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In this article, we investigate the connection between regularization theory for inverse problems
and dynamic programming theory. This is done by developing two new regularization methods,
based on dynamic programming techniques. The aim of these methods is to obtain stable
approximations to the solution of linear inverse ill-posed problems. We follow two different
approaches and derive a continuous and a discrete regularization method. Regularization
properties for both methods are proved as well as rates of convergence. A numerical bench-
mark problem concerning integral operators with convolution kernels is used to illustrate the
theoretical results.
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AMS Classifications: 65J22; 49N45

1. Introduction

Our main goal is to establish a connection between regularization theory [7,14] for
inverse problems and dynamic programming theory [2–6] for optimal control problems
of linear quadratic type. This is done by developing two new regularization methods,
based on dynamic programming results. The first one is a continuous regularization
method, derived from the Hamilton–Jacobi equation and the Pontryagin maximum
principle. The second is a discrete regularization method, derived from the Bellman
optimality principle.
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In the sequel we describe the inverse problems we are concerned with. Let X, Y be
Hilbert spaces. Consider the problem of finding u2X from the equation

Fu ¼ y, ð1Þ

where y2Y represents the data and F : X ! Y is a linear ill-posed operator. Since the
operator F is ill-posed, the solution u does not depend in a stable way on the right hand
side y and regularization techniques have to be used in order to obtain a stable solution.
Continuous and discrete regularization methods have been quite well studied in the last
two decades and one can find relevant information in [7–10,14,15] and in the references
therein. The aim of these methods is to obtain stable approximations to the solution of
the inverse problem (1).

Next, we give a brief description of the optimal control problems (continuous and
discrete) that will serve as starting point for developing the regularization methods
in this article. These problems are mainly characterized by possessing a linear dynamic
and a quadratic objective function.

Our first (continuous) approach is based on the the following constrained optimiza-
tion problem:

Minimize Jðx,wÞ :¼

Z T

0

hxðtÞ,LxðtÞi þ hwðtÞ,MwðtÞidt

s:t:

x0 ¼ Axþ Bw, t � 0, xð0Þ ¼ x0,

8>>><
>>>:

ð2Þ

where xðtÞ 2R
n is the system trajectory, wðtÞ 2R

m, t � 0 is the control variable, A,
L2R

n, n, B2R
n,m, M2R

n, n are given matrices and x0 2R
n is the initial condition.

The goal of the control problem is to find a pair of functions (x,w), minimizing the
quadratic objective function J and satisfying the constraint imposed by the linear
dynamic system – such pairs are called admissible processes. In this article, we adapt
a solution technique for this problem (dynamic programming) in order to derive
a continuous regularization method for the inverse problem (1).

Our second (discrete) approach, has as starting point the discrete optimal control
problem

Minimize Jðx,wÞ :¼ hxN, SxNi þ
XN�1

k¼0

hxk,Lxki þ hwk,Mwki

s:t:

xkþ1 ¼ Axk þ Bwk, k ¼ 0, . . . ,N� 1, x0 2R
n:

8>>><
>>>:

ð3Þ

The matrices A, B, L, M have the same meaning as in problem (2) and S2R
n, n is

positive definite. Notice that the final time T in (2) is substituted by the number of
discrete steps N2N in (3). Again, using the dynamic programming technique, we
are able to derive a discrete regularization method for the inverse problem (1).
In this discrete framework, the dynamic programming approach consists basically
of the Bellman optimality principle and the dynamic programming equation.

To the best of our knowledge, dynamic programming techniques have only
been applied to solve particular inverse problems so far. In [11] the inverse problem
of identifying the initial condition in a semilinear parabolic equation is considered.

612 S. Kindermann and A. Leitão
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In [12] the same authors consider a parameter identification problem for identification
of systems of distributed parameters. In this article, however, dynamic programming
methods allow us to formulate regularization methods in an abstract functional
analytical framework for general inverse problems.

The article is outlined as follows: In section 2, we derive both regularization methods
(continuous and discrete). In section 3, we analyze regularization properties of the
proposed methods. Rates of convergence are derived under abstract source conditions
and an a priori parameter choice yielding optimal order convergence rates is provided.
Furthermore, for the discrete regularization method, we characterize the filter functions
(for the regularization operator) in terms of Chebyshev polynomials. In section 4,
numerical realizations of our regularization methods are presented. We use our
methods to solve an integral equation of the first kind and compare the obtained
performances with the Landweber iteration and with the CG-method.

2. Derivation of the regularization methods

2.1. A continuous approach

We start this section defining an optimal control problem related with the linear inverse
problem (1). Let u0 2X be any approximation for the minimum norm solution uy 2X
of (1). We aim to find a function u : ½0,T � ! X such that, u(0)¼ u0 and

kFuðT Þ � yk � kFuy � yk: ð4Þ

In the control literature, the function u is called trajectory (or state) and its evolution
is described by a dynamical system. For simplicity, we choose a linear evolution
model, i.e. u0 ¼ AuðtÞ þ BvðtÞ, t� 0, where A,B : X ! X are linear operators and
v : ½0,T� ! X is the control of the system (compare with the classical problem in (2)).
Since our main concern is to satisfy the property described in (4), it is enough for
our purpose to consider a simpler dynamic, which does not depend on the state u,
but only on the control v. This justifies the choice of the dynamic: u0 ¼ v, t � 0.
In this case, the control v corresponds to a velocity function.

The next step is to choose the objective function for our control problem. Recalling
the formulation of the linear quadratic control problem in (2) and also the goals
described in (4), the objective function has to be related to the minimization of both
the residual norm and the velocity norm along the trajectories, i.e.,

Jðu, vÞ :¼
1

2

Z T

0

kFuðtÞ � yk2 þ kvðtÞk2 dt:

Putting all together we obtain the following abstract optimal control problem in
Hilbert spaces:

Minimize Jðu, vÞ ¼
1

2

Z T

0

kFuðtÞ � yk2 þ kvðtÞk2 dt

s:t:

u0 ¼ v, t � 0, uð0Þ ¼ u0,

8>>><
>>>:

ð5Þ

Regularization theory and dynamic programming 613
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where the (fixed but arbitrary) final time T>0 will play the role of the regularization
parameter. The functions u, v: ½0,T � ! X correspond respectively to the trajectory
and the control of the system, and the pairs (u, v) are called processes.

Next we define the residual function "ðtÞ :¼ FuðtÞ � y associated to a given
trajectory u. Notice that this residual function evolves according to the dynamic

"0 ¼ Fu0ðtÞ ¼ FvðtÞ, t � 0:

With this notation, problem (5) can be rewritten in the following form

Minimize Jð", vÞ ¼
1

2

Z T

0

k"ðtÞk2 þ kvðtÞk2 dt

s:t:
"0 ¼ Fv, t � 0, "ð0Þ ¼ Fu0 � y:

8>><
>>: ð6Þ

The next result states a parallel between solvability of the optimal control problem (5)
and the auxiliary problem (6).

PROPOSITION 2.1 If ð �u, �vÞ is an optimal process for problem (5), then the process ð �", �vÞ,
with �" :¼ F �u� y, will be an optimal process for problem (6). Conversely, if ð �", �vÞ is
an optimal process for problem (6), with "ð0Þ ¼ Fu0 � y, for some u0 2X, then
the process ð �u, �vÞ is an optimal process for problem (5).

In the sequel, we derive the dynamic programming approach for the optimal control
problem in (6). We start by introducing the first Hamilton function. This is the function
H : R� Y2 � X ! R given by

Hðt, ", �, vÞ :¼ h�,Fvi þ
1

2
h", "i þ hv, vi½ �:

Notice that the variable � plays the role of a Lagrange multiplier in the above
definition. According to the Pontryagin’s maximum principle, the Hamilton function
furnishes a necessary condition of optimality for problem (6). Furthermore, since this
function (in this particular case) is convex in the control variable, this optimality
condition also happens to be sufficient. Recalling the maximum principle, along an
optimal trajectory we must have

0 ¼
@H

@v
ðt, "ðtÞ, �ðtÞ, vðtÞÞ ¼ F ��ðtÞ þ vðtÞ: ð7Þ

This means that the optimal control �v can be obtained directly from the Lagrange
multiplier � : ½0,T� ! Y, by the formula

�vðtÞ ¼ �F ��ðtÞ, 8t:

Therefore, the key task is actually the evaluation of the Lagrange multiplier. This leads
us to the Hamilton–Jacobi equation. Substituting the above expression for �v in (7),
we can define the second Hamilton function H : R� Y2 ! R

Hðt, ", �Þ :¼ min
v2X

fHðt, ", �, vÞg ¼
1

2
h", "i �

1

2
h�,FF ��i:

614 S. Kindermann and A. Leitão
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Now, let V : ½0,T � � X ! R be the value function for problem (6), i.e.,

Vðt, �Þ :¼ min
1

2

Z T

t

k"ðsÞk2 þ kvðsÞk2 dsjð", vÞ admissible process

�

for problem (6) with initial condition "ðtÞ ¼ �

�
: ð8Þ

The interest in the value function follows from the fact that this function is related
to the Lagrange multiplier � by the formula: �ðtÞ ¼ @V=@"ðt, �"Þ, where �" is an optimal
trajectory.

From the control theory, we know that the value function is a solution of the
Hamilton–Jacobi equation

@V

@t
ðt, "Þ þ H t, ",

@V

@"
ðt, "Þ

� �
¼ 0: ð9Þ

Now, making the ansatz: Vðt, "Þ ¼ ð1=2Þh",QðtÞ"i, with Q : ½0,T � ! R, we are able to
rewrite (9) in the form

h",Q0ðtÞ"i þ h", "i � hQðtÞ",FF �QðtÞ"i ¼ 0:

Since this equation must hold for all "2X, the function Q can be obtained by solving
the Riccati equation

Q0ðtÞ ¼ �IþQðtÞFF �QðtÞ: ð10Þ

Notice that the cost of all admissible processes for an initial condition of the type
(T, ") is zero. Therefore, we have to consider the Riccati equation (10) with the final
condition

QðTÞ ¼ 0: ð11Þ

Once we have solved the initial value problems (10), (11), the Lagrange multiplier
is given by �ðtÞ ¼ QðtÞ �"ðtÞ and the optimal control is obtained by the formula
�vðtÞ ¼ �F �QðtÞ �"ðtÞ. Therefore, the optimal trajectory of problem (5) is defined via

�u0 ¼ �F �QðtÞ½F �uðtÞ � y�, �uð0Þ ¼ u0: ð12Þ

We use the optimal trajectory defined by the initial value problem (12) in order to
define a family of reconstruction operators RT : X ! X, T2R

þ,

RTð yÞ :¼ �uðTÞ ¼ u0 �

Z T

0

F �QðtÞ½F �uðtÞ � y�dt: ð13Þ

We shall return to the operators {RT} in section 3 and prove that the family of
operators defined in (13) is a regularization method for (1) [7].

Regularization theory and dynamic programming 615
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2.2. A discrete approach

In this section, we use the optimal control problem (3) as starting point to derive
a discrete reconstruction method for the inverse problem in (1). Again, let u0 2X be
a given approximation for the minimum norm solution uy 2X of (1) and N2N.
Analogously as we did in the previous section, we aim to find a sequence fukg

N
k¼1

in X, starting from u0¼ u0, such that

kFuN � yk � kFuy � yk: ð14Þ

As in the previous section, we have now a discrete trajectory, represented by the
sequence uk, which evolution is described by the discrete dynamic

ukþ1 ¼ Auk þ Bvk, k ¼ 0, 1, . . .

where the operators A and B are defined as before and fvkg
N�1
k¼0 , is the control of

the system [compare with (3)]. As in the continuous case, we shall consider a
simpler dynamic: ukþ1¼ ukþ vk, k¼ 0, 1, . . . (i.e., A¼B¼ I ). To simplify the notation,
we represent the processes ðuk, vkÞ

N
k¼1 by (u, v).

The objective function is chosen similarly as in the continuous case:

Jðu, vÞ :¼
1

2
hFuN � y,SðFuN � yÞi þ

1

2

XN�1

k¼0

kFuk � yk2 þ kvkk
2,

with some positive operator S : Y ! Y. Putting all together, we obtain the following
abstract optimal control problem in Hilbert spaces:

Minimize Jðu, vÞ ¼
1

2
hFuN � y,SðFuN � yÞi þ

1

2

XN�1

k¼0

kFuk � yk2 þ kvkk
2

s:t:

ukþ1 ¼ uk þ vk, k ¼ 0, 1, . . . , u0 2X

8>>><
>>>:

ð15Þ

where the (fixed but arbitrary) number of discrete steps N2N will play the role of the
regularization parameter.

As in the continuous approach, we define the residual sequence "k :¼ Fuk � y,
associated to a given trajectory u. Notice that

"kþ1 ¼ Fukþ1 � y ¼ "k þ Fvk, k ¼ 0, 1, . . .

With this notation, problem (15) can be rewritten in the form

Minimize Jð", vÞ ¼
1

2
h"N,S"Ni þ

1

2

XN�1

k¼0

k"kk
2 þ kvkk

2

s:t:
"kþ1 ¼ "k þ Fvk, k ¼ 0, 1, . . . , "0 ¼ Fu0 � y:

8>><
>>: ð16Þ

616 S. Kindermann and A. Leitão
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Notice that Proposition 2.1 holds also for the discrete case, i.e. if ð �u, �vÞ is an optimal
process for problem (15), then the process ð �", �vÞ, with �"k :¼ F �uk � y, will be an optimal
process for problem (16) and vice versa, as one can easily check.

In the sequel, we derive the dynamic programming approach for the optimal control
problem in (16). We start by introducing the value function (or Lyapunov function)
V : R� Y ! R,

Vðk, �Þ :¼ min Jkð", vÞjð", vÞ 2Zkð�Þ � XN�k
� �

,

where

Jkð", vÞ :¼
1

2
h"N,S"Ni þ

XN�1

j¼k

k"jk
2 þ kvjk

2

" #

and

Zkð�Þ :¼ "2YN�kþ1j"k ¼ �, "jþ1 ¼ "j þ Fvj, j ¼ k, . . . ,N� 1
� �

:

[Compare with the definition in (8)]. The Bellman principle for this discrete problem
reads

Vðk, �Þ ¼ min Vðkþ 1, � þ FvÞ þ
1

2
ðh�, �i þ hv, viÞjv2X

� �
: ð17Þ

The optimality equation (17) is the discrete counterpart of the Hamilton–Jacobi
equation (9). Notice that the value function also satisfies the boundary condition:
VðN, �Þ ¼ ð1=2Þh�,S�i.

As in the continuous case, the optimality equation have to be solved backwards in
time (k¼N� 1, . . . , 1) recursively.

For k¼N� 1, we have

VðN� 1, �Þ ¼ min
1

2
h� þ Fv,Sð� þ FvÞi þ h�, �i þ hv, við Þjv2X

� �
: ð18Þ

A necessary and sufficient condition for uN�1 to be a minimum of (18) is given by
vþ F �Sð� þ FvÞ ¼ 0. Solving this equation for v, we obtain

�vN�1 :¼ �ðF �SFþ I Þ�1F �S�:

In order to obtain the optimal control recursively, we evaluate the matrices

SN :¼ S;

for k ¼ N� 1, . . . , 0 evaluate

Rk :¼ ðF �Skþ1Fþ IÞ�1F �Skþ1;

Sk :¼ ðI� FRkÞ
�Skþ1ðI� FRkÞ þ R�

kRk þ I;

ð19Þ

Regularization theory and dynamic programming 617
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once the matrices Rk and Sk are known, we obtain the optimal control recursively, using
the algorithm:

"0 :¼ Fu0 � y;

for k ¼ 0, . . . ,N� 1, evaluate

�vk :¼ �Rk �"k;

�ukþ1 :¼ uk þ �vk;

�"kþ1 :¼ �"k þ F �vk;

ð20Þ

to obtain the optimal control �v ¼ ð �v0, . . . , �vN�1Þ, the optimal trajectory for problem (16)
�" ¼ ð �"0, . . . , �"NÞ, and the optimal trajectory for problem (15) �u ¼ ð �u0, . . . , �uNÞ.
Furthermore, the optimal cost is given by Vð0, "0Þ ¼ ð1=2Þh"0,S0"0i.

3. Regularization properties

3.1. Regularization in the continuous case

In this section, we investigate the regularization properties of the operator RT intro-
duced in (13). Consider the Riccati equation (10) for the operator Q: we may express
the operator Q(t) via the spectral family {F�} of FF * [7]. Hence, we make the ansatz

QðtÞ ¼

Z
qðt, �ÞdF�:

Assuming that q(t, �) is C1 we may find from (10) together with the boundary condition
at t¼T that

Z
d

dt
qðt, �Þ þ 1� qðt, �Þ2�

� �
dF� ¼ 0, qðT, �Þ ¼ 0:

Hence, we obtain an ordinary differential equation for q:

d

dt
qðt, �Þ ¼ �1þ �qðt, �Þ2 ð21Þ

The solution to these equations is given by

qðt, �Þ ¼ �
1ffiffiffi
�

p tanh
ffiffiffi
�

p
ðt� TÞ

� 	
¼

1ffiffiffi
�

p tanh
ffiffiffi
�

p
ðT� tÞ

� 	
: ð22Þ

If t<T, then Q(t) is nonsingular, since limx!0ðtanhðxaÞ=xÞ ¼ a and ðtanhðaxÞ=xÞ
is monotonically decreasing for x>0. Hence the spectrum of Q(t) is
contained in the interval ½ðtanhððT� tÞkF kÞ=kF k, ðT� tÞ�. Now consider the evolution

618 S. Kindermann and A. Leitão
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equation (12): The operator Q(t) can be expressed as Q(t)¼ q(t, FF*); by usual spectral
theoretic properties [7] it holds that

F �qðt,FF �Þ ¼ qðt,F �F ÞF �:

Hence we obtain the problem

u0ðtÞ ¼ �qðt,F �FÞðF �FuðtÞ � F �yÞ ð23Þ

uð0Þ ¼ u0: ð24Þ

We may again use an ansatz via spectral calculus: if we set

uðtÞ ¼

Z
gðt, �ÞdE�F

�y,

where E� is the spectral family of F *F, we derive an ordinary differential equation for g.
Similar as above, we can express the solution to (23, 24) in the form

uðtÞ ¼

Z
1� ðcoshð

ffiffiffi
�

p
ðT� tÞÞ=ðcoshð

ffiffiffi
�

p
T ÞÞ

�
dE�F

�yþ

Z
coshð

ffiffiffi
�

p
ðT� tÞÞ

coshð
ffiffiffi
�

p
TÞ

dE�u0: ð25Þ

Setting t¼T we find an approximation of the solution

uT :¼ uðTÞ ¼

Z
1� ½1=ðcoshð

ffiffiffi
�

p
T ÞÞ�

�
dE�F

�yþ

Z
1

coshð
ffiffiffi
�

p
T Þ

dE�u0: ð26Þ

Note the similarity to Showalter’s methods [7], where the term exp(�T ) instead of
coshð

ffiffiffi
�

p
T Þ appears.

THEOREM 3.1 The operator RT in (13) is a regularization operator with qualification
�0 ¼ 1:

If the data are exact, y¼Fuy and uy satisfies a source condition for some �>0

9!2X : u
y
¼ ðF �FÞ�!, ð27Þ

we have the estimate

kuT � uyk � C�T
�2�

If the data are contaminated with noise, ky� y�k � � and y¼Fuy with uy as in (27),
then we have

kuT, � � uyk � C�T
�2� þ �T:

Regularization theory and dynamic programming 619
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In particular, the a-priori parameter choice T � �ð�1=ð2�þ1ÞÞ yields the optimal order
convergence rate

kuT, � � uyk � �ð2=ð2�þ1ÞÞ:

Proof For simplicity we set u0¼ 0, the generalization to the inhomogeneous case
is obvious. (26) gives an expression of the regularization operator in terms of a filter
function:

RT ¼

Z
f ðT, �ÞdE�F

�y

with

f ðT, �Þ ¼ ��1 1�
1

coshð
ffiffiffi
�

p
T Þ

� �
:

According to [7] we have to show that the filter function f(T, �) satisfies the properties
(regarding 1/T as regularization parameter).

(1) for T fixed, f(T, .) is continuous;
(2) there exists a constant C such that for all �>0

j�f ðT, �Þj � C;

(3)

lim
T!1

fTð�Þ ¼ ��1, 8�2 ð0, kF �F k�:

(1) is clear since lim�!0 fðT, �Þ ¼ ðT2=2Þ the function can be extended continuously
to �¼ 0

(2) holds with C¼ 1 since 0 � 1=ðcoshð
ffiffiffi
�

p
ðT ÞÞÞ � 1.

(3) is obviously the case since lim
�!1

coshðsÞ ¼ 1.

We have to show that the qualification �0 ¼ 1: this needs an estimate w�(T )
such that

��jð1� �fðT, �ÞÞj � w�ðTÞ:

It holds that

��jð1� �fðT, �ÞÞj ¼
��

coshð
ffiffiffi
�

p
TÞ

� 2
��

expð
ffiffiffi
�

p
TÞ

� 2ð2�Þ2�expð�2�ÞT�2�:

Hence, for all �>0, w�ðT Þ � C�T
�2� holds.

On the other hand, we see that f(t, �) is monotonically decreasing. Hence, it takes the
maximum value at �¼ 0:

sup
�>0

j fðt, �Þj �
1

2
T2:

620 S. Kindermann and A. Leitão
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Using the results in [7] it follows immediately that with
1

T2
¼ � we have a regularization

operator of optimal order. g

If we compare the dynamic programming approach with the Showalter method,
they are quite similar with T2

dyn � TSw. Hence, to obtain the same order of convergence
we only need

ffiffiffiffiffiffiffiffi
TSw

p
of the time for the Showalter method.

3.2. Regularization in the discrete case

The dynamic programming principle allows us to find a sequence of approximate
solutions {uk} which is a minimizer to a certain functional.

From regularization theory, we are motivated to choose a functional which includes
the norm of the residuals kFuk� yk. Since in general this will not necessarily yield
a regularization, we include an additional term involving ukþ1� uk. Now analogous
to the continuous case we want to minimize the functional

J


fukg

N
k¼0

�
:¼
XN
j¼0

kFuk � yk2 þ
XN�1

i¼0

kukþ1 � ukk
2 ð28Þ

with respect to all sequences fukg
N
k¼0 satisfying u0¼ 0. The reason for choosing the norm

of the residuals is clear, since we want to find an (approximate) solution to the equation
Fu¼ y. The second term is important to obtain a regularization method, since it
controls the size of the steplength between two successive iterations.

At first sight it is not at all obvious that there is a constructive method for minimizing
(28) with respect to all sequences fukg

N
k¼0. However, we show that the minimization

problem can be treated within the framework of subsection 2.2.
Define "k as the k-th residual: �k :¼Fuk� y, k¼ 0, . . . ,N, where uk is the solution we

compute at the k-th iteration step. The control is defined as vk¼ ukþ1� uk,
k¼ 0, . . . ,N� 1. As initial starting value we set u0¼ 0. Hence we obtain the k-th iterate
from the control variables by

uk ¼
Xk�1

j¼0

vj: ð29Þ

From these definitions we obtain the following condition, which is trivially satisfied,
when vk and �k are defined in this way:

�kþ1 ¼ �k þ Fvk: ð30Þ

Using the above notations, the minimization of (28), with initial condition u0¼ 0, is
equivalent to the optimization problem in (16).

We now can use the results of section 2.2 with S¼Q¼R¼A¼ I, B¼F. The dynamic
programming principle yields the iteration procedure

SN :¼ I ð31Þ

Kk :¼ ðF �Skþ1Fþ I Þ�1F �Skþ1, k ¼ N� 1, . . . , 0 ð32Þ

Sk :¼ ðI� FKkÞ
�Skþ1ðI� FKkÞ þ K�

kKk þ I, k ¼ N� 1, . . . , 0 ð33Þ

Regularization theory and dynamic programming 621
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If Kk, Sk are computed, we obtain the control vk and the error �k from

�0 :¼ �y ð34Þ

vk ¼ �Kk�k, k ¼ 0, . . . ,N� 1 ð35Þ

�kþ1 ¼ �k þ Fvk ¼ ðI� FKkÞ�k: ð36Þ

The iterate uN, which represents an approximation to the solution, can be calculated
from (29).

Now we want to consider the mapping y ! uN as an iterative regularization operator
where N acts as regularization parameter. This mapping can be represented by filter
functions gN using spectral theory, similar to the continuous case. The following
lemma serves as preparation for this purpose. Let E�, F� be the spectral families
of F*F, FF*.

LEMMA 3.2 If Skþ1 has a representation as Skþ1 ¼
R
fkþ1ð�ÞdF�, with a continuous

positive function fkþ1, then so has Sk ¼
R
fkð�ÞdF� and the following recursion formula

holds:

fkð�Þ ¼
fkþ1ð�Þð�þ 1Þ þ 1

fkþ1ð�Þ�þ 1
¼ 1þ

fkþ1

fkþ1ð�Þ�þ 1
: ð37Þ

Proof We use the identity F �fðFF �Þ ¼ fðF �FÞF � (see [7], (2.43)), which holds for any
piecewise continuous function f. Since fkþ1 is positive, the inverse ð fkþ1ð�Þ�þ 1Þ�1

exists, and

Kk ¼

Z
ð fkþ1ð�Þ�þ 1Þ�1fkþ1ð�ÞdE�F

�:

From the identity above and some basic algebraic manipulation we obtain

Sk ¼

Z
ðfkþ1ð�Þ�þ 1Þ�2fkþ1 þ ðfkþ1ð�Þ�þ 1Þ�2fkþ1ð�Þ

2�þ 1 dF�

¼

Z
ðfkþ1ð�Þð�þ 1Þ þ 1Þ

ðfkþ1ð�Þ�þ 1Þ
dF� ¼

Z
1þ

fkþ1

fkþ1ð�Þ�þ 1
dF�:

g

By definition we have SN¼ I, fN obviously satisfies the hypothesis of the theorem
with fN¼ 1 and hence, by induction, all Sk have a representation via a spectral
function fk.

An obvious consequence of the recursion formula is the following recursion:

hkð�Þ ¼ 2þ ��
1

hkþ1ð�Þ
, ð38Þ

with hkð�Þ :¼ �fkð�Þ þ 1 and the end condition hN(�)¼ �þ 1.
Now we want to find a filter function gN to express uN ¼

R
gNð�ÞdE�F

�y.

622 S. Kindermann and A. Leitão



D
ow

nl
oa

de
d 

By
: [

Le
itã

o,
 A

.] 
At

: 1
8:

03
 3

1 
M

ay
 2

00
7 

Using the expression I� FKk ¼
R
ð fkþ1ð�Þ�þ 1Þ�1 dF� we conclude

�kþ1 ¼

Z
ð fkþ1ð�Þ�þ 1Þ�1dF��k ¼

Z
1

hkþ1
dF��k ¼ �

Z
1

�kþ1
i¼1 hið�Þ

dF�y

vk ¼ �

Z
fkþ1ð�Þ

hkþ1ð�Þ
dE�F

��k ¼

Z
fkþ1ð�Þ

�kþ1
i¼1 hið�Þ

dE�F
�y

Now we replace fiþ1 ¼ 1=�ðhiþ1 � 1Þ and use (29) to obtain

uk ¼
Xk�1

i¼0

Z
�

1

�

hiþ1ð�Þ � 1

�iþ1
j¼1hjð�Þ

dE�F
�y

¼
Xk�1

i¼0

Z
�

1

�

1

�i
j¼1hjð�Þ

�
1

�iþ1
j¼1hjð�Þ

 !
dE�F

�y:

¼

Z
1

�
1�

1

�k
j¼1hjð�Þ

 !
dE�F

�y, ð39Þ

where hk satisfies the backwards recursion formula (38) and the end condition
hN(�)¼ �þ 1.

In particular, the N-th iterate, which is our approximate solution, can be expressed
as uN ¼

R
� gNð�ÞdE�F

�y, with the filter function

gNð�Þ ¼
1

�
1�

1

�N
j¼1hjð�Þ

 !
: ð40Þ

The following theorem yields a representation for gN in terms of Chebyshev
polynomials.

THEOREM 3.3 Let Tn(x) be the Chebyshev polynomial of the first kind of order n. Then

gNð�Þ ¼
1

�
1�

ffiffiffiffiffiffiffiffiffiffiffi
�

4
þ 1

r !
T2Nþ1

ffiffiffiffiffiffiffiffiffiffiffi
�

4
þ 1

r ! !�1
2
4

3
5:

Proof Define pið�Þ :¼ �N
k¼N�ihkð�Þ, i¼ 0, . . . ,N� 1. From the end condition for hN we

find p0¼ �þ 1. Furthermore, follows from (38)

piþ1ð�Þ ¼ hN�i�1ð�Þpið�Þ ¼ ð2þ �Þpið�Þ �
pið�Þ

hN�ið�Þ
¼ ð2þ �Þpið�Þ � pi�1ð�Þ, ð41Þ

hence pi satisfies a three-term recursion. From (38) we see that p1 ¼ �2 þ 3�þ 1.
If we introduce p�1(�) :¼ 1, then the initial conditions p�1(�), p0(�) together with the
three-term recursion (41) completely determine pi.

Regularization theory and dynamic programming 623
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We prove the identity

pN�1ð�Þ ¼
T2Nþ1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�=4Þ þ 1
p ¼: qNð�Þ, 8N � 0:

For N¼ 0 we have p�1(�)¼ 1 and, since T1(x)¼ x, it follows q1¼ 1. Since
T3(x)¼ 4x3� 3x we find for N¼ 1 that q2(�)¼ �þ 1¼ p1(�). Hence, the identity
pN�1(�)¼ qN(�) holds for N¼ 0, 1. Since two initial conditions and the three-term
recursion uniquely determine the sequence pi(�), qi(�) we only have to show that qi
satisfies the same recurrence relation as pi. Note that the following identity holds for
all N� 1 [13]:

T2Nþ3ðxÞ � T2N�1ðxÞ ¼ 2T2Nþ1ðxÞT2ðxÞ ¼ 2T2Nþ1ðxÞð2x
2 � 1Þ:

Put x ¼ ðð�=4Þ þ 1Þ1=2 and multiply the identity by ðð�=4Þ þ 1Þ�1=2 we get

T2Nþ3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�=4Þ þ 1
p �

T2N�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�=4Þ þ 1
p ¼

T2Nþ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�=4Þ þ 1
p ð�þ 2Þ:

Thus qN satisfies qNþ1(�)¼ (�þ 2)qN� qN�1, which is the same recurrence relation
as pn. Hence qN¼ pN�1. g

COROLLARY 3.4 gN(�) has the following representations:

gNð�Þ ¼
1

�
1�

cosh


arcoshð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p
Þ
�

cosh


ð2nþ 1Þarcosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p �
 !

, � � 0 ð42Þ

gNð�Þ ¼
1

�
1�

1Pn
m¼0

2nþ1
2m


 �
ðð�=4Þ þ 1Þðn�mÞ

ð�=4Þm

 !
: ð43Þ

Proof Equation (43) follows from the representation formula for T2nþ1 [13]:

T2nþ1ðxÞ ¼
Xn
m¼0

2nþ 1
2m

� �
x2nþ1�mðx2 � 1Þm:

For the identity (42) we start with the well-known representation [13]

TnðxÞ ¼ cosðn arccosðxÞÞ, jxj � 1

From cos(z)¼ cosh(iz) and arcosh(z)¼ i arccos(z) we get by analytic extension the
identity

TnðxÞ ¼ coshðn arcoshðxÞÞ, x � 1:

From this representation (42) follows, since � � 0. g

624 S. Kindermann and A. Leitão
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The next result concerns the regularization properties of the proposed iterative
method.

THEOREM 3.5 The mapping y ! uN is a regularization operator, as N ! 1.

Proof We have to proof the similar properties for the filter function gN(�) as for the
continuous case.

First of all, using L’Hôpital’s rule we find

lim
�!0

gNð�Þ ¼ � lim
�!0

d

d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p
T2Nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p
 !

¼ � lim
z!1

d

dz

z

T2Nþ1ðzÞ

� �
1

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p
�����
�¼0

¼ �
1

8

T2Nþ1ð1Þ � T 0
2Nþ1ð1Þ

T2Nþ1ð1Þ
2

¼
ð2Nþ 1Þ2 � 1

8
,

where we used Tn(1)¼ 1, T 0
nð1Þ ¼ n2. Hence gN(�) can be extended continuously

to �¼ 0.
The estimate |�gN(�)|�C reduces to

1�
cosh



arcoshð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p
Þ
�

cosh


ð2nþ 1Þarcoshð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p
Þ
�

�����
����� � C,

but, by the monotonicity of cosh, it holds that 0 � ðcoshðxÞÞ=ðcoshðð2nþ 1ÞxÞÞ � 1, as a
consequence the constant C can be chosen C¼ 1.

Finally, limN!1 gNð�Þ ! ð1=�Þ holds, since limN!1 coshðð2Nþ 1ÞxÞ ¼ 1. g

We now can prove the convergence rate result similar to the continuous case:

THEOREM 3.6 Let uN be defined as above. If the data are exact, y¼Fuy and uy satisfies
a source condition (27) for some �>0, then

kuN � uyk � C�N
�2�: ð44Þ

If the data are contaminated with noise, ky� y�k� � and y¼Fuy with uy satisfying
(27), then we have constants C�, C, independent of N, �, such that:

kuN, � � uyk � C�N
�2� þ C�N:

The choice N � �ð�1=ð2�þ1ÞÞ yields the optimal order convergence rates

kuN, � � uyk � �ð2=ð2�þ1ÞÞ: ð45Þ

Proof We have to find an estimate for

j��ð1� �gNð�ÞÞj � w�ðNÞ, 8� � 0:

Regularization theory and dynamic programming 625
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Hence we need a bound for

�ð�Þ :¼
�� cosh



arcosh


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p ��
cosh



ð2Nþ 1Þarcosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=4Þ þ 1

p � , � � 0:

We may transform the variables x :¼ ð
�

4
þ 1Þ1=2, y¼ arcosh(x) and, using

cosh( y)2� 1¼ sinh(x)2, we get

�ð�ðxðyÞÞÞ ¼
4�sinhðyÞ2�coshðyÞ

coshðð2Nþ 1ÞyÞ
¼: �ðyÞ, y � 0:

For y� 0 we may use the addition theorems for cosh:

jcoshðð2Nþ 1ÞyÞj ¼ jcoshð2NyÞcoshð yÞ þ sinhð2NyÞsinhð yÞj

¼ jcoshð yÞcoshð2NyÞjð1þ tanhð2NyÞtanhð yÞÞj � jcoshð yÞcoshð2NyÞj,

and, with the estimate coshðxÞ � ð1=2ÞðexpðxÞ þ 1Þ, we get

j�ð yÞj � 4�
sinhðyÞ2�

coshð2NyÞ
� 4�2

sinhðyÞ2�

expð2NyÞ þ 1
¼: 4�2	ð yÞ

Now differentiation yields the necessary condition for a maximum of
	 : ð�=N Þð1þ expð�xÞÞ ¼ tanhðxÞ. By monotonicity, we see that this equation has
a unique solution x*>0 for N>�, which must be the maximum of 	(y), since
	(0)¼ 0 and 	ð1Þ ¼ 0.

Now express sinhðxÞ ¼ tanhðxÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanhðxÞ2

q
Þ, use 1=ðexpðxÞ þ 1Þ � 1, we get for

N>2�

	ðxÞ �
�

N

� 	2� ð1þ expð�x�ÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�2=N2Þð1þ expð�x�ÞÞ2

q � C
1

ð2NÞ
2�
:

Hence we get for all � and N>2�

��j1� �gNð�Þj � C
1

ð2NÞ
2�

,

which immediately yields (44) [7].
For a proof of (45) we have to find an estimate

gNð�Þ � CN, 8� > 0:
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Using the same transformation as above, we have to bound for all y>0,


ðyÞ :¼
coshðð2Nþ 1ÞyÞ � coshð yÞ

sinhð yÞ2coshðð2Nþ 1ÞyÞ
¼

2sinhððNþ 1ÞyÞsinhððN� 1ÞyÞ

sinhð yÞ2coshðð2Nþ 1ÞyÞ

� 2
sinhðNyÞ2

sinhð yÞ2coshð2NyÞ
� 2

sinhððNþ 1ÞyÞ2

sinhðyÞ2ðcoshðNyÞ2 þ sinhðNyÞ2

� 2
sinhððNþ 1Þy

sinhð yÞðcoshðNyÞÞ

� �2

¼: 2 ð yÞ2:

Now we may calculate the derivative (using summation formula for sinh, cosh),

 0ðyÞ ¼
N

2

sinhð2yÞ � 1
N sinhð2NyÞ

sinhðyÞ2coshðNyÞ2

� �
:

Now by differentiation it is easy to see that for positive y the function sinhð2yÞ �
ð1=NÞsinhð2NyÞ is strictly monotonically decreasing and it vanishes for y¼ 0.
Hence  has negative derivative for y>0 and  0ð0Þ ¼ 0. Thus the maximum must be
at y¼ 0. By L’Hôpital’s rule

 ð0Þ ¼ lim
y!0

sinhððNþ 1ÞyÞ

sinhðyÞ
¼ Nþ 1:

Hence jgNð�Þj � 2ðNþ 1Þ2 � CN2, with a constant C independent of N. With the results
of [7, Theorem 4.3] the proof is finished. g

4. Numerical experiments

We are now concerned with the numerical realization of the described algorithm.
We consider the discrete variant (19, 20) and a discretization of the continuous
algorithm (10, 12).

The first one has a straightforward implementation. For the continuous approach we
use an explicit time-discretization Q0ðtÞ � ð1=�tÞðQnþ1 �QnÞ. Then equation (10)
becomes an iterative procedure: (note that the Riccati-equation has to be solved back-
wards in time)

Qn ¼ Qnþ1 þ�tðI�Qnþ1FF
�Qnþ1Þ, n ¼ N� 1, . . . , 0

QN ¼ 0:

Equation (12) is discretized in a similar manner:

unþ1 ¼ un ��tðF �QnðFun � yÞÞ, n ¼ 0, . . . ,N� 1

Regularization theory and dynamic programming 627
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together with some initial condition u0.
A more efficient method is to use a recursion for Bn :¼F*Qn. Since Qn is symmetric,

then

Bn ¼ Bnþ1 þ�tF �ðI� B�
nþ1Bnþ1Þ: ð46Þ

Hence, we get

unþ1 ¼ un ��tðBnðFun � yÞÞ: ð47Þ

Since we used an explicit discretization scheme, the method will be only stable if
we bound the stepsize appropriately, e.g., �tkF �F k � 1. The explicit discretization
has the advantage that no matrix inversion is needed, by paying the price of a restricted
stepsize. A detailed analysis of the regularization properties of this iterative scheme,
in the spirit of section 3, is of course also possible.

As a benchmark problem we consider an integral equation of the first kind:

Fu ¼

Z 1

0

kðx, yÞuðyÞdy:

For a discretization of this operator, we split the unit interval I¼ [0, 1] into m sub-
intervals and discretize u by using a uniform discretization with piecewise linear, contin-
uous splines on each subinterval (also known as Courant-finite elements). The integral
is evaluated by the trapezoidal rule one each subinterval. As evaluation points for x we
used xi¼ i/m, i¼ 0, . . . ,m. This results in a (mþ 1)� (mþ 1) matrix equation:

Fmum ¼ ym: ð48Þ

We tested our algorithms with F replaced by the discretized version Fm.
We do not address the question how the discretization parameter m has to be related

to the regularization parameter (the iteration index in our case), but we simply consider
the discretized equation as the given ill-posed problem. Hence we use the Euclidean
norm in Rmþ1 on the discrete variables um, ym.

For our numerical test we used two different kernel functions k(x, y):

k1ðx, yÞ :¼
1�

ðx� yÞ2

0:1

� �6

if ðx� yÞ2 � 0:1

0 else

8><
>: ð49Þ

k2ðx, yÞ :¼
1

2
ffiffiffiffiffi
20

p exp


� 20ðx� yÞ2

�
: ð50Þ

The first one is 6-times continuously differentiable and hence leads to a mildly
ill-posed problem. The second one k2(x, y) is smooth, hence it leads to an exponentially
ill-posed problem.

628 S. Kindermann and A. Leitão
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We tested our methods for two exact solutions

u
y
1 ðxÞ :¼ xð1� xÞ þ cosð20xÞ, u

y
2 ðxÞ ¼

1 if 0:3 � x � 0:5
0 else

�

We compared both algorithms with the Landweber-iteration and the CG-method [7].
Throughout our numerical experiments we used a discretization of m¼ 300.

Figure 1 shows the error kuN� uyk over the iteration index N on a log–log scale
for the four algorithms and the different choices of uy and k(x, y). Here the full line
corresponds to the discrete dynamic programming method, the dotted line to
the Landweber iteration, the dashed dotted to the continuous method with explicit
time discretization, and the dashed line to the conjugate-gradient method.

Furthermore we contaminated the data with 10% random noise. The results
are shown in figure 2. Since in this case the iteration cannot converge, a correct
stopping criterion would be necessary. An a priori stopping criterion was derived in
Theorems 3.1 and 3.6. Of course a posteriori stopping criteria are more flexible.
A more detailed analysis of these rules (e.g., Morozov’s discrepancy principle, or the
Engl–Gfrerer-type rules [7]) are out of the scope of this work.

We observe that the two methods based on dynamic programming techniques are
almost similar. Moreover, these two methods have about the same convergence rates
as the conjugate-gradient algorithm, indicated by the same slope of the lines. This is
confirmed by theory, as the number of iterations k to reach a certain noise level �
under a source condition is k � �ð�1=ð2�þ1ÞÞ both for CG [7, Theorem 7.13] and the

Figure 1. Evolution of the error kuN� uyk for exact data for all four algorithms.
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dynamic programming techniques (Theorem 3.6), whereas for Landweber iteration it is
larger, namely k � �ð�2=ð2�þ1ÞÞ. Note also, that CG is only a regularization method
together with a discrepancy principle and is not one in the sense of [7] if the noise
level vanishes. Such a phenomenon does not happen for the dynamic programming
iterations.

Let us report on the overall costs of computation. Let F be a matrix of size n�m.
Then if N time-steps (or iteration steps) are made, the complexity for Landweber
iteration and CG are OðnmNÞ, since only matrix-vector multiplications have to be
performed. The bottleneck for the dynamic programming iterations (19)–(20) and
(46)–(47) is the Riccati equation. Since in each step a matrix–matrix product has to
be computed we end up with an overall complexity for the implicit scheme (19)–(20)
of Oðn2mNþm2nNþ n3NÞ and Oðn2mNþm2nNÞ for the explicit one (46)–(47).
This shows that these iterations have a complexity of at least one power higher than
other iterations. If n � m, then the explicit and the implicit dynamic iterations
are even of comparable complexity. In this case the implicit version is to be favored
as it has no stepsize restrictions.

5. Final remarks and conclusions

In this article, we combined control theory with abstract regularization theory.
We proposed iterative algorithms for solving linear inverse problems in Hilbert

Figure 2. Evolution of the error kuN� uyk for noisy data for all four algorithms.
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spaces and scrutinized their regularization properties. Our algorithms give rise
to convergence and convergence rates under the standard source conditions.
The convergence properties are comparable to a conjugate gradient method.

However, we have to admit, that in terms of computational complexity our method
is not really competitive with standard methods, as it involves matrix-matrix products
in each iteration. On the other hand, the most costly part of our computation, the
computation of Q(t) can be performed independent of the data. Hence, if for a fixed
operator the same problem has to be solved with different data, then Q(t) only has
to be computed once, e.g., by (46) and the remaining iteration (47) involving the data
is of similar complexity as the usual iteration methods. In this case our iterations are
competitive with CG.

Most of all, we consider this work a good starting point into further directions:
first of all it should be noticed that, if Qn is chosen constant, and not computed by
the Riccati equation, the continuous regularization method proposed in this article
reduces to a preconditioned Landweber iteration. Therefore, the dynamic programming
regularization method can be considered as a generalization of the Landweber method.
Since the Landweber method is convergent we expect that solving the Riccati equation
is a numerical overkill. Instead one can think of solving the equation inexact or using
just a few number of steps of the Riccati iteration to get a matrix Q, which can be
used in a preconditioned Landweber (or CG) iteration.

Secondly, we expect that the real power of the combination of control theory and
regularization comes into play when considering dynamical inverse problems, that is,
if the data or the operator depend on time. In this case standard iterations cannot
be used, but the dynamic programming principle still can be applied.
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