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inverse problem correspond to the inverse problem for the Dirichlet-to-Neumann (DN) map with

partial data.

Mathematical subject classification:35R30, 82D37, 35Q60.

Key words: semiconductors, inverse doping, bipolarmodel.

1 Introduction

In this paper we investigate the problem of identifying discontinuous doping

profiles in semiconductor devices from data obtained by the VC map for the

linearized stationary bipolar model (close to equilibrium). Two different methods

of data acquisition are considered:

1) Current flow measurements through a contact;

2) Pointwise measurements of the current density.

The related inverse problems correspond to the inverse problem for the DN

map with partial data.

We propose a framework to handle the inverse problems and analyze relevant

properties of the parameter-to-output maps. Moreover, we present a numerical

experiment for the case of pointwise measurements of the current density.
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The paper is outlined as follows: In Section 2 we present the transient end

stationary drift diffusion equations. In the Section 3 we introduce the VC map

and derive the underlying model for the analysis presented in this paper, namely

the linearized stationary bipolar case (close to equilibrium). Two inverse prob-

lems corresponding to different data acquisition procedures are introduced in

Section 4. Some regularity properties of the related parameter-to-output maps

are verified in this section. In Section 5 we present some numerical results for a

level set type iterative method and pointwise measurements of the current den-

sity. This experiment indicate that a single measurement may suffices to identify

the doping profile.

2 Drift diffusion equations

The transient model

The basic semiconductor device equations consist of the Poisson equation (1a),

the continuity equations for electrons (1b) and holes (1c), and the current relations

for electrons (1d) and holes (1e).

div (ε∇V) = q(n− p− C) in �× (0, T) (1a)

div Jn = q(∂tn+ R) in �× (0, T) (1b)

div Jp = q(−∂t p− R) in �× (0, T) (1c)

Jn = q(Dn∇n− μnn∇V) in �× (0, T) (1d)

Jp = q(−Dp∇ p− μp p∇V) in �× (0, T) . (1e)

This system is defined in� × (0, T), where� ⊂ Rd (d = 1, 2, 3) is a do-

main representing the semiconductor device. HereV denotes the electrostatic

potential (−∇V is the electric field,E = |∇V |)), n and p are the concentra-

tion of free carriers of negative charge (electrons) and positive charge (holes)

respectively andJn andJp are the densities of the electron and the hole current

respectively. Dn and Dp are the diffusion coefficients for electrons and holes

respectively. μn andμp denote the mobilities of electrons and holes respec-

tively. The positive constantsε and q denote the permittivity coefficient (for

silicon) and the elementary charge (see Appendix).
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The function R has the formR = R(n, p, x)(np − n2
i ) and denotes the

recombination-generation rate(ni is the intrinsic carrier density). Thebandgap

is relatively large for semiconductors (gap between valence and conduction

band), and a significant amount of energy is necessary to transfer electrons

from the valence and to the conduction band. This process is called genera-

tion of electron-hole pairs. On the other hand, the reverse process corresponds

to the transfer of a conduction electron into the lower energetic valence band.

This process is called recombination of electron-hole pairs. In our model these

phenomena are described by the recombination-generation rateR. Frequently

adopted in the literature are the Shockley Read Hall model (RSRH) and the Auger

model (RAU), defined by

RSRH :=
[
τp(n+ ni )+ τp(p+ ni )

]−1
,

RAU := Cnn+ Cp p ,

whereCn, Cp, τn andτp are positive constants (see Appendix).

The functionC(x) models a preconcentration of ions in the crystal, soC(x) =

C+(x) − C−(x) holds, whereC+ andC− are concentrations of negative and

positive ions respectively. In those subregions of� in which the preconcentra-

tion of negative ions predominate (P-regions), we haveC(x) < 0. Analogously,

we define the N-regions, whereC(x) > 0 holds. The boundaries between the

P-regions and N-regions (whereC change sign) are calledpn-junctions.

In the sequel we turn our attention to the boundary conditions. We assume

the boundary∂� of � to be divided into two nonempty disjoint parts:∂� =

∂�N ∪ ∂�D. The Dirichlet part of the boundary∂�D models the Ohmic con-

tacts, where the potentialV as well as the concentrationsn andp are prescribed.

The Neumann part∂�N of the boundary corresponds to insulating surfaces,

thus a zero current flow and a zero electric field in the normal direction are

prescribed. The Neumann boundary conditions for system (1a)–(1e) read:

∂V

∂ν
(x, t) =

∂n

∂ν
(x, t) =

∂p

∂ν
(x, t) = 0 , ∂�N × [0, T] . (2)

Moreover, at∂�D × [0, T], the following Dirichlet boundary conditions are
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imposed:

V(x, t) = VD(x, t) = U (x, t)+ Vbi (x) = U (x, t)+UT ln

(
nD(x)

ni

)
(3a)

n(x, t) = nD(x) =
1

2

(
C(x)+

√
C(x)2+ 4n2

i

)
(3b)

p(x, t) = pD(x) =
1

2

(
−C(x)+

√
C(x)2+ 4n2

i

)
. (3c)

Here the functionU (x, t) denotes the applied potential, the constantUT repre-

sents the thermal voltage, andVbi is given logarithmic function [4]. We shall

consider the simple situation∂�D = 00 ∪ 01, which occurs, e.g., in a diode.

The disjoint boundary parts0i , i = 0, 1, correspond to distinct contacts. Dif-

ferences inU (x) between different segments of∂�D correspond to the applied

bias between these two contacts. Moreover, the initial conditionsn(x, 0) ≥ 0,

p(x, 0) ≥ 0 have to be imposed.

The stationary model

In this paragraph we turn our attention to the stationary drift diffusion equations.

We disconsider the thermal effects and assume further∂n/∂t = ∂n/∂t = 0.

Thus, thestationary drift diffusion modelis derived from (1a)–(1e) in a straight-

forward way. Next, motivated by the Einstein relationsDn = UTμn and

Dp = UTμp (a standard assumption about the mobilities and diffusion coef-

ficients), one introduces the so-calledSlotboom variablesu andv, which are

related to the originaln and p variables by the formula:

n(x) = ni exp

(
V(x)

UT

)
u(x) , p(x) = ni exp

(
−V(x)

UT

)
v(x) . (4)

For convenience, we rescale the potential and the mobilities, i.e.

V(x) ←
V(x)

UT
, μn ← qUTμn, μp ← qUTμp .

It is obvious to check that the current relations now readJn = μnni eV∇u,

Jp = −μpni e−V∇v.
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Next we write the stationary drift diffusion equations in terms of(V, u, v)

λ2 1V = δ2
(
eVu− e−Vv

)
− C(x) in � (5a)

div Jn = δ4 Q(V, u, v, x) (uv − 1) in � (5b)

div Jp = −δ4 Q(V, u, v, x) (uv − 1) in � (5c)

V = VD = U + Vbi on ∂�D (5d)

u = uD = e−U on ∂�D (5e)

v = vD = eU on ∂�D (5f)

∇V ∙ ν = Jn ∙ ν = Jp ∙ ν = 0 on∂�N , (5g)

whereλ2 := ε/(qUT ) is the Debye length of the device,δ2 := ni and the

function Q is defined implicitly by the relationQ(V, u, v, x) = R(n, p, x).1

One should notice that, due to the thermal equilibrium assumption, it follows

np= n2
i , and the assumption of vanishing space charge density givesn−p−C =

0, for x ∈ ∂�D. This fact motivates the boundary conditions on the Dirichlet

part of the boundary.

It is worth mentioning that, in a realistic model, the mobilitiesμn andμp

usually depend on the electric field strength|∇V |. In what follows, we assume

thatμn andμp are positive constants. This assumption simplifies the subsequent

analysis, allowing us to concentrate on the inverse doping problems. As a matter

of fact, this dependence could be incorporated in the model without changing

the results described in the sequel.

Existence and uniqueness of solutions for system (5) can only be guaranteed

for small applied voltages. Therefore, it is reasonable to consider, instead of this

system, its linearized version around the equilibrium pointU ≡ 0. We shall

return to this point in the next section, where the VC map is introduced.

3 A simplified model

In the sequel we make some simplifying assumptions on the stationary drift

diffusion equations introduced in Section 2 and derive a special case which will

serve as underlying model for the inverse problem investigated in Section 4.

1Notice the applied potential has also to be rescaled:U (x)← U (x)/UT .
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The linearized stationary drift diffusion equations (close to equilibrium)

We begin this paragraph by introducing thethermal equilibriumassumption

for the stationary drift diffusion equations. This is a previous step to derive a

linearized system of stationary drift diffusion equations (close to equilibrium).

The thermal equilibrium assumption refers to the condition in which the semi-

conductor is not subject to external excitations, except for a uniform temperature,

i.e. no voltages or electric fields are applied. It is worth noticing that, under the

thermal equilibrium assumption, all externally applied potentials to the semicon-

ductor contacts are zero (i.e.U (x) = 0). Moreover, the thermal generation is

perfectly balanced by recombination (i.e.R = 0).

If the applied voltage satisfiesU = 0, one immediately sees that the solution

of system (5a)–(5g) simplifies to(V, u, v) = (V0, 1, 1), whereV0 solves

λ2 1V0 = eV0
− e−V0

− C(x) in � (6a)

V0 = Vbi(x) on ∂�D (6b)

∇V0 ∙ ν = 0 on∂�N . (6c)

In the bipolar model discussed below we shall be interested in the linearized

drift diffusion system at the equilibrium. Keeping this in mind, we compute the

Gateaux derivative of the solution of system (5a)–(5g) with respect to the voltage

U at the pointU ≡ 0 in the directionh. This directional derivative is given by

the solution(V̂, û, v̂) of

λ2 1V̂ = eV0
û+ e−V0

v̂ + (eV0
+ e−V0

)V̂ in � (7a)

div (μneV0
∇û) = Q0(V

0, x)(û+ v̂) in � (7b)

div (μpe−V0
∇v̂) = Q0(V

0, x)(û+ v̂) in � (7c)

V̂ = h on ∂�D (7d)

û = −h on ∂�D (7e)

v̂ = h on ∂�D (7f)

∇V0 ∙ ν = ∇û ∙ ν = ∇v̂ ∙ ν = 0 on∂�N , (7g)

where the functionQ0 satisfiesQ0(V0, x) = Q(V0, 1, 1, x).
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Linearized stationary bipolar case (close to equilibrium)

In this paragraph we present a special case, which plays a key rule in the modeling

inverse doping problems related tocurrent flowmeasurements.

The following discussion is motivated by the stationary VC map

6C : H3/2(∂�D) → R .

U 7→
∫

01

(Jn + Jp) ∙ ν ds

Here (V, u, v) is the solution of system (5) for an applied voltageU . This

operator models practical experiments wherevoltage-current dataare available,

i.e. measurements of the averaged outflow current density on01 ⊂ ∂�D.

The linearized stationary bipolar case (close to equilibrium)corresponds to

the model obtained from the drift diffusion equations (5) by linearizing the VC

map atU ≡ 0. This simplification is motivated by the fact that, due to hys-

teresis effects for large applied voltage, the VC map can only be defined as a

single-valued function in a neighborhood ofU = 0. Moreover, the following

simplifying assumptions are also taken into account:

A1) The electron mobilityμn and hole mobilityμp are constant;

A2) No recombination-generation rate is present, i.e.R = 0 (or Q0 = 0).

An immediate consequence of our assumptions is the fact that the Poisson

equation and the continuity equations decouple. Indeed, from (7) we see that

the Gateaux derivative of the VC map6C at the pointU = 0 in the direction

h ∈ H3/2(∂�D) is given by the expression

6′C(0)h =
∫

01

(
μn eVbi ûν − μp e−Vbi v̂ν

)
ds, (8)

where(û, v̂) solve

div (μneV0
∇û) = 0 in � (9a)

div (μpe−V0
∇v̂) = 0 in � (9b)

û = −h on ∂�D (9c)

v̂ = h on ∂�D (9d)

∇û ∙ ν = ∇v̂ ∙ ν = 0 on∂�N (9e)
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andV0 is the solution of the equilibrium problem (6); see Lemma 1.

Notice that the solution of the Poisson equation can be computed a priori, since

it does not depend onh. The application6′C(0) maps the Dirichlet data for(û, v̂)

to a weighted sum of their Neumann data and can be compared with the DN map

in theElectrical Impedance Tomography(EIT).

4 Inverse Problems for Semiconductors

We begin this section verifying that the stationary VC map6C, introduced in

Section 3, is well defined in a suitable neighborhood ofU = 0.

Lemma 1 [[5], Proposition 3.1]. In (5), for each applied voltageU ∈ Br (0)

⊂ H3/2(∂�D) with r > 0 sufficiently small, the currentJ ∙ ν ∈ H1/2(01) is

uniquely defined. Furthermore,6C : H3/2(∂�D) → H1/2(01) is continuous

and continuously differentiable inBr (0). Moreover, it’s derivative in direction

h ∈ H3/2(∂�D) is given by the operator6′C(0) defined in(8).

As a matter of fact, we can actually prove that, since(û, v̂) in (9) depend

continuously (inH2(�)2) on the boundary dataU ∈ H3/2(∂�D), it follows

from the boundedness and compactness of the trace operatorγ : H2(�) →

H1/2(01) that6′C(0) is a bounded and compact operator.

Lemma 1 establishes a basic property to consider the inverse problem of recon-

structing the doping profileC from the VC map. In the sequel we shall consider

two possible inverse problems for this map.

Current flow measurements through a contact

In this first inverse problem we assume that, for eachC, the output is given by

6′C(0)U j for someUj . A realistic experiment corresponds to measure, for given
{
Uj

}N

j=1, with ‖U j ‖ small, the outputs

{
6′C(0)Uj | j = 1, ∙ ∙ ∙ , N

}

(recall that6C(0) = (V0, 1, 1)). In practice, the functionsUj are chosen to be

piecewise constant on the contact01 and to vanish on00. From the definition of
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6′C(0) we derive the following abstract formulation of the inverse doping profile

problem for the VC map:

F(C) = Y , (10)

where

1)
{
Uj

}N

j=1 ⊂ H3/2(∂�D) are fixed voltage profiles satisfyingUj |01 = 0;

2) Parameter:C = C(x) ∈ L2(�) =: X;

3) Output: Y =
{
6′C(0)Uj

}N

j=1 ∈ R
N =: Y;

4) Parameter-to-output map:F : X → Y.

The domain of definition of the operatorF is

D(F) :=
{
C ∈ L∞(�); Cm ≤ C(x) ≤ CM , a.e. in�

}
,

whereCm andCM are suitable positive constants.

The inverse problem described above corresponds to the problem of identify-

ing the doping profileC from the linearized stationary VC map atU = 0 (see

bipolar case in Section 3).

The non-linear parameter-to-output operatorF is well defined and Fréchet

differentiable in its domain of definitionD(F). This assertion follows from

standard regularity results in PDE theory (see, e.g., [4], Propositions 2.2 and 2.3).

It is worth noticing that the solution of the Poisson equation can be computed

a priori. The remaining problem (coupled system (9) for(û, v̂)) is quite sim-

ilar to the problem of EIT. In this inverse problem the aim is to identify the

conductivityq = q(x) in the equation:

−div (q∇u) = f in �,

from measurements of theDirichlet-to-Neumann map, which maps the applied

voltageu|∂� to the electrical fluxquν |∂�. The application6′C(0) maps the

Dirichlet data forû and v̂ to the weighted sum of their Neumann data. It can

be seen as the counterpart of electrical impedance tomography for common

conducting materials.
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Pointwise measurements of the current density

In the sequel, we investigate a different inverse problem related to the VC map.

Differently from the previous paragraph, we shall assume that the VC operator

maps the Dirichlet data for̂u andv̂ in (9) to the sum of their Neumann data, i.e.

6C : H3/2(∂�D) → H1/2(01)

U 7→ (Jn + Jp) ∙ ν|01

where functionsV , û, v̂, Jn, Jp andU have the same meaning as in Section 3.

It is immediate to observe that the Gateaux derivative of the VC map6C at the

pointU = 0 in the directionh ∈ H3/2(∂�D) is given by

6′C(0)h =
(
μn eVbi ûν − μp e−Vbi v̂ν

)
|01 , (11)

where(û, v̂) solve system (9). Notice that, for each applied voltageU , the VC

map associates a scalar valued function defined on01. In this case, the outputs

6′C(0)U j are in a data space which is larger than in the case of current flow

measurements.

Again we can derive an abstract formulation of type (10) for the inverse doping

profile problem for the linearized stationary VC map with pointwise measure-

ments of the current density. The only difference to the framework described in

the previous paragraph concerns the definition of the Hilbert spaceY, which is

now defined by:

3’) Output: Y =
{
6′C(0)Uj

}N

j=1 ∈ L2(01)
N =: Y;

The domain of definition of the operatorF , remains unaltered.

It is immediate to observe that the model concerning current flow measure-

ments carries less information about the unknown parameter than the model

related to pointwise measurements does. In so far, the inverse problem related

with the first measurement type is harder to solve.

5 A numerical experiment

In this section we apply numerical methods to solve an inverse doping profile

problem related to the VC map. We consider the stationary linearized bipolar

model with pointwise measurements of the current density.
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In the sequel we consider the bipolar model introduced in Section 3. It follows

from the assumptionQ = 0 that the Poisson equation (6a) and the continuity

equations (9a), (9b) decouple. The inverse doping profile problem corresponds

to the identification ofC = C(x) from pointwise measurements of the total

current densityJ at the contact01, namely

J|01 = (Jn + Jp)|01 =
(
μneVbi ûν − μpe−Vbi v̂ν

)
|01

(compare with the Gateaux derivative of the VC map6C at the pointU = 0

in (8)). Here(V0, û, v̂) solve, for each applied voltageU , the system (6), (9),

with h substituted byU .

Notice that we can split the inverse problem in two parts: First we define the

functionγ (x) := eV0(x), x ∈ �, and solve the parameter identification problem

div (μnγ∇û) = 0 in �

û = −U (x) on ∂�D

∇û ∙ ν = 0 on∂�N

div (μpγ
−1∇v̂) = 0 in �

v̂ = U (x) on ∂�D

∇v̂ ∙ ν = 0 on∂�N

(12)

for γ , from measurements of(μnγ ûν − μpγ
−1v̂ν)|01. The second step consists

in the determination ofC in

C(x) = γ (x)− γ−1(x)− λ2 1(ln γ (x)) , x ∈ � .

Since the evaluation ofC from γ can be explicitely performed in a stable way,

we shall focus on the problem of identifying the function parameterγ in (12).

Summarizing, the inverse doping profile problem in the linearized bipolar

model for pointwise measurements of the current density reduces to the identi-

fication of the parameterγ in (12) from measurements of the DN map

3γ : H3/2(∂�D) → H1/2(01) .

U 7→
(
μnγ ûν − μpγ

−1v̂ν

)
|01

If we take into account the restrictions imposed by the practical experiments

described in Section 4, it follows:

i) The voltage profilesU ∈ H3/2(∂�D) must satisfyU |01 = 0;

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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ii) The identification ofγ has to be performed from a finite number of mea-

surements, i.e. from the data

{
(Uj ,3γ (Uj ))

}N

j=1 ∈
[
H3/2(00)× H1/2(01)

]N
. (13)

For this experiment concerning pointwise measurements of the current density,

we assume that only one measurement is available, i.e.N = 1 in (13). What

concerns the numerical implementation, we applied an iterative method of level

set type to solve the identification problem forγ in (12) (see [19, 15, 20]). The

domain� ⊂ R2 is the unit square, and the boundary parts are defined as follows

01 := {(x, 1) ; x ∈ (0, 1)} , 00 := {(x, 0) ; x ∈ (0, 1)} ,

∂�N := {(0, y) ; y ∈ (0, 1)} ∪ {(1, y) ; y ∈ (0, 1)} .

The fixed inputU , is chosen to be a piecewise constant function supported in00

U (x) :=

{
1, |x − 0.5| ≤ h

0, else

The doping profile to be reconstructed is shown in Figure 1(a). In Figure 1(b)

the voltage sourceU (applied at00) and the corresponding solution̂u of (12)

are shown. In these pictures, as well as in the forthcoming ones,01 is the lower

left edge and00 is the top right edge (the origin corresponds to the upper right

corner).

In Figure 2 we present a numerical experiment for the bipolar model with

pointwise measurements of the current density. Here exact data is used for the

reconstruction of the p-n junction in Figure 1(a). The pictures show plots of the

iteration error after 1, 10 and 100 steps of the level set method respectively.

What concerns the quality of the reconstruction of the P-N junction, the level set

approach considered in this paper brings much better results than the Landweber-

Kaczmarz approach implemented in [4]. A possible explanation for the different

performance of these methods is the fact that the Landweber-Kaczmarz approach

does not take into account the assumption that the coefficientγ in (12) for such

application is a piecewise constant function. The Landweber-Kaczmarz method

tries to identify a real function defined on�, which is a much more complicated

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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(a)

(b)

Figure 1 – Picture (a) show the doping profiles to be reconstructed in the numerical

experiments.

object than the original unknown curve (the P-N junction). Due to the nature of

the level set approach, it incorporates in a natural way the assumption thatγ is

piecewise constant in�.
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Figure 2 – Experiment for the bipolar model with pointwise measurements of the current

density: Reconstruction of the p-n junction in Figure 1(a). Evolution of the iteration

error for exact data and one measurement of the DN map3γ (i.e. N = 1 in (13)).

Comp. Appl. Math., Vol. 25, N. 2-3, 2006



“main” — 2007/2/22 — 15:53 — page 201 — #15

ANTONIO LEITÃO 201

Appendix

Properties of silicon at room temperature

Parameter Typical value

ε 11.9 ε0

μn ≈ 1500 cm2 V−1 s−1

μp ≈ 450 cm2 V−1 s−1

Cn 2.8× 10−31 cm6/ s

Cp 9.9× 10−32 cm6/ s

τn 10−6 s

τp 10−5 s

Table 1 – Typical values of main the constants in the model.

Relevant physical constants:

Permittivity in vacuum:ε0 = 8.85× 10−14As V−1 cm−1;

Elementary charge:q = 1.6× 10−19As.
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