according to the dynamic

�′ = Fu(t) − y′(t) = Fv(t) − y′(t), t ≥ 0.

With this notation, problem (1.4) can be rewritten in the form



Mimimize J (�, v) = 1

2

∫ T

0
〈�(t),L(t)�〉 + 〈v(t),M (t)v(t)〉dt

s.t. �′ = Fv(t) − y′(t), t ≥ 0, �(0) = F (0)u0 − y(0).

(2.1)

The next result states a parallel between solvability of the optimal control
problem (1.4) and the auxiliary problem (2.1).

Proposition 2.1. If (ū, v̄) is an optimal process for problem (1.4), then the
process (�̄, v̄), with �̄ := F ū(t) − y(t), will be an optimal process for problem
(2.1). Conversely, if (�̄, v̄) is an optimal process for problem (2.1), with �(0) =
Fu0 − y(0), for some u0 ∈ X , then the corresponding process (ū, v̄) is an optimal
process for problem (1.4).

In the sequel, we derive the dynamic programming approach for
the optimal control problem in (2.1). We start by introducing the first
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Hamilton function H : [0,T ] × X 3 → �, defined by

H (t , �, �, v) := 〈�, Fv〉 − 〈�, y′(t)〉 + 1
2
[〈�,L(t)�〉 + 〈v,M (t)v〉].

Notice that the variable � plays the role of a Lagrange multiplier in
the above definition. According to the Pontryagin’s maximum principle,
the Hamilton function furnishes a necessary condition of optimality for
problem (2.1). Furthermore, because (in this particular case) this function
is convex in the control variable, this optimality condition also happens to
be sufficient. From the maximum principle we know that, along an optimal
trajectory, the equality

0 = �H
�v

(t , �(t), �(t), v(t)) = F ∗�(t) + M (t)v(t) (2.2)

holds. This means that the optimal control v̄ can be obtained directly from
the Lagrange multiplier � : [0,T ] → X , by solving the system

M (t)v̄(t) = −F ∗�(t), ∀t .
Therefore, the key task is actually the evaluation of the Lagrange multiplier.
This leads us to the HJ equation. Substituting the above expression for v̄
in (2.2), we can define the second Hamilton function � : � × X 2 → �

�(t , �, �) := min
v∈X

�H (t , �, �, v)� = 1
2
〈�,L(t)�〉 − 〈�, y′(t)〉 − 1

2
〈�, FM (t)−1F ∗�〉.

Now, let V : [0,T ] ×X →� be the value function for problem (2.1), that is,

V (t , �) : = min
{
1
2

∫ T

t
〈�(s),L(s)�(s)〉 + 〈v(s),M (s)v(s)〉ds | (�, v) admissible

process for (2. 1) with initial condition �(t) = �

}
. (2.3)

Our interest in the value function comes from the fact that this function
is related to the Lagrange multiplier � by: �(t) = V�(t , �̄), where �̄ is an
optimal trajectory. From the control theory we know that the value function
is a solution of the HJ equation

0 = Vt(t , �) + �(t , �,V�(t , �))

= Vt + 1
2
〈�,L(t)�〉 − 〈V�, y′(t)〉 − 1

2
〈V�, FM (t)−1F ∗V�〉. (2.4)
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Now, making the ansatz: V (t , �) = 1
2〈�,Q (t)�〉 + 〈b(t), �〉 + g (t), with

Q : [0,T ] → �, b : [0,T ] → X and g : � → �, we are able to rewrite (2.4)
in the form

1
2
〈�,Q ′(t)�〉 + 〈b ′(t), �〉 + g ′(t) + 1

2
〈�,L(t)�〉 − 〈Q (t)� + b(t), y′(t)〉

− 1
2
〈Q (t)� + b(t), FM (t)−1F ∗[Q (t)� + b(t)]〉 = 0. (2.5)

This is a polynomial equation in �, therefore the quadratic, the linear, and
the constant terms must vanish. The quadratic term yields for Q the Riccati
equation:

Q ′(t) = −L(t) + QFM (t)−1F ∗Q . (2.6)

From the linear term in (2.5), we obtain an evolution equation for b

b ′ = Q (t)FM (t)−1F ∗b + Q (t)y′(t) (2.7)

and from the constant term in (2.5), we derive an evolution equation for g

g ′ = 1
2
〈b(t), FM (t)−1F ∗b(t)〉 + 〈b(t), y′(t)〉. (2.8)

Notice that the cost of all admissible processes for an initial condition of
the type (T , �) is zero. Therefore we have to consider the system equations
(2.6), (2.7), (2.8) with the final conditions

Q (T ) = 0, b(T ) = 0, g (T ) = 0. (2.9)

Notice that this system can be solved separately, first for Q , then for b, and
finally for g .

Once we have solved the initial value problem (2.6)–(2.9), the
Lagrange multiplier is given by �(t) = Q (t)�̄(t) + b(t) and the optimal
control is obtained in the form of the feedback control v̄(t) =
−M−1(t)F ∗[Q (t)�̄(t) + b(t)]. Therefore, the optimal trajectory of problem
(1.4) is given by

ū ′ = −M−1(t)F ∗(Q (t)[F ū(t) − y(t)] + b(t)
)
, ū(0) = u0. (2.10)

By choosing appropriately a family of operators �M
,L
�
>0, it is possible
to use the corresponding optimal trajectories ū
, defined by the initial value
problem (2.10) in order to define a family of reconstruction operators
R
 : L2((0,T );Y ) → H 1((0,T );X ), by

R
(y) := u0 −
∫ t

0
M−1


 (s)F ∗(Q (s)[F ū
(s) − y(s)] + b(s)
)
ds. (2.11)
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We shall return to the operators �R
� in Section 3 and prove that the family
of operators defined in (2.11) is a regularization method for (1.4) (see,
e.g., [9]).

Remark 2.2. It is possible to simplify the above equations to
compute the optimal trajectory ū. If we introduce the function �(t) :=
F ∗Q (t)y(t) − F ∗b(t), then we can write ū ′ = −M−1(t)F ∗Q (t)F ū + M−1(t)�.
Furthermore, using the equations for Q ′ and b ′, we have �′ = −F ∗Ly(t) +
F ∗Q (t)FM−1(t)�. Thus, solving (2.10) is equivalent to solve the system

ū ′ = −M−1(t)F ∗Q (t)F ū + M−1(t)�, �′ = −F ∗Ly(t) + F ∗Q (t)FM−1(t)�.

This system can again be solved separately, first for � [backwards in
time, with �(T ) = 0] and then for ū (forward in time). Notice that the
computation of both b(t) and g (t) is not required to build this system.
Furthermore, we do not need the derivative of the data y(t).

2.2. Dynamic Inverse Problems

In the sequel, we consider the dynamic inverse problem described
in (1.1). As in the previous subsection, we shall look for a continuous
regularization strategy.

We start by considering the constrained optimization problem (1.4),
where F (t), u(t), and y(t) are defined as in (1.1), v(t) ∈ X , t ∈ [0,T ],
L(t) : Y → Y , M (t) : X → X , A(t) ≡ I : X → X , B(t) ≡ 0, and u0 ∈ X .

Following the footsteps of the previous subsection, we define the first
Hamilton function H : [0,T ] × X 3 → � by

H (t ,u, �, v) := 〈�, v〉 + 1
2
[〈F (t)u − y(t),L(t)(F (t)u − y(t))〉 + 〈v,M (t)v〉].

Thus, it follows from the maximum principle 0 = �H /�v(t ,u(t), �(t),
v(t)) = �(t) + M (t)v(t), and we obtain a relation between the optimal
control and the Lagrange parameter; namely, v̄(t) = −M−1(t)�(t).

As before, we define the second Hamilton function � : � × X 2 → �

�(t ,u, �) := 1
2
〈F (t)u − y(t),L(t)(F (t)u − y(t)〉 − 1

2
〈�,M (t)−1�〉.

Because �(t)= �V /�u(t ,u), where V : [0,T ] ×X →� is the value function
of problem (1.4), it is enough to obtain V . This is done by solving the HJ
equation [see (2.4)]

0 = Vt + 1
2
〈F (t)u − y(t),L(t)(F (t)u − y(t))〉 − 1

2
〈Vu ,M (t)−1Vu〉.
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As in Subsection 2.1, we make the ansatz V (t ,u) = 1
2〈u,Q (t)u〉 +

〈b(t),u〉 + g (t), with Q : [0,T ] → �, b : [0,T ] → X and g : � → �. Then,
we are able to rewrite the HJ equation above in the form of a polynomial
equation in u. Arguing as in (2.5), we conclude that the quadratic, the
linear, and the constant terms of this polynomial equation must all vanish.
Thus we obtain

Q ′ = Q ∗M (t)−1Q − F ∗(t)L(t)F (t), b ′ = Q (t)∗M (t)−1b + F ∗(t)L(t)y(t).
(2.12)

The final conditions Q (T ) = 0, b(T ) = 0 are derived just like in the
previous subsection.1Once the above system is solved, the optimal control
ū is obtained by solving

ū ′(t)= − M−1(t)Vu(t ,u)= − M−1(t)[Q (t)ū(t) + b(t)] (2.13)

with initial condition ū(0) = u0.
Following the ideas of the previous tutorial subsection, we shall choose

a family of operators �M
,L
�
>0 and use the corresponding optimal
trajectories ū
 in order to define a family of reconstruction operators
R
 : L2((0,T );Y ) → H 1((0,T );X ),

R
(y) := u0 −
∫ t

0
M−1


 (s)[Q (s)ū(s) + b(s)]ds.

The regularization properties of the operators �R
� will be analyzed in
Section 3.

2.3. Discrete Dynamic Inverse Problems

In this subsection, we use the optimal control problem (1.5) as starting
point to derive a discrete regularization method for the inverse problem
in (1.2).

In the framework of discrete dynamic inverse problems, we have a
trajectory, represented by the sequence uk , which evolves according to the
dynamic

uk+1 = Akuk + Bkvk , k = 0, 1, � � � ,N

where the operators Ak and Bk still have to be chosen and �vk�N−1
k=0 , is the

control of the system. As in the continuous case, we shall consider a simpler

1Because function g is not needed for the computation of the optimal trajectory, we omit the
expression of the corresponding dynamic.
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dynamic: uk+1 = uk + vk , k = 0, 1, � � � (i.e., Ak = Bk = I ). In the objective
function J of (1.5) we choose Mk = 
I , 
 ∈ �+, for all k.

In the sequel, we derive the dynamic programming approach for
the optimal control problem in (1.5). We start by introducing the value
function (or Lyapunov function) V : � × X → �

V (k, �) := min� Jk(u, v) | (u, v) ∈ Zk(�) × X N−k�,

where

Jk(�, v) : = 1
2

[
〈FN uN − yN ,LN (FN uN − yN )〉

+
N−1∑
j=k

〈Fjuj − yj ,Lj(Fjuj − yj)〉 + 
〈vj , vj 〉
]

(2.14)

and Zk(�) := �u ∈X N−k+1 |uk = �, uj+1 =uj + vj , j = k, � � � ,N − 1�. [Compare
with the definition in (2.3)]. The Bellman principle for this discrete
problem reads

V (k, �) = min
v∈X

{
V (k + 1, � + v) + 1

2
〈Fk� − yk ,Lk(Fk� − yk)〉 + 


2
〈v, v〉

}
.

(2.15)

The optimality equation (2.15) is the discrete counterpart of the HJ
equation (2.4). Now we make the ansatz for the value function: V (k, �) =
1
2〈�,Qk�〉 + 〈bk , �〉 + gk . Notice that the value function satisfies the boundary
condition: V (N , �) = 1

2〈FN � − yN ,LN (FN � − yN )〉. Therefore,

QN = F ∗
N LN FN bN = −F ∗

N LN yN . (2.16)

As in the continuous case, the optimality equation has to be solved
backwards in time (k = N − 1, � � � , 0) recursively. A straightforward
calculation shows that the minimizer of (2.15) is given by v̄ = −(Qk+1 +

I )−1(Qk+1� + bk+1). Substituting in (2.15), we obtain a recursive formula
to compute Qk , bk , and uk :

Qk−1 = 
(Qk + 
I )−1Qk + F ∗
k−1Lk−1Fk−1 k = N � � � 2 (2.17)

bk−1 = 
(Qk + 
I )−1bk − F ∗
k−1Lk−1yk−1 k = N � � � 2 (2.18)

uk+1 = (Qk+1 + 
I )−1(
uk − bk+1) k = 0 � � �N − 1 (2.19)

Together with the end conditions (2.16) and an arbitrary initial condition
u0, these recursions can be solved backwards for Qk , bk and forwards for uk .
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In the sequel, we verify that the iteration in (2.17), (2.18), (2.19) is well
defined.

Lemma 2.3. The recursion (2.17) with the condition (2.16), defines a sequence
of self-adjoint positive semi-definite operators Qk. In particular, (Qk + 
I )−1 exists
and is bounded for all k. Moreover,

‖Qk‖ ≤ 
 + max
k

‖Fk‖2.

Proof. Because a sum of two bounded self-adjoint operators is symmetric,
it follows by induction that Qk are self-adjoint for all k. Denote by �(Qk) its
spectrum, we can prove by induction that

�(Qk) ⊂ �0, 
 + max
k

‖Fk‖2	.

Indeed, if Qk+1 has this property, then (Qk+1 + 
I )−1 exists, and

Bk+1 := (

(Qk+1 + 
I )−1Qk+1

)
is positive semidefinite and bounded by ‖Bk+1‖ ≤ 
. Hence, by the minimax
characterization of the spectrum we obtain

�(Qk) ≥ inf
‖x‖≤1

(x ,Qkx) ≥ inf
‖x‖≤1

(x ,Bkx) + inf
‖x‖≤1

(x , F ∗
k F

∗
k x) ≥ 0

�(Qk) ≤ sup
‖x‖≤1

(x ,Qkx) ≤ sup
‖x‖≤1

(x ,Bkx) + sup
‖x‖≤1

(x , F ∗
k F

∗
k x) ≤ 
 + ‖Fk‖2,

concluding the proof. �

3. REGULARIZATION PROPERTIES

Before we examine the regularization properties of the methods
derived in Section 2, let us state a result about existence and uniqueness of
the Riccati equations (2.12).

Theorem 3.1. If F ,L,M ∈C([0,T ],�(X ,Y )), then the Riccati
equation (2.12) has a unique symmetric positive semidefinite solution in
C 1([0,T ],�(X )).

Proof. In [2], the uniqueness and positivity of a weak solution to (2.12)
in the form

Q̃ (t) =
∫ T

t
Q̃ (s)∗M−1(s)Q̃ (s) − F (s)∗L(s)F (s)ds, (3.1)
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is proved. If F ,L,M are continuous then, by Lebesgues theorem, Q̃ is
continuously differentiable, and hence a strong solution. The symmetry of
Q̃ follows from the uniqueness, because Q̃ ∗ satisfies the same equation as
Q̃ . Existence of a solution to (2.12), (2.13) is standard, as these are linear
equations (cf. [23]). �

Remark 3.2. It is well-known in control theory that the existence of a
solution to (2.12) can be constructed from the functional

V (t , �) : = min
u(t)=�

u∈H 1([t ,T ],X )

1
2

∫ T

t
〈F (s)u(s) − y(s),L(s)[F (s)u(s) − y(s)]〉

+ 〈u ′(s),M (s)u ′(s)〉ds. (3.2)

This functional is quadratic in u and, from the Tikhonov regularization
theory (see, e.g., [9]), it admits a unique solution u, and is quadratic in �.
Furthermore, the leading quadratic part (�,Q (t)�) is a solution to the
Riccati equation.

Next we consider regularization properties of the method derived in
Subsection 2.2. The following lemma shows that the solution u of (2.13)
satisfies the necessary optimality condition for the functional

J (u) = 1
2

∫ T

0
〈F (s)u(s) − y(s),L(s)[F (s)u(s) − y(s)]〉 + 〈u ′(s),M (s)u ′(s)〉ds

(3.3)

(notice that this is the cost functional J (u, v) in (1.4) with v = u ′).

Lemma 3.3. Let Q (t), b(t), u(t) be defined by (2.12), (2.13), together with
the boundary conditions Q (T ) = 0, b(T ) = 0, and u(0) = u0. Then, u(t) solves

F ∗(t)L(t)F (t)u(t) − M (t)u(t)′′ = F ∗(t)L(t)y(t), (3.4)

together with the boundary conditions u(0) = u0, u ′(T ) = 0.

Proof. Equation (3.4) follows from Equations (2.12), (2.13) by
differentiation:

−M (t)u ′′(t) = d
dt
(Qu(t) + b(t)) = Q (t)′u(t) + b ′(t) + Q (t)u ′(t)

= −F (t)∗L(t)F (t)u(t) + F (t)∗L(t)y(t)

The boundary condition u(0) = u0 holds by definition and the identity
u ′(T ) = 0 follows from (2.13) and the boundary conditions for
Q and b. �
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Because the cost functional in (3.3) is quadratic, the necessary first
order conditions are also sufficient. Thus, the solution u(t) of (3.4) is
actually a minimizer of this functional. Including the boundary conditions
we obtain the following corollary:

Corollary 3.4. The solution u(t) of (3.4) is a minimizer of the Tikhonov
functional in (3.3) over the linear manifold

� := �u ∈ H 1([0,T ],X ) |u(0) = u0�.

In particular, this means that the above procedure is a regularization
method for the inverse problem (1.1). Bellow we summarize a stability and
convergence result. The proof uses classical techniques from the analysis of
Tikhonov type regularization methods (cf. [9], [10]) and thus is omitted.

Theorem 3.5. Let M (t) ≡ 
I , 
 > 0, L(t) > 0, t ∈ [0,T ] and J
 be the
corresponding Tikhonov functional given by (3.3).

Stability: Let the data y(t) be noise free and denote by u
(t) the minimizer
of J
. Then, for every sequence �
k�k∈� converging to zero, there exists a subsequence
�
kj �j∈�, such that �u
kj

�j∈� is strongly convergent. Moreover, the limit is a minimal
norm solution.

Convergence: Let ‖y�(t) − y(t)‖ ≤ �. If 
 = 
(�) satisfies

lim
�→0


(�) = 0 and lim
�→0

�2/
(�) = 0.

Then, for a sequence ��k�k∈� converging to zero, there exists a sequence
�
k := 
(�k)�k∈� such that u
k converges to a minimal norm solution.

A result similar to the one stated in Corollary 3.4 holds for the discrete
case:

Lemma 3.6. Let Qk , bk ,uk be defined by (2.17), (2.18), and (2.19), together
with the boundary conditions (2.16). Then uk satisfies

F ∗
k LkFkuk − 
(uk−1 − 2uk + uk+1) = F ∗

k Lkyk , k = 1 � � �n (3.5)

together with the boundary condition u(0) = u0,un+1 = un.

Equation (3.5) is the necessary (and by convexity also sufficient)
condition for a minimizer of J0 in (2.14). This proves the following
corollary:

Corollary 3.7. The sequence uk is a minimizer of the Tikhonov functional (2.14)
over all (wk) with w0 = u0.
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4. APPLICATION TO DYNAMIC EIT PROBLEM

After a spacial discretization of the operator equation (1.1), the
differential equations (2.12), (2.13) can be solved by standard methods
for ordinary differential equations, such as the Euler-Method or Runge-
Kutta-Methods. ChoosingM (t) ≡ Id : X → X and L(t) ≡ 
−1Id : Y → Y in
(2.12), (2.13) we obtain

Q ′(t) = −
−1F (t)∗F (t) + Q (t)∗Q (t)

b ′(t) = Q (t)∗b(t) + 
−1F (t)∗y(t)

u ′(t) = −Qu(t) − b(t)

From a computational point of view, the first of these is the most
expensive one, as it is nonlinear and involves matrix products. Once Q (t)
is known, the equations for b,u are linear and only involve matrix-vector
multiplications.

The simplest approach is to use an explicit Euler method for solving
the equation for Q backwards in time (tk = k

nT
T , �t = 1

nT
T ).

Qk−1 = Qk − �t(−
−1F (tk)∗F (tk) + Qk(t)∗Qk(t)) k = n − 1, � � � , 0

(4.1)

bk−1 = bk − �t(Qkbk + 
−1F (tk)∗y(tk)) (4.2)

uk+1 = uk + �t(−Qkuk − bk), (4.3)

with Qn = 0, bn = 0. It is well-known that an explicit method is conditionally
stable. The iteration matrix for (4.1) is (I − �tQk). An analogy to
Landweber iteration [9] a stability criterion is that

�t ≤ ‖Qk‖−1. (4.4)

This condition is satisfied if �t is small enough, as the following theorem
states:

Theorem 4.1. Let the following CFL-condition be satisfied


−1(�t)2 max
t∈[0,T ]

‖F (t)‖2 ≤ 1
2
. (4.5)

Then (4.1) defines a sequence of positive definite selfadjoint operators Qk such that
(4.4) hold.

Proof. It is trivial that Qk−1 is self-adjoint if Qk is. The iteration can be
written as

�tQk−1 = (I − �tQk)�tQk + 
−1(�t)2F ∗
k Fk .
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If the spectrum � of Qk satisfies �(�tQk) ⊂ [0, 1], then the right-hand side
of the iteration is a sum of two positive definite operators and hence the
left-hand side is also positive definite. Moreover,

‖�tQk−1‖ ≤ 1
2

+ 
−1(�t)2‖Fk‖2.

If 
−1(�t)2‖Fk‖2 ≤ 1
2 holds, then we obtain by induction that �(�tQk−1) ⊂

[0, 1] for all k, which implies (4.4). �

It follows from the last theorem that �t has to be chosen proportional
to

√

. If the regularization parameter is small, this requires very small

time-steps. In this case, an alternative is to use the discrete versions
(2.17),(2.18),(2.19), which are quite similar to an implicit Euler schema.
Contrary to the explicit Euler steps, it does not require any restriction
on �t .

In this section, we apply our regularization method to a dynamic
inverse problem, namely the linearized impedance tomography problem,
that is, one is faced with the problem of determining a time-dependent
diffusion coefficient �̃(x , t) in the equation

� . (�̃(. , t)�u) = 0 in � (4.6)

from the Neumann-to-Dirichlet operator:

��̃ : �

�n
u|��→ u|�� u solution to the Neumann problem (4.6).

We consider ��̃ an operator mapping a subspace L2(��) into itself.
Because the Neumann data have to satisfy the compatibility condition∫
��

�
�n u = 0, the domain of definition of ��̃ has to incorporate this

condition. It is well-known (see, e.g., [13]) that ��̃ is a compact operator
between Hilbert-spaces, hence we can consider it an element of the space
of Hilbert-Schmidt operators H and use the Hilbert-Schmidt norm on
this space. The parameter-to-data operator can be written as F : X ⊂
L2([0,T ] × �) → H , F (�̃) := ��̃.

The subset X is the set of �̃ such that �̃ is bounded from below and
above by positive constants, which is necessary to ensure ellipticity of
(4.6). Because the operator F is nonlinear, for a successful application of
the dynamic algorithm we will consider a linearization around 1, using
F (�̃) − F (1) ∼ F ′(1)(�̃ − 1). Notice that F (1) can be computed a priori,
therefore we consider the data to our problem to be y = F (�̃) − F (1) and
the corresponding unknown �(x , t) = �̃(x , t) − 1. This gives the linearized
problem

F ′(1)� = y,
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where �, y both depend on time. Hence, we can solve this problem within
the framework developed in Subsection 2.1.

4.1. Discretization

We briefly comment about the discretization of the Neumann-to-
Dirichlet operator. We use piecewise linear finite element functions on the
boundary: Xb := �

∑
i gi�̃i(x)| x ∈ ���. The functions �i are the boundary-

trace of the well-known Courant-element functions. Equation (4.6) is also
solved by finite elements. Let �i be the piecewise linear and continuous
ansatz functions on a triangular mesh. These ansatz functions form
the basis for the finite-element space to solve (4.6) and also for the
discretization of the space X , that is, � is represented in the discrete setting
by a sum of �i . If the Neumann data are in Xb , that is, �

�n u = ∑
i gi�̃i , then

equation (4.6) corresponds to a discrete linear equation of the form(
A11 A12

A21 A22

) (
ui

ub

)
=

(
0
Mg

)
,

where the matrices A11,A12,A21,A22 are submatrices of the stiffness matrix
Ai ,j = ∫

�
���i��j with respect of a splitting of the indices into the interior

and boundary components. The matrix M is coming from the contribution
of the Neumann-data in the discretized equations:

Mi ,l =
∫
��

�̃l �̃i d� (4.7)

In order to deal with the compatibility condition, we specify a reference
boundary index i∗ and set gi∗ = 0. The corresponding rows and columns
in the matrices are canceled out. The variables connected with interior
points can be eliminated from the discrete equation by taking the Schur-
Complement; this gives the matrix

G := (A22 − A21A−1
11 A12)

−1M . (4.8)

This matrix corresponds to a mapping �̃ : X ∗
b → X ∗

b , with

X ∗
b :=

{ ∑
i

gi�̃i(x) | gi∗ = 0, x ∈ ��
}
.

Identifying the space Xb with the �n via
∑

i gi�̃i(x) ⇔ (gi), the discrete
Neumann-to-Dirichlet operator is represented on �n by multiplication of
the matrix G .

We calculate the Hilbert-Schmidt inner product for discrete Neumann-
to-Dirichlet operators �1, �2 coming from the above discretizations.
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These operators have the form �k�̃i → ∑
l(Gk)l ,i�̃l , k ∈ �1, 2�, where Gk is

as in (4.8), corresponding to different coefficients �. Note that Gk can be
written as Gk = SkM , where Sk is a symmetric matrix and M the boundary
mass matrix (4.7).

The Hilbert-Schmidt inner product is defined as (�1,�2) =∑
i(�1ei ,�2ei), where ei is a orthonormal basis and (·, ·) is the usual L2

inner product. In our case we chose (ei) orthonormal such that span(ei) =
span(�̃i). Each basis can be transformed into each other:�̃i = ∑

k �i ,kek ,
ek = ∑

l �k,l �̃l .
Denote by B, � the matrices: B = (�i ,k), � := (�k,l). From the

orthogonality of (ei), the following identities can be derived: M = BBT ,
� = B−1. Now �ek is given by �ek = ∑

l Ak,l �̃l and further A = �GT .
Finally, the Hilbert-Schmidt inner product can be calculated to

(tr sdenotes the trace of a matrix):

(�1,�2) = tr(�GT
1 M (�GT

2 )
T ) = tr(GT

1 MG2�
T�) = tr(MST

1 MS2MM−1)

= tr(MST
1 MS2) = tr(ST

1 MS2M ) = tr(G1G2),

where we used �T� = M−1, and the symmetry of S ,M , and the identity
tr(AB) = tr(BA).

4.2. Numerical Results

As test example for the linearized impedance tomography problem, we
considered equation (4.6) on a unit square: � = [0, 1]2. As conductivity
�(x , t) we used a piecewise constant function, with support on a moving
circle:

�(x , t) := 1 + 2�Bxt ,0.08 ,

here � denotes the characteristic function, Bx ,r denotes a circle with center
at x and radius r . The time-varying center is chosen as

xt :=
(
0. 4 − 0. 2 cos(2�t)
0. 5 − 0. 2 sin(2�t)

)
. t ∈ [0, 1]

and is shown in Figure 1.
For the computation we used a uniform discretization, with 25

subdivisions of the interval [0, 1] in each coordinate direction. The data
are sampled at ti = i

50 using 51 uniform distributed sample points of the
interval [0, 1].

We experimented both with the explicit Euler algorithm and the
discrete version. However, the first one has the drawback of needing a
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FIGURE 1 Exact solution of the dynamic EIT problem.

CFL condition (4.5). For small 
 this requires a very fine discretization of
the time-interval, which makes the method not very feasible. Hence for
the numerical results, we used the discrete version, which is free of a CFL
condition.

For the first example, we simulated data for the linearized problem,
that is,

y = F ′(1)(� − 1).

The data were computed on a finer unstructured grid, in order to avoid
inverse crimes. In Figure 2, we show a density plot of the results for
different time-points.

For the second example, we used nonlinear data

y = F (�) − F (1).

Again we computed this on a finer grid. Additionally, we added 5% random
noise. Thus, we have in this case both an error due to noise and a
systematic error coming from the fact that we used a linearized model for
data corresponding to a nonlinear problem. Figure 3 shows the result for
this case.
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FIGURE 2 Reconstruction result for linearized data without noise.

FIGURE 3 Reconstruction result for nonlinear data with 5% random noise.
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5. CONCLUSIONS

Each method derived in this paper requires, in a first step, the solution
of an evolutionary equation (of Hamilton-Jacobi type). In a second step,
the components of the solution vector �uk� are computed one at a time.
This strategy reduces significantly both the size of the systems involved
in the solution method, as well as storage requirements needed for the
numerical implementation. These points turn out to become critical for
long time measurement processes.

Some detailed considerations about complexity: Assume that all F (tk)
are discretized as (n × m) matrices. The main effort is the matrix
multiplication for the update step for Qk : In each step this requires
�(n3 + n2m) calculations. Hence the overall complexity is of the order
�(nT (n3 + n2m)) operations. If the discrete version is used, then in each
step a matrix-inversion has to be performed, which is also of the order
�(n3), which leads to the same complexity as above. In contrast, the
method in [21] requires �((n + nT )

3 + (nT + m)nnT ). Although this is only
of cubic order in comparison with a quartic order complexity for the
dynamic programming approach, it is cubic in nT . Hence if nT is large,
the method proposed in this paper (which is linear in nT ) will be more
effective than the method in [21].

The numerical results show the feasibility and the stability of our
method. Note that the results are more smeared out at the center of the
square, which is clear because the identification problem is less stable if the
boundary is further away.
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