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Abstract
We consider the problem of identifying possibly discontinuous doping profiles
in semiconductor devices from data obtained by stationary voltage–current
maps. In particular, we focus on the so-called unipolar case, a system of
PDEs derived directly from the drift diffusion equations. The related inverse
problem corresponds to an inverse conductivity problem with partial data. The
identification issue for this inverse problem is considered. In particular, for a
discretized version of the problem, we derive a result connected to diffusion
tomography theory. A numerical approach for the identification problem using
level set methods is presented. Our method is compared with previous results
in the literature, where Landweber–Kaczmarz-type methods were used to solve
a similar problem.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The precise implantation of the doping profile is crucial for the desired performance of
semiconductor devices. In many applications, there is substantial interest in replacing
expensive laboratory testing by numerical simulation and non-destructive testing, in order
to minimize the manufacturing costs of semiconductors as well as for quality control.
The identification of the doping profile from indirect measurements is called an inverse
doping profile problem. In laboratory experiments, there are different types of measurement
techniques, such as laser-beam-induced current (LBIC) [11–13], capacitance [4, 5] and
current flow [4, 6] measurements. These measurement techniques are related to different types
of data and lead to various inverse doping problems. This paper is devoted to the analysis of
an identification problem related to a particular model, the so-called unipolar system, derived
from the stationary drift diffusion equations under certain simplifying assumptions on the
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concentration of free carriers of positive charges and on the recombination–generation rate. In
this framework, the parameter function to be identified is the doping profile. It depends on the
space variables only and represents the doping concentration, which gives the performance of
the device. It is produced by diffusion of different materials into the silicon crystal and by
implantation with an ion beam.

We shall focus on reconstruction problems based on data generated by the voltage–
current (V –C) map, i.e., an operator that takes the applied voltage at a specified boundary
part (corresponding to a semiconductor contact) into the outflow current density on a different
boundary part (another contact). The two main contributions of this paper consist of a
theoretical identification result for a discretized version and the analysis of a level set type
method for solving the inverse doping profile problem in the unipolar case.

The starting point of the mathematical model discussed in this paper is the system of
stationary drift diffusion equations (see system (1)). This system of equations, derived more
than 50 year ago [28], is most widely used to describe semiconductor devices and represents
an accurate compromise between efficient numerical solvability of the mathematical model
and realistic description of the underlying physics [22, 23, 26].

This paper is organized as follows. In section 2, we briefly introduce the drift diffusion
equations, the V –C map and the stationary linearized unipolar system. The latter models the
direct problem related to the inverse doping profile problem analysed in this paper.

In section 3, we treat the identification issue for this inverse problem. We do not have,
at present, a theoretical result showing uniqueness in the identification of the doping profile.
However, we do present two lines of reasoning that support the conjecture of an identifiability
result for the doping profile: the first one is based on recent results due to Bukhgeim and
Uhlmann [3] on global uniqueness for the local Dirichlet-to-Neumann map and the second
one concerns a discretized version of the problem that falls within the scope of tomography in
the presence of diffusion and scattering [16, 17].

In section 4, we use a level set type method to reconstruct the doping profile function. In
this approach, a single pair of voltage–current data is used. We compare our results with the
competing Landweber–Kaczmarz method used in [4] to solve a similar problem. An analytical
result concerning stability, convergence and well posedness of this level set method is also
presented. Section 5 is devoted to final comments and conclusions.

2. Inverse doping profile problems

2.1. The semiconductor equations

The drift diffusion system of equations is the most widely used model to describe semiconductor
devices. The mathematical modelling of semiconductor equations has developed significantly,
together with their manufacturing. The basic semiconductor device equations were first
presented, in the level of completeness discussed here, by van Roosbroeck in [28]. Since then,
it has been subject of intensive mathematical and numerical investigation. Recent detailed
expositions of the subject of modelling, analysis and simulation of semiconductor equations
can be found in [22, 23, 26] to cite a few.

For the sake of simplicity, we formulate the drift diffusion equations in terms of the
slotboom variables (u, v). Using an adequate change of variables, motivated by the Einstein
relations, the functions u and v are obtained from the electron density function and the hole
density function, respectively. The details concerning the derivation of the model below can
be found in [4, 5].
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The stationary drift diffusion equations consist of the Poisson equation (1a) for the
(rescaled) electrostatic potential V and the continuity equations (1b) and (1c).

λ2�V = δ2(eV u − e−V v) − C in �, (1a)

divJn = δ4Q(V, u, v, x)(uv − 1) in �, (1b)

divJp = −δ4Q(V, u, v, x)(uv − 1) in �, (1c)

V = VD := U + Vbi on ∂�D, (1d)

u = uD := e−U on ∂�D, (1e)

v = vD := eU on ∂�D, (1f )

∇V · ν = Jn · ν = Jp · ν = 0 on ∂�N, (1g)

where the densities of the electron and hole currents Jn and Jp satisfy the current relations:

Jn = µnqni eV ∇u and Jp = −µpqni e−V ∇v.

Here the positive constants q and ni denote the elementary charge and the intrinsic charge
density, respectively. Moreover, µn and µp represent the (rescaled) mobilities of electrons and
holes, respectively.

The domain � ⊂ R
d (d = 2, 3) represents the semiconductor device. Two dimensionless

positive parameters occur, namely λ and δ, both small in many practical applications.
The function Q is defined implicitly by the recombination–generation rate function. As
far as boundary conditions are concerned, the function U is the applied potential and
Vbi(x) := UT ln(nD(x)/ni), where UT is the thermal voltage.

The function C = C(x) denotes the doping concentration, which is produced by diffusion
of different materials into the silicon crystal and by implantation with an ion beam. In many
technological applications, the doping profile C is the parameter that has to be identified.
Because of inaccuracies in the manufacturing process, semiconductor devices should pass
through some testing to ensure high quality. The inverse problem we are concerned with is
related to a non-destructive identification procedure, based on experiments modelled by the
voltage-to-current operator.

In the following, we briefly discuss the boundary conditions (1d)–(1g). The boundary
of � is assumed to be divided into two nonempty parts: ∂� = ∂�N ∪ ∂�D. The segments
of ∂�D correspond to the semiconductor contacts, where Dirichlet boundary conditions are
prescribed. Differences in U between different parts of ∂�D correspond to the applied bias
between these two contacts. The Neumann part of the boundary ∂�N = ∂� − ∂�D models
insulating or artificial surfaces. Therefore, a zero current flow and a zero electric field in the
normal direction are prescribed.

Existence (in the weak sense) and some uniqueness results for system (1) can be found
in [22, 23]. Under suitable regularity assumptions on the boundary conditions uD, vD, U and
on the doping profile C, one can prove that system (1) admits a weak solution (V , u, v) in
(H 1(�)∩L∞(�))3. See [23, theorem 3.3.16] and [5, theorem 4.2]. Stronger existence results
for (H 2(�) ∩ L∞(�))3 can be found in [22].

2.2. The inverse problem

We start the discussion by introducing the voltage–current (V –C) map:

�C : H 3/2(∂�D) → L2(�1)

U �→ J · ν|�1 = (Jn + Jp) · ν|�1 ,
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∂ΩN ∂ΩN

∂ΩN Γ1 ⊂ ∂ΩD

Γ0 ⊂ ∂ΩD

N-region (C > 0)

P-region (C < 0)

Figure 1. The domain � ⊂ R
2 represents a P–N diode. The P-region corresponds to the subregion

of �, where C < 0. In the N-region, C > 0 holds. The curve between these regions is called the
P–N junction.

where �1 ⊂ ∂�D corresponds to the part of the boundary (a contact) where measurements
are taken. Note that the map �C takes the applied voltage U into the corresponding current
density. In the inverse problem considered in this paper, the linearized V –C map at U = 0
plays a key role, as we shall see later in this section.

Since the potential can be shifted by a constant, we shall assume without loss of generality
that U(x)|�1 = 0. In practical applications, the applied potential U ∈ H 3/2(∂�D) is assumed
to be piecewise constant in the contacts. To illustrate, a very simple semiconductor device is
shown in figure 1.

In the next lemma, we briefly review some properties of the nonlinear operator �C . A
complete proof can be found in [5].

Lemma 2.1. The current �C(U) ∈ L2(�1) is uniquely defined for each voltage U ∈
H 3/2(∂�D) in the neighbourhood of U = 0, i.e., the operator �C is well defined in the
neighbourhood of U = 0. Moreover, �C is continuous and continuously Fréchet differentiable
in the neighbourhood of U = 0.

If U = 0, the solution of (1) is given by (V , u, v) = (V 0, 1, 1), where V 0 is a solution of
the Poisson equation at equilibrium

λ2�V 0 = δ2
(
eV 0 − e−V 0) − C in �,

V 0 = Vbi on ∂�D,

∇V 0 · ν = 0 on ∂�N.

(2)

From now on, the following simplifying assumptions are made.

(A1) The concentration of holes satisfies v = 0.
(A2) No recombination–generation rate is present, i.e., Q = 0.
(A3) The electron mobility is constant (µn = 1) and q = 1.

Under these assumptions, we conclude that the Gateaux derivative of �C at U = 0 in the
direction h ∈ H 3/2(∂�D) is given by

�′
C(0)h = eV 0

ûν |�1 ,

where û and V 0 solve
div

(
eV 0∇û

) = 0 in �,

û = h on ∂�D,

Jn · ν = 0 on ∂�N,


λ2�V 0 = eV 0 − C in �,

V 0 = Vbi on ∂�D,

∇V 0 · ν = 0 on ∂�N.

(3)
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The decoupled system (3) is called the stationary linearized unipolar case (close to
equilibrium). The inverse problem of identifying the doping profile in system (3) corresponds
to the identification of C(x) from the parameter-to-output map

F : D(F) ⊂ L2(�) → L(H 3/2(∂�D);H 1/2(�1))

C �→ �′
C(0).

Since µn = 1 and V = Vbi(x) is known at ∂�D, the measured current data Jn · ν = µn eV 0
ûν

at �1 can be directly replaced by the Neumann data ûν . Therefore, the inverse problem can be
divided into two distinct steps.

Identification problem 2.2 (stationary linearized unipolar case).

(1) Define γ := eV 0
and identify γ from the Dirichlet-to-Neumann (DtN) map 
γ : U �→

γ ûν |�1 , where û solves

div(γ∇û) = 0 in �, û = U on ∂�D, ûν = 0 on ∂�N.

(2) Obtain the doping profile C from C(x) = γ (x) − λ2�(ln γ (x)), x ∈ �.

The evaluation of C from γ can be explicitly performed (a direct problem) and is a
standard procedure. The identification issue in problem 2.2 (1) corresponds to the electrical
impedance tomography in elliptic equations with mixed boundary data. For the case of the
full DtN operator, i.e., �1 = ∂�D = ∂�, this inverse problem has been intensively analysed
in the literature (see e.g. [2, 19] for a survey).

3. Inverse doping profile: identification issue

In this section, we consider some theoretical aspects of the inverse doping profile problem.
Despite the encouraging numerical results of section 4, at present, we do not have a
theoretical result showing uniqueness of the doping profile from V –C data measured on
distinct subdomains of the boundary. In subsection 3.1, we present the state of the art that
comes closest to the identifiability question related to problem 2.2 (1). This approach is
based on recent results due to Bukhgeim and Uhlmann [3] on global uniqueness for the local
Dirichlet-to-Neumann map. In the last subsection, we present a reasoning that supports the
conjecture of an identifiability result for the doping profile. It concerns a discretized version of
the problem that falls within the scope of identifying the potential of a discretized Schrödinger
equation using external measurements. We treat this problem using techniques from the
so-called isotropic case of diffuse tomography [16, 17].

3.1. Global uniqueness approach

In the following, we consider � to be two dimensional, unless stated otherwise. Therefore,
each current measurement is given by a function of one space variable defined on �1 ⊂ ∂�.
Obviously, a single measurement is not sufficient to identify the doping profile C : � ⊂ R

2 →
R. However, adapting some results from [24], related to electrical impedance tomography,
we argue in the full data case that the knowledge of the operator F in subsection 2.2 is
enough to determine C uniquely.

We reason as follows: let V 0 be the solution of the Poisson equation at equilibrium in (3).
Given an input voltage U ∈ H 3/2(∂�D), the output current can be identified (after rescaling)
with the Neumann data of u at �1, i.e., uν |�1 = 
C(U), where u is the solution of the elliptic
equation in (3). From standard results in elliptic theory, one concludes that for a domain �
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with Lipschitz boundary, there is a one-to-one relation between the solutions V 0 ∈ H 2(�) of
the Poisson equation and the potentials C ∈ L2(�). Therefore, it is enough to consider the
problem of identifying the potential V 0 in (3) or, equivalently, the conductivity γ = eV 0

as
stated in problem 2.2.

The problem of identifying conductivities from the DtN map was analysed by Nachman
in [24]. Adapting his result to identification problem 2.2 one can prove that for a bounded
� ⊂ R

2 with Lipschitz boundary, �1 = ∂�D = ∂� and C1, C2, two doping profiles such that
the corresponding conductivities satisfy

γ1, γ2 ∈ D(F) := {γ ∈ W 2,p(�), p > 1; γ+ � γ (x) � γ− > 0 a.e. in �},
the equality 
γ1 = 
γ2 implies C1 = C2.

This result of Nachman has been recently improved by Astala and Päivärinta [1],
who proved that any L∞ conductivity in two dimensions can be determined uniquely from
the DtN map.

We address yet another identification result (for the inverse doping profile problem) based
on the global uniqueness approach. Concerning uniqueness results for the DtN operator with
partial boundary data, this result corresponds to the state of the art. Let � ⊂ R

n, with n � 3,
be a bounded domain with C2 boundary. Further, let ξ ∈ R

n with ‖ξ‖ = 1 and ε > 0 be
given. We define

�0 := {x ∈ ∂�; 〈ν(x), ξ 〉 > −ε}, �1 := {x ∈ ∂�; 〈ν(x), ξ 〉 < ε},
where ν(x) is the unit normal vector at x ∈ ∂� (note that �0 ∩ �1 
= ∅). Moreover, let
C1, C2 be doping profiles such that the corresponding conductivities satisfy γ1, γ2 ∈ C2(�)

and γj (x) � γ− > 0 a.e. in �, j = 1, 2. Then, the equality 
γ1 = 
γ2 implies C1 = C2

(see [3]).
Note that this result applies to three-dimensional domains � with regular boundary and,

moreover, ∂� = ∂�D = �0 ∪ �1, �0 ∩ �1 
= ∅, i.e., the contacts where the voltage is
prescribed (�0) and where the current is measured (�1) overlap.

3.2. The discrete Schrödinger equation with partial DtN data

In this section, we consider the characterization problem for the Schrödinger operator
potential V given partial information on the Dirichlet-to-Neumann map 
V associated with
the problem {−�w + V w = 0 in �,

w|∂� = φ.
(4)

It is well known that the change of variables

w = γ 1/2u and V = γ −1/2�γ 1/2 (5)

establishes a one-to-one correspondence between the solutions of (4) and those of{
div(γ∇u) = 0 in �,

u|∂� = γ −1/2|∂�φ.
(6)

The Dirichlet-to-Neumann map for (4) is related to that of (6) by


V (φ) = γ −1/2
γ (γ −1/2φ) +
1

2γ

∂γ

∂n
φ. (7)

It is clear that the knowledge of the DtN map 
V for equation (4) is equivalent to the
knowledge of its counterpart 
γ for (6). Furthermore, any restriction of 
V to φ supported
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Figure 2. Picture (a) shows the discretized region � under consideration and its boundary ∂�.
It also shows the origin (0, 0) on the bottom-right corner. In picture (b), the boundary parts
∂�N, ∂�D = �0 ∪ �1 are shown. Picture (c) zooms in the squared region marked in (b). It shows
the boundary ∂�N and its adjacent interior part ∂�i

N.

on a subset �0 of the boundary corresponds to the restriction of 
γ supported on this set �0.
If we consider current measurements taken in a subset �1 contained in ∂�, then at the level of

V this means that we will only consider the information from 
V on �1. Let us call such a
map 
V |�0,�1 .

To the best of our knowledge, there is no characterization result of V based on 
V |(�0,�1)

when �0 ∩ �1 = ∅. We explore here the discrete analogue of the Dirichlet-to-Neumann
characterization problem with partial data for the Schrödinger operator. In this context, we

consider a discretization Vij = V (xi, yj ) of V : � → R for (i, j) ∈ Ω def= {(i, j)|1 � i, j �
N, i, j ∈ Z}. For a mesh size �x = �y = ε, the first equation in (4) is replaced by

uij = 1

4 + ε2Vij

(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) for (i, j) ∈ Ω. (8)

We define wij = 4/(4 + ε2Vij ) and consider the set of equations described by

uij − wij

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) = 0, where (i, j) ∈ Ω. (9)

We remark that except for minor modifications, in what follows, we could use 1 � i � N1

and 1 � j � N2 (see figure 2).
The system of equations defined by (9) must be supplemented with suitable boundary

conditions. In [16, 17], Dirichlet-type boundary conditions were imposed for ui,j whenever
(i, j) ∈ ∂Ω, where ∂Ω is the set of points (i, j) with 0 � i, j � N + 1 where either
i ∈ {0, N + 1} or j ∈ {0, N + 1}, but not both. See figure 2. More precisely, in [16, 17] one
imposes the condition

ud = δd, ∀d = (i0, j0) ∈ ∂Ω, (10)

where δd(l)
def= 1 if d = l and 0 otherwise.
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If 0 � wij � 1 for all (i, j) ∈ Ω, then problem (9) with boundary conditions (10) has
a natural probabilistic interpretation. Namely, uij represents the probability that a particle
undergoing a random walk with absorption will reach the site d = (i0, j0) given that at each
site α = (α1, α2) it has a survival probability wα for α ∈ Ω. See [16]. We remark that a
sufficient condition for wij ∈ (0, 1) is that Vij > 0. In what follows, we will rely heavily on
such an interpretation and the notation presented in [16, 17]. We shall extend some of the
results therein to allow more general boundary conditions in the identification of the doping
profile. We refer the reader to figure 2 where the different boundary conditions are depicted.
In detail, the boundary region ∂Ω will be decomposed into two parts, ∂ΩN and ∂ΩD. Such
regions have corresponding internal adjacent regions ∂Ωi

N and ∂Ωi
D. On ∂ΩN homogeneous

Neumann boundary conditions will be imposed. In this discretized setting, this means that the
values of uα on pixels α ∈ ∂ΩN and on the adjacent one α′ ∈ ∂Ωi

N coincide. See figure 2(c).
The region ∂ΩD will be further subdivided into two regions �0 and �1. On �0 we will impose
nonhomogeneous Dirichlet data whereas on �1 we impose homogeneous Dirichlet data. Here
again, for l = 0 or 1 we denote by �i

l the interior region adjacent to �l . The measurements
correspond to normal derivatives on �1. In other words, uα − uα′ for α ∈ �1 and α′ ∈ �i

1 with
α′ adjacent to α. Since uα = 0 for α ∈ �1 this corresponds to evaluating uα′ for α′ ∈ �i

1.
The first natural question to be addressed is the well posedness of the direct problem. It

is answered by the following.

Proposition 3.1. Given a distribution of values w = (wi,j )1�i,j�N ∈ (0, 1)N×N, the system
of equations in (9) endowed with the boundary conditions

uα = uα′ for α ∈ ∂ΩN adjacent to α′ ∈ ∂Ωi
N, (11)

uβ = δd for β ∈ �0, (12)

uγ = 0 elsewhere on ∂Ω (13)

has a unique solution for each d ∈ �0. Furthermore, this solution depends rationally on the
components of the array w.

Proof. Let us note that we have a (sparse) system of N2 equations in the N2 unknowns ((uij )).
The equations for the sites (i, j) with 2 � i, j � N − 1 are precisely those given by (9),
whereas for the sites α′ = (i, j) ∈ ∂Ωi

N or ∂Ωi
D require us to use the boundary conditions. The

variables uα on the site α adjacent to α′ ∈ ∂Ωi
N coincide with uα′ . Thus, the corresponding

equation has to be modified accordingly. On the other hand, if α′ ∈ ∂Ωi
D then the value of

uα must be δd(α). On the sites adjacent to the Dirichlet boundary, or on the interior sites,
the diagonal element of the matrix representing system (9) is 1. On the sites adjacent to the
Neumann boundary, the value of wij must be changed to wij/(1 − (wij /4)). In either case,
after incorporating the boundary conditions (of mixed Neumann and Dirichlet type) the matrix
representing the problem is strictly diagonally dominant. Thus, the system of equations is
uniquely solvable, and the solution depends rationally on the coefficients wij . �

Remark 3.2. The assumption wij � 1 for all i and j is crucial for the above argument. This
is ensured, for example, if Vij > 0 for all i and j , which in turn can be guaranteed if V (x) is
positive.

Remark 3.3. The vanishing Neumann boundary conditions can be recast so as to preserve the
probabilistic interpretation of the problem as follows. Suppose that (i, j) ∈ ∂Ωi

N is adjacent
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to (i − 1, j) ∈ ∂ΩN (similar considerations hold at the other points (i, j) ∈ ∂Ωi
N). Then,

equation (9) for this site becomes

uij − wij

4 − wij

(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) = 0. (14)

Remark 3.4. Since the variable ui−1,j and the coefficient wi,j do not appear in any other
equation in the system, we could reinterpret equation (14) as uij = (

weff
ij

/
3
)
(ui+1,j + ui−1,j +

ui,j+1 + ui,j−1), with weff
ij = 3wij/(4 − wij ). Note that weff

ij ∈ (0, 1) if wij ∈ (0, 1). Thus,
for all practical purposes, the equations associated with the Neumann boundary sites could be
replaced by equivalent equations with vanishing Dirichlet boundary conditions.

Remark 3.5. In [16], a crucial role is played by the probabilistic interpretation of the system
of equations (9) in the solution of the inverse problem of the so-called isotropic diffuse
tomography problem. See also [27]. In particular, the following Feynman–Kac-type formula
holds for a fixed d ∈ �0:

umn =
∑

α∈Pd
(m,n)

∏
s∈α

tαs+1
αs

,

where Pd
(m,n) denotes the set of all paths connecting the site (m, n) to the boundary site d, and

a path α consists of an ordered set of successively adjacent sites starting at a neighbour to
(m, n) and ending at d, and tαs+1

αs
denotes the transition probability from the site αs to the site

αs+1. Thus, tα1
α0

= wmn/4, . . . .

We now turn our attention to the inverse problem. We define the restricted (discrete) DtN
map 
w

�0,�1
which assigns Dirichlet data supported on �0 to Neumann measurements on �1.

Our next goal is to prove an identification result that is similar in spirit to the main result of
[16]. It implies that in the discrete context, and under suitable hypothesis on the potential, one
can determine such a potential in the interior of a region defined by the current measurement
boundary using voltage-to-current measurements. The larger the boundary �1 in figure 2(b),
the larger the region where the potential can be uniquely determined from voltage-to-current
measurements (provided the total length of �1 does not exceed the length of the side of the
device). More precisely, we have the following.

Theorem 3.6. For a dense open set of values w ∈ (0, 1)N×N , the map 
w
�0,�1

uniquely
determines the values of wij for (i, j) ∈ Ω satisfying 2 � i +j � p′ +1, 2p′ � N +1, provided
the support of the Dirichlet data contains the points (N + 1, N), . . . , (N + 1, N − p′ + 1) and
p′ is smaller than the size of one of the sides of �1.

Proof. The argument follows closely that of [16] by proceeding along the diagonals. The pth
diagonal is defined by the sites (i, j) ∈ Ω such that i + j = p + 1. For instance, the very first
diagonal, associated with p = 1, leads to the equation

V̂11z
d
11 − (

zd
12 + zd

10 + zd
01 + zd

21

) = 0, (15)

where
(
zd
ij

)
denotes the solution of system (9) with boundary conditions (11)–(13), and

Dirichlet data specified as δd for d ∈ �0. Furthermore, we shall use the notation V̂ij
def= 4/wij .

In this simple case, we see that in equation (15) zd
10 = zd

01 = 0 and zd
11, z

d
12, z

d
21 are all

boundary measurements, and thus we can recover V̂11. The next diagonal (p = 2) yields for
each detector d:

V̂12z
d
12 − (

zd
13 + zd

11 + zd
02 + zd

22

) = 0, V̂21z
d
21 − (

zd
22 + zd

20 + zd
11 + zd

21

) = 0.
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Here the unknowns are V̂12, V̂21 and zd
22. The remaining variables, zd

12, z
d
21, z

d
13, z

d
11, z

d
20, z

d
02 are

all boundary values or known from the measurements. Upon choosing two distinct detectors,
we are led to the system


V̂12z

d1
12 − (

z
d1
13 + z

d1
11 + z

d1
02 + z

d1
22

) = 0,

V̂21z
d1
21 − (

z
d1
22 + z

d1
20 + z

d1
11 + z

d1
21

) = 0,

V̂12z
d2
12 − (

z
d2
13 + z

d2
11 + z

d2
02 + z

d2
22

) = 0,

V̂21z
d2
21 − (

z
d2
22 + z

d2
20 + z

d2
11 + z

d2
21

) = 0,

(16)

where the unknown is
(
V̂12, V̂21, z

d1
22, z

d2
22

)
. The system has a unique solution iff its determinant,

which is given by z
d1
12z

d2
21 − z

d1
21z

d2
12, does not vanish. In this case, as a by-product of the solution

we also determine z
d1
22 and z

d2
22. The latter will be used in the next step, together with a possible

collection of other values of zd
22 for d ∈ {d1, d2, . . . , dmax}. In general, for p � 1, the equations

associated with i + j = p + 1 and detector d take the form

V̂1,pzd
1,p − (

zd
1,p+1 + zd

1,p−1 + zd
0,p + zd

2,p

) = 0,

V̂2,p−1z
d
2,p−1 − (

zd
2,p + zd

2,p−2 + zd
1,p−1 + zd

3,p−1

) = 0,

... = ...

V̂p−1,2z
d
p−1,2 − (

zd
p−1,3 + zd

p−1,1 + zd
p−2,2 + zd

p,2

) = 0,

V̂p,1z
d
p,1 − (

zd
p,2 + zd

p,0 + zd
p−1,1 + zd

p+1,1

) = 0.

(17)

Note that if we assume that the values of zd
i ′,j ′ have all been determined (or measured) for

i ′ + j ′ � p + 1 then the unknowns become

V̂1,p, V̂2,p−1, . . . , V̂p,1 and zd
1,p+1, z

d
2,p, . . . , zd

p+1,1.

We now order the detectors d1, d2, . . . , dm, successively from left to right, in the region �0

of figure 2(b). By detectors we mean positions where the Dirichlet data are taken to be
δd(i, j).4 The given data consist of the currents in the region adjacent to �1. Since on �1

we have u = 0, knowledge of the currents tantamounts to knowledge of the values of ud
α for

α ∈ {0} × {1, . . . , p′} or α ∈ {1, . . . , p′} × {0}.
We now introduce the following inductive hypothesis.

H1. For a generic (open and dense) set A of the space of unknowns ((V̂ij )) ∈ (1,∞)N×N ,
one can solve the system of equations (17) for the variables zd

ij with i + j � p + 2, d ∈
{d1, d2, . . . , dp} and V̂ij for i + j � p + 1 in terms of the given data.

In the present context, by data we mean the values of zd
ij for which any of the indices

i or j belongs to the set {0, 1} and d ∈ {d1, d2, . . . , dp}. The validity of the induction
hypothesis for p = 1 derives from the remark following equation (15). The inductive step
relies on the fact that in order to go from p to p + 1 we have to solve a system of equations
based on (17) for detectors d1, . . . , dp. This, in turn, is equivalent to showing that the
determinant

4 We recall that in the region �0 we control the voltages and by placing such detectors in this region we are defining
a basis for the space of input voltages.
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α

α  =(m,n)
0

d

d

α 
d

(i,j)

(a) (b)

Figure 3. Picture (a) shows an example of a path α connecting an internal point to a boundary
point d. In picture (b), an example of a few minimal length paths connecting an internal point to
the point αd adjacent to a detector d is shown.

Dp
def=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z
d1
1,p z

d2
1,p z

d3
1,p · · · z

dp−1

1,p z
dp

1,p

z
d1
2,p−1 z

d2
2,p−1 z

d3
2,p−1 · · · z

dp−1

2,p−1 zdp

...
...

...
...

...
...

z
d1
p−1,2 z

d2
p−1,2 z

d3
p−1,2 · · · z

dp−1

p−1,2 z
dp

p−1,2

z
d1
p,1 z

d2
p,1 z

d3
p,1 · · · z

dp−1

p,1 z
dp

p,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(18)

does not vanish in the set A. Although the technique we employ here is the very same as
used in [16], the crucial difference is that in our case the determinant Dp consists of detectors
on the opposite side from where the measurements are being taken. More precisely, we
show that the analytic function Dp(w) is not identically zero in a neighbourhood of w = 0.
Another difference from the situation in [16] is the fact that we have Neumann-type boundary
conditions in part of the boundary. This, however, causes no further difficulty in the light of
remark 3.3.

To complete the proof, it thus remain to show that if we take all values of wij = ρ and
let ρ → 0, then under the assumption that p � p′,Dp = A(p)ρL(p) + O(ρL(p) + 1) with
A(p) 
= 0 and L(p) depending only on geometric parameters associated with the size of the
grid and the location of the detectors and the diagonal p. To prove this claim, we start by noting
that because of remark 3.5, when ρ → 0, we have zd

ij (ρ) = A
d,p

i,j ρ�(p,i,j)+1 + O(ρ�(p,i,j)+2),
where �(p, i, j) is the length of the smallest path connecting the site (i, j) to the point αd in
�0 adjacent to the detector d. See figure 3(b). Furthermore, A

d,p

i,j denotes the number of paths
in the region Ω of minimal length �(p, i, j) connecting (i, j) to αd . If we assume that the
coordinates of αd = (i ′, j ′), then it is easy to check that �(p, i, j) = |i ′ − i| + |j ′ − j | and that
the number of such paths is given by

A
d,p

i,j =
(

|i ′ − i| + |j ′ − j |
|i ′ − i|

)
=

(
�(p, i, j)

|i ′ − i|

)
=

(
�(p, i, j)

|j ′ − j |

)
. (19)

A straightforward combinatorial argument gives that A(p) 
= 0 provided 2p′ � N + 1. �

The results presented in this subsection, although following the main ideas in [16], lead
to a much more difficult problem than that presented therein. In particular, it is not clear how
to go beyond p′. In fact, the hypothesis that 2p′ � N + 1 is crucial in the above argument,
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and although it seems it could be relaxed we do not have a proof of this fact at the present5.
The treatment of the Neumann boundary conditions and its probabilistic interpretation goes
beyond the scope of [16] albeit it shows the power of ideas presented.

4. Numerical approach

In this section, we consider a numerical approach based on level set methods for the inverse
doping profile problem in the stationary linearized unipolar case close to equilibrium (see
identification problem 2.2). We compare our results with those obtained in [4], where a
Landweber–Kaczmarz iterative method was used to reconstruct the doping profile function.

4.1. Framework

As already mentioned in section 2, the main task in this inverse problem consists in the
identification of the coefficient γ in the elliptic PDE

div(γ∇u) = 0 in �, u = U on ∂�D, uν = 0 on ∂�N. (20)

Thus, we can reduce the inverse doping profile problem to the problem of identifying a
piecewise constant function γ (x) in (20) from measurements of the DtN map


γ : H 3/2(∂�D) → H 1/2(�1)

U �→ γ uν |�1

(21)

(for simplicity we assume γ (x) ∈ {1, 2} a.e. in �).
Note that, due to the nature of the boundary conditions related to practical experiments,

we have to restrict the domain of definition of the DtN operator to the linear subspace
D(
γ ) := {U ∈ H 3/2(∂�D);U |�1 = 0}. Furthermore, the measurements (Neumann data)
are only available at �1. This is the essential difference between the parameter identification
problem in (20) and the classical inverse problem in electrical impedance tomography, namely
the fact that both Dirichlet and Neumann data are known only at specific parts of the boundary.

For this particular type of DtN operators, there are so far no analytical results concerning
identifiability and, to our knowledge, the few numerical results in the literature are those
discussed in [4–6, 13].

In this section, we shall work within the following framework:

• parameter space: X := L2(�);
• input (fixed): Uj ∈ H 3/2(∂�D), with Uj |�1 = 0, 1 � j � N ;
• output (data): Y = {
γ (Uj )}Nj=1 ∈ [L2(�1)]N =: Y;
• parameter-to-output map: F : D(F) ⊂ X → Y

γ (x) �→ {
γ (Uj )}Nj=1,

where the domain of definition of the operator F is

D(F) := {γ ∈ L2(�); γ+ � γ (x) � γ− > 0, a.e. in �}
(here γ− and γ+ are appropriate constants). We shall denote noisy data by Y δ and assume that
the data error is bounded by ‖Y − Y δ‖ � δ. Thus, we are able to represent the inverse doping
problem in the general form

F(γ ) = Y δ. (22)

5 We thank C G Tamm (IMPA) for enlightening discussions on this combinatorial exercise.
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For the concrete numerical test performed in this section as well as in [4], � ⊂ R
2 is the

unit square and the boundary parts are

�1 := {(x, 1); x ∈ (0, 1)}, �0 := {(x, 0); x ∈ (0, 1)},
∂�D := �0 ∪ �1, ∂�N := {(0, y); y ∈ (0, 1)} ∪ {(1, y); y ∈ (0, 1)}.
The fixed inputs Uj vanish at �1 and are chosen to be piecewise constant functions on �0.

Uj(x) :=
{

1, |x − xj | � δx,

0, else,

where the points (xj , 1), j = 1, . . . , N , are uniformly distributed along the segment �0.
The next lemma describes some crucial properties of the operator F, that will be necessary

for the analysis of the iterative methods discussed in this paper. Here, only a sketch of the
proof of lemma 4.1 is given; for details see [5].

Lemma 4.1. Let the voltages {Uj }Nj=1 be chosen in the neighbourhood of U = 0. The
parameter-to-output map F defined above is well defined and Fréchet differentiable on D(F).

Proof. The first statement follows from the well definedness of the V –C map, cf lemma
2.1. The Fréchet differentiability of F follows from the differentiability of the V –C map (see
lemma 2.1) together with the differentiability of the map that takes the doping profile C onto
the solution (V , u, v) of (1). �

4.2. A competing approach: Landweber–Kaczmarz method

In [4], a Landweber–Kaczmarz method was used to reconstruct the doping profile function.
This corresponds to an iterative method of steepest descent type for solving the least-square
formulation of the inverse problem.

A simple and robust iterative method to solve the inverse problem (22) is the Landweber
iteration [7, 8, 10, 18]. This iteration is known to generate a regularization method for
the inverse problem, the stopping index playing the role of the regularization parameter (for
regularization theory see e.g. [8–10, 29]).

The Landweber–Kaczmarz method [20] results from the coupling of the strategies of both
the Landweber and the Kaczmarz iterative method. The motivation for this choice of strategy
lies in the fact that the data in (22) consist of a vector of measurements {
γ (Uj )}Nj=1 and the
principal characteristic of the Kaczmarz method is the minimization, at each iteration step, of a
least-square functional that takes into account only one component of this measurement vector.
It is worth mentioning that this method has already been successfully applied to electrical
impedance tomography by Nachman in [25].

To formulate the method, we first need to define the components of the parameter-to-
output map: F = {Fj }Nj=1, where Fj : L2(�) ⊃ D(F) � γ �→ 
γ (Uj ) ∈ L2(�1). Now,
setting Y δ

j := Fj (γ
δ), 1 � j � N , the Landweber–Kaczmarz iteration can be written in the

form

γ δ
k+1 = γ δ

k − F ′
k

(
γ δ

k

)∗(Fk

(
γ δ

k

) − Y δ
k

)
, (23)

for k = 1, 2, . . . , where we adopted the notation Fk := Fj , Y
δ
k := Y δ

j , whenever k = iN + j ,
and i = 0, 1, . . . and j = 1, . . . , N .

Note that each step of the Landweber–Kaczmarz method consists of one Landweber
iterative step with respect to the j th component of the residual in (22). These Landweber steps
are performed in a cyclic way, using the components of the residual Fj (γ ) − Y δ

j , 1 � j � N ,
one at a time.
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4.3. A level set approach

In this paper, we propose a level set type method to approximate the solution of (20). In
the following, the function spaces X ,Y as well as the operators F,
γ and also the sets �,
∂�D, ∂�N, �0, �1 are the same as above. We assume, however, that only one measurement
is given, i.e., only one pair of voltage–current data is available for the reconstruction. This
assumption corresponds to the choice N = 1 in the definition of the space Y .

Our numerical approach is based on the level set method introduced in [14, 21]. According
to this strategy, one represents the unknown P–N junction by the zero level set of an H 1-function
φ : � → R, in such a way that φ(x) > 0 if γ (x) = 2 and φ(x) < 0 if γ (x) = 1. Starting
from some initial guess φ0 ∈ H 1(�), one solves the Hamilton–Jacobi equation

∂φ

∂t
+ V ∇φ = 0, (24)

where V = −v∇φ/|∇φ|2 and the velocity v solves
(� − I )v = δ(φ(t))

|∇φ(t)|
[
F ′(χ(t))∗(F (χ(t)) − Y δ) − β∇ ·

( ∇P(φ)

|∇P(φ)|
)]

in �,

∂v

∂ν
= 0 on ∂�.

(25)

Here, α > 0 is a regularization parameter and χ = χ(x, t) is the projection of the level set
function φ(x, t) defined by

χ(x, t) = P(φ(x, t)) :=
{

2, if φ(x, t) > 0,

1, if φ(x, t) < 0.

In [14, 21], this level set method was used to reconstruct inclusions D ⊂⊂ �. Note that,
in our case, the set D corresponds to the P-region (see figure 1) and the condition D ⊂ �

is not satisfied. This fact, however, does not affect the derivation of the Hamilton–Jacobi
equation (24). Moreover, it does not affect the derivation of the boundary conditions for the
elliptic problem (25) either.

The family χ(·, t) approximates the doping profile γ (·) as t → ∞. This follows from
the fact that the solution φ(·, t) of (24) converges to the minimum of the Tikhonov functional

Gα(φ) := ‖F(P (φ)) − Y δ‖2
Y + α

(
2β|P(φ)|BV + ‖φ − φ0‖2

H 1(�)

)
(26)

as t → ∞, for each regularization parameter α > 0 (β > 0 is fixed). See [14, definition 2.2]
for the precise definition of a minimizer of Gα(φ).

The next lemma corresponds to specific results selected from [14]. It allows a better
understanding of the least-square problem behind the level set formulation and also analytically
substantiates the numerical results presented in the following.

Lemma 4.2 (stability, convergence and well posedness).

(a) Let Y δ = Y (noiseless case) and let φα be a minimizer of Gα . Then, for every sequence
{αk}k∈N converging to zero, there exists a subsequence {αk(l)}l∈N, such that

{
φαk(l)

}
l∈N

is
strongly convergent. Moreover, the limit is a minimal norm solution of (22).

(b) Let ‖Y δ − Y‖Y � δ. If α = α(δ) satisfies limδ→0 α(δ) = 0 and limδ→0
δ2

α(δ)
= 0, then,

for a sequence {δk}k∈N converging to 0, the sequence φα(δk) converges to a minimal norm
solution of (22).

(c) For any given φ0 ∈ H 1(�), the functional Gα attains a minimizer.
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(a) (b) (c)

Figure 4. Pictures (a) and (b) show the doping profiles to be reconstructed in the two different
experiments for the level set method. In picture (c), the problem data are shown: the source
U(x) appears as the Dirichlet boundary condition at y = 1 (�0 is the upper-right edge). The
corresponding current is measured at the contact �1 (lower-left edge), where U(x) is assumed to
vanish.

Figure 5. First numerical experiment (linear P–N junction): evolution of the iteration error for the
level set method and exact data.

Remark 4.3. (level set algorithm). For the reader’s convenience, we briefly describe the level
set algorithm related to (24), (25). Here, Pε is the approximation defined in [14, section 2] for
the operator P. The adjoint operator (F ′)∗ as well as its evaluation on a given vector is derived
in [4, section 4].

1. Evaluate the residual rk := F(Pε(φk)) − Y δ .
2. Evaluate wk := F ′(Pε(φk))

∗(rk).
3. Evaluate vk ∈ H 1(�), satisfying

(� − I )vk = P ′
ε(φk)

(
wk − βP ′

ε(φk)∇ ·
( ∇Pε(φk)

|∇Pε(φk)|
))

in �,

∂vk/∂ν = 0 on ∂�.

4. Update the level set function φk+1 = φk + vk .

We conclude this section presenting two different numerical experiments concerning the
identification problem in (20).
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Figure 6. First numerical experiment (linear P–N junction): evolution of the iteration error for the
level set method and data with 10% random noise.

Figure 7. Second numerical experiment (analytical P–N junction): evolution of the iteration error
for the level set method and exact data.

• The first one, for comparison purposes, corresponds to the identification problem
considered in [4] (linear P–N junction; see figure 4(a)). Initially, we implemented the
level set method for the case of exact data (see figure 5). Note that the first picture (top
left) corresponds to the initial guess. In a second run, we added 10% random noise to the
exact data and repeated the experiment (see figure 6).

• In the second experiment, we try to identify a P–N junction parameterized by an analytical
function (see figure 4(b)). Exact data are used for the reconstruction (see figure 7).

The voltage–current data pair in the first experiment corresponds to the boundary values
of the function shown in figure 4(c). This picture shows the solution of (20) for a typical
source U(x).

5. Final comments and conclusions

5.1. A priori knowledge of the doping profile

Due to the choice of �, ∂�D and ∂�N meet at angles of π/2. Thus, the solutions of the mixed
boundary value problems in the Landweber–Kaczmarz iteration are not in H 2(�) (see [15]
for details). Due to this lack of regularity, the implementation turns out to be very unstable.
In order to bypass this instability, in [4] the authors made the additional assumption that the
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doping profile is known in a thin strip close to ∂�D. Therefore, only the values of γ (x) at a
subdomain �̃ ⊂⊂ � had to be reconstructed.

Differently from the Landweber–Kaczmarz approach in [4], the level set method does
not require the assumption that the doping profile is known in some strip close to ∂�D. For
this level set approach, only the knowledge of the doping profile at �1 is required in order to
obtain a stable performance of the method. This weaker assumption agrees with the physical
experiment, since we need to know γ at �1 in order to implement the DtN map in (21).

5.2. Amount of data and quality of the reconstruction

We now comment on the amount of information used in the identification. In [4], the
Landweber–Kaczmarz method was implemented using different amount of data, i.e., a different
number of data voltage–current pairs. In one of the experiments, a single pair of data was used.
In this case, the Landweber–Kaczmarz method reduces to the classical Landweber iteration.

It is worth noting that the amount of available data strongly influences the quality of the
reconstruction in the Landweber–Kaczmarz method. However, observing the results in [4], no
matter how many voltage–current pairs are available, it does not allow a proper determination
of the P–N junction.

What concerns the quality of the reconstruction of the P–N junction, the level set approach
considered in this paper brings much better results. In particular, if one takes into account that
only one pair of voltage–current data is used.

A possible explanation for the different performance of these methods is the fact that the
Landweber–Kaczmarz approach does not take into account the assumption that the coefficient
γ in (20) for such an application is a piecewise constant function. The Landweber–Kaczmarz
method tries to identify a real function defined on �, which is a much more complicated
object than the original unknown curve (the P–N junction). Due to the nature of the level set
approach, it incorporates in a natural way the assumption that γ is piecewise constant in �.

5.3. Numerical effort

Next, we compare the numerical effort required for the implementation of the Landweber–
Kaczmarz and the level set method. If both methods are implemented using a single pair of
voltage–current data, each step of the Landweber–Kaczmarz method requires the solution of
two mixed boundary value problems (BVPs), while each level set step requires the solution
of three BVPs. However, the use of nine pairs of data (as in [4]) requires the solution of
18 BVPs in each cycle of the Landweber–Kaczmarz method. This observation agrees with
our numerical tests, where we observed that a level set step is about ten times faster than a
Landweber–Kaczmarz cycle for nine pairs of voltage–current data.

It is worth noting that not only the numerical effort for each step of the level set method
is smaller than the effort for a Landweber–Kaczmarz cycle, but also the total number of steps
required to obtain a good approximation is smaller than the total number of cycles. In [4], the
iteration was stopped after 5000 cycles (for both exact and noisy data of 10%). This numerical
test corresponds to our first experiment, where we needed 100 steps in the case of exact data
and 400 steps for noisy data.
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