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Regularization by dynamic programming

S. Kindermann and A. Leitão

Abstract. We investigate continuous regularization methods for linear inverse problems of static and
dynamic type. These methods are based on dynamic programming approaches for linear quadratic
optimal control problems. We prove regularization properties and also obtain rates of convergence
for our methods. A numerical example concerning a dynamical electrical impedance tomogra-
phy (EIT) problem is used to illustrate the theoretical results.
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1. Introduction

We begin by introducing the notion of dynamic inverse problems. Roughly speaking,
these are inverse problems in which the measuring process — performed to obtain
the data — is time dependent. As usual, the problem data corresponds to indirect
information about an unknown parameter, which has to be reconstructed. The desired
parameter is allowed to be itself time dependent.

Let X, Y be Hilbert spaces. We consider the inverse problem of findingu : [0, T ] →
X of the system

F (t)u(t) = y(t), t ∈ [0, T ], (1.1)

wherey : [0, T ] → Y are the dynamic measured data andF (t) : X → Y are linear
ill-posed operators indexed by the parametert ∈ [0, T ]. Notice thatt ∈ [0, T ] corre-
sponds to a (continuous) temporal index. The linear operatorsF (t) map the unknown
parameteru(t) to the measurementsy(t) at the time pointt during the finite time inter-
val [0, T ]. We shall refer to (1.1) asdynamic inverse problem.

Since the operatorsF (t) are ill-posed, at each time pointt ∈ [0, T ] the solutionu(t)
does not depend in a stable way on the right hand sidey(t). Therefore, regularization
techniques have to be used in order to obtain a stable solutionu(t). In this article we
consider time dependent regularization methods [11], which take into account the fact
that the parameteru(t) evolves continuously with the time.

If the measuring process is stationary and the parameter is not time dependent, the
dynamic inverse problem (1.1) reduces to the standard problem of finding a solution
u ∈ X of the equation

Fu = y, (1.2)
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whereF : X → Y is a linear ill-posed parameter to output operator andy ∈ Y . In
opposition to (1.1) we shall refer to (1.2) asstatic inverse problem.

The second main goal in this article is to investigate continuous regularization meth-
ods [22] for the inverse problem (1.2). The regularization methods proposed for prob-
lems (1.1) and (1.2) are related by the fact that both of them derive from a solution
technique for linear quadratic optimal control problems [5], the so-calleddynamic pro-
gramming[2, 3, 4].

Some relevant applications

As a first example of dynamic inverse problem, we present thedynamical source iden-
tification problem:Let u(x, t) be a solution to

∆xu(x, t) = f(x, t) in Ω,

wheref(x, t) represents an unknown source which moves around and might change
shape with timet. The inverse problem in this case is to reconstructf from single
or multiple measurements of Dirichlet and Neumann data(u(x, t), ∂nu(x, t)), on the
boundary∂Ω over timet ∈ [0, T ]. Such problems arise in the field of medical imaging,
e.g. brain source reconstruction [1] or electrocardiography [16].

Many other ’classical’ inverse problems have corresponding dynamic counterparts,
e.g., thedynamic electrical impedance tomography problemconsists in reconstructing
the time-dependent diffusion coefficient (impedance) in the equation

∇x · (σ( · , t)∇x)u( · , t) = 0, (1.3)

from measurements of the time-dependent Dirichlet to Neumann mapΛσ (see the re-
view paper [6]). This problem can model a moving object with different impedance
inside a fluid with uniform impedance, for instance the heart inside the body. Notice
that in this case we assume the time-scale of the movement to be large compared to
the speed of the electro-magnetic waves. Hence, the quasi-static formulation (1.3) is a
valid approximation for the physical phenomena.

Another application concerning dynamical identification problems for the heat equa-
tion is considered in [14, 15]. Other examples of dynamic inverse problems can be
found in [19, 21, 23, 24, 25]. In particular, for applications related to process tomog-
raphy, see the conference papers by M. H. Pham, Y. Hua, N. B. Gray; M. Rychagov,
S. Tereshchenko; I. G. Kazantsev, I. Lemahieu in [18].

Literature overview and outline of the paper

Continuous and discrete regularization methods for static inverse problems have been
quite well studied in the last two decades and one can find relevant information, e.g.,
in [7, 8, 9, 10, 17, 22] and in the references therein.

What concerns dynamic inverse problems, regularization methods were considered
for the first time in [20, 21]. There, the authors analyze discrete dynamic inverse prob-
lems and propose a procedure calledspatio temporal regularizer(STR), which is based
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on the minimization of the functional

Φ(u) :=
N∑

k=0

‖Fkuk − yk‖2
L2 + λ2

N∑
k=0

‖uk‖2
L2 + µ2

N−1∑
k=0

‖uk+1 − uk‖2
L2

(tk+1 − tk)2 . (1.4)

Notice that the term with factorλ2 corresponds to the classical (spacial) Tikhonov —
Philips regularization, while the term with factorµ2 enforces the temporal smoothness
of uk.

A characteristic of this approach is the fact that the hole solution vector{uk}N
k=0

has to be computed at a time. Therefore, the corresponding system of equations to
evaluate{uk} has very large dimension. In the STR regularization, the associated
system matrix is decomposed and rewritten into a Sylvester matrix form. The efficiency
of this approach is based on fast solvers for the Sylvester equation.

In [11] continuous and iterative regularization methods based on dynamic program-
ming techniques were proposed as an alternative for obtaining stable solutions of (1.1).
In this article the authors verify regularization properties of the proposed methods and
present numerical realizations for a dynamic electrical impedance tomography (EIT)
problem, similar to the one treated in [21].

A word about the coupling of inverse problems and dynamic programming the-
ory. So far this theory have been mostly applied to solve particular inverse problems.
In [14] the inverse problem of identifying the initial condition in a semilinear parabolic
equation is considered. In [15] the same authors consider a problem of parameter iden-
tification for systems with distributed parameters. In [12], the dynamic programming
methods are used in order to formulate an abstract functional analytical method to treat
static inverse problems (1.2).

This paper is outlined as follows: In Section 2 we derive the solution methods dis-
cussed in this paper. In Section 3 we analyze some regularization properties of the pro-
posed methods. In Section 4 we present numerical realizations of the discrete regular-
ization method as well as a discretization of the continuous regularization method. For
comparison purposes we consider a dynamic EIT problem, similar to the one treated
in [21].

2. Derivation of the regularization methods

2.1. Static inverse problems

We start this subsection defining an optimal control problem related with the linear
inverse problem (1.2). Letu0 ∈ X be any approximation for the minimum norm
solutionu† ∈ X of (1.2). We aim to find a functionu : [0, T ] → X such that,u(0) = u0

and
‖Fu(T )− y‖ ≈ ‖Fu† − y‖. (2.1)

In the control literature, the functionu is calledtrajectory (or state) and its evolution
is is described by a dynamical system. For simplicity, we choose a linear evolution
model, i.e.u′ = Au(t) + Bv(t), t ≥ 0, whereA,B : X → X are linear operators and
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v : [0, T ] → X is thecontrol of the system. Since our main concern is to satisfy the
property in (2.1), it is enough for our purpose to consider a simpler dynamic, which
does not depend on the stateu, but only on the controlv (for a dynamic including the
state see [13]). This justifies the choice of the dynamic:u′ = v, t ≥ 0. In this case, the
controlv corresponds to avelocity function.

The next step is to choose the objective function for our control problem. The fol-
lowing choice is related to the minimization of both the residual norm and the velocity
norm along the trajectories

J(u, v) :=
1
2

∫ T

0
‖Fu(t)− y‖2 + ‖v(t)‖2 dt.

Putting all together we obtain the following abstract optimal control problem in Hilbert
spaces: 

Mimimize J(u, v) =
1
2

∫ T

0
‖Fu(t)− y‖2 + ‖v(t)‖2 dt

s.t.
u′ = v, t ≥ 0, u(0) = u0,

(2.2)

where the (fixed but arbitrary) final timeT > 0 will play the role of the regularization
parameter. The functionsu, v : [0, T ] → X correspond respectively to the trajectory
and the control of the system, and the pairs(u, v) are calledprocesses.

Next we define the residual functionε(t) := Fu(t)− y associated to a given trajec-
tory u. Notice that this residual function evolves according to the dynamic

ε′ = Fu′(t) = Fv(t), t ≥ 0.

With this notation, problem (2.2) can be rewritten in the following form
Mimimize J(ε, v) =

1
2

∫ T

0
‖ε(t)‖2 + ‖v(t)‖2 dt

s.t.
ε′ = Fv, t ≥ 0, ε(0) = Fu0 − y.

(2.3)

In [12, Proposition 2.1] the equivalence between the solvability of the optimal con-
trol problem (2.2) and the auxiliary problem (2.3) is established. In the sequel, we de-
rive the dynamic programming approach for the optimal control problem in (2.3). We
start by introducing the first Hamilton function. This is the functionH : R×X3 → R
given by

H(t, ε, λ, v) := 〈λ, Fv〉+ (1/2) [〈ε, ε〉+ 〈v, v〉].

Notice that the variableλ plays the role of a Lagrange multiplier in the above definition.
According to the Pontryagin’s maximum principle, the Hamilton function furnishes a
necessary condition of optimality for problem (2.3). Furthermore, since this function
(in this particular case) is convex in the control variable, this optimality condition also
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happens to be sufficient. Recalling the maximum principle, along an optimal trajectory
we must have

0 =
∂H

∂v
(t, ε(t), λ(t), v(t)) = F ∗λ(t) + v(t). (2.4)

This means that the optimal control ¯v can be obtained directly from the Lagrange mul-
tiplier λ : [0, T ] → X, by the formula

v̄(t) = −F ∗λ(t), ∀t.

Therefore, the key task is actually the evaluation of the Lagrange multiplier. This leads
us to the Hamilton-Jacobi equation. Substituting the above expression for ¯v in (2.4),
we can define the second Hamilton functionH : R×X2 → R

H(t, u, λ) := min
v∈X

{H(t, ε, λ, v)} = 〈ε, ε〉/2− 〈λ, FF ∗λ〉/2.

Now, letV : [0, T ]×X → R be the value function for problem (2.3), i.e.

V (t, ξ) := min
{1

2

∫ T

t

‖ε(s)‖2 + ‖v(s)‖2 ds
∣∣∣ (ε, v) admissible process

for problem(2.3) with initial conditionε(t) = ξ
}

. (2.5)

The interest in the value function follows from the fact that this function is related to
the Lagrange multiplierλ by the formula:λ(t) = ∂V/∂ε(t, ε̄), where ¯ε is an optimal
trajectory.

From the control theory we know that the value function is a solution of the
Hamilton-Jacobi equation

∂V

∂t
(t, ε) +H(t, ε,

∂V

∂ε
(t, ε)) = 0. (2.6)

Now, making the ansatz:V (t, ε) = (1/2)〈ε, Q(t)ε〉, with Q : [0, T ] → R, we are able
to rewrite (2.6) in the form

〈ε, Q′(t)ε〉+ 〈ε, ε〉 − 〈Q(t)ε, FF ∗Q(t)ε〉 = 0.

Since this equation must hold for allε ∈ X, the functionQ can be obtained by solving
the Riccati equation

Q′(t) = −I + Q(t)FF ∗Q(t). (2.7)

Notice that the cost of all admissible processes for an initial condition of the type
(T, ε) is zero. Therefore we have to consider the Riccati equation (2.7) with the final
condition

Q(T ) = 0. (2.8)

Once we have solved the initial value problem (2.7), (2.8), the Lagrange multiplier
is given byλ(t) = Q(t)ε̄(t) and the optimal control is obtained by the formula ¯v(t) =
−F ∗Q(t)ε̄(t). Therefore, the optimal trajectory of problem (2.2) is defined via

ū′ = −F ∗Q(t)[Fū(t)− y], ū(0) = u0. (2.9)
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We use the optimal trajectory defined by the initial value problem (2.9) in order to
define a family of reconstruction operatorsRT : X → X, T ∈ R+,

RT (y) := ū(T ) = u0 −
∫ T

0
F ∗Q(t)[Fū(t)− y] dt. (2.10)

We shall return to the operators{RT } in Section 3 and prove that the family of opera-
tors defined in (2.10) is a regularization method for (1.2) (see, e.g., [7]).

2.2. Dynamic inverse problems

In the sequel we consider the dynamic inverse problem described in (1.1). As in the
previous subsection, we shall look for a continuous regularization strategy.

We start by considering the constrained optimization problem
Mimimize J(u, v) :=

1
2

∫ T

0

[
〈F (t)u(t)− y(t), L(t)[F (t)u(t)− y(t)]〉

+ 〈v(t),M(t)v(t)〉
]
dt

s.t. u′ = A(t)u + B(t)v(t), t ∈ [0, T ], u(0) = u0,

(2.11)

whereF (t), u(t) andy(t) are defined as in (1.1),v(t) ∈ X, t ∈ [0, T ], L(t) : Y → Y ,
M(t) : X → X, A(t) ≡ I : X → X, B(t) ≡ 0 andu0 ∈ X.

Following the footsteps of the previous subsection, we define the first Hamilton
functionH : [0, T ]×X3 → R by

H(t, u, λ, v) := 〈λ, v〉+ (1/2)[〈F (t)u− y(t), L(t)(F (t)u− y(t))〉+ 〈v,M(t)v〉].

Thus, it follows from the maximum principle: 0= ∂H/∂v(t, u(t), λ(t), v(t)) =
λ(t) + M(t)v(t), and we obtain a relation between the optimal control and the La-
grange parameter, namely: ¯v(t) = −M−1(t)λ(t).

As before, we define the second Hamilton functionH : R×X2 → R

H(t, u, λ) := (1/2)〈F (t)u− y(t), L(t)(F (t)u− y(t)〉 − (1/2)〈λ, M(t)−1λ〉.

Sinceλ(t) = ∂V/∂u(t, u), whereV : [0, T ] × X → R is the value function of prob-
lem (2.11), it is enough to obtainV . This is done by solving the Hamilton–Jacobi (HJ)
equation (see (2.6))

0 = Vt + (1/2)〈F (t)u− y(t), L(t)(F (t)u− y(t))〉 − (1/2)〈Vu,M(t)−1Vu〉.

We make the ansatzV (t, u) = (1/2)〈u, Q(t)u〉 + 〈b(t), u〉 + g(t), with Q : [0, T ] →
L(X), b : [0, T ] → X andg : R → R. Then, we are able to rewrite the HJ equation
above in the form of a polynomial equation inu. Moreover, the quadratic, the linear
and the constant terms of this polynomial equation must all vanish. Thus we obtain

Q′ = Q∗M(t)−1Q− F ∗(t)L(t)F (t),

b′ = Q(t)∗M(t)−1b + F ∗(t)L(t)y(t).
(2.12)
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The final conditionsQ(T ) = 0, b(T ) = 0 are derived just like in the previous subsec-
tion1. Once the above system is solved, the optimal control ¯u is obtained by solving

ū′(t) = −M−1(t)Vu(t, u) = −M−1(t)[Q(t)ū(t) + b(t)] (2.13)

with initial conditionū(0) = u0.
Following the ideas of the previous tutorial subsection, we shall choose a family of

operators{Mα, Lα}α>0 and use the corresponding optimal trajectories ¯uα in order to
define a family of reconstruction operatorsRα : L2((0, T ); Y ) → H1((0, T ); X),

Rα(y) := u0 −
∫ t

0
M−1

α (s)[Q(s)ū(s) + b(s)] ds.

The regularization properties of the operators{Rα} will be analyzed in Section 3.

3. Analysis of regularization properties

3.1. Static inverse problems

In this section we investigate the regularization properties of the operatorRT intro-
duced in (2.10). Consider the Riccati equation (2.7) for the operatorQ: We may ex-
press the operatorQ(t) via the spectral family{Fλ} of FF ∗ (see e.g. [7]). Hence, we
make the ansatz

Q(t) =
∫

q(t, λ) dFλ.

Assuming thatq(t, λ) is C1 we may find from (2.7) together with the boundary condi-
tion att = T that∫ ( d

dt
q(t, λ) + 1− q(t, λ)2λ

)
dFλ = 0, q(T, λ) = 0.

Hence, we obtain an ordinary differential equation forq:

d

dt
q(t, λ) = −1 + λq(t, λ)2. (3.1)

The solution to these equations is given by

q(t, λ) = − 1√
λ

tanh(
√

λ (t− T )) =
1√
λ

tanh(
√

λ (T − t)). (3.2)

If t < T , thenQ(t) is nonsingular, since limx→0 tanh(xa)/x = a and tanh(ax)/x is
monotonically decreasing forx > 0. Hence the spectrum ofQ(t) is contained in the
interval [tanh((T − t)‖F‖)/‖F‖, (T − t)]. Now consider the evolution equation (2.9):

1Since functiong is not needed for the computation of the optimal trajectory, we omit the expression of the
corresponding dynamic.
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The operatorQ(t) can be expressed asQ(t) = q(t, FF ∗); by usual spectral theoretic
properties (see, e.g., [7]) it holds that

F ∗q(t, FF ∗) = q(t, F ∗F )F ∗.

Hence we obtain the problem

u′(t) = −q(t, F ∗F ) (F ∗Fu(t)− F ∗y) , (3.3)

u(0) = u0. (3.4)

We may again use an ansatz via spectral calculus: if we set

u(t) =
∫

g(t, λ) dEλF ∗y

whereEλ is the spectral family ofF ∗F , we derive an ordinary differential equation
for g. Similar as above, we can express the solution to (3.3,3.4) in the form

u(t) =
∫

1
λ

(
1− cosh(

√
λ(T − t))

cosh(
√

λT )

)
dEλF ∗y +

∫
cosh(

√
λ(T − t))

cosh(
√

λT )
dEλu0. (3.5)

Settingt = T we find an approximation of the solution

uT := u(T ) =
∫

1
λ

(
1− 1

cosh(
√

λT )

)
dEλF ∗y +

∫
1

cosh(
√

λT )
dEλu0. (3.6)

Note the similarity to Showalter‘s methods [7], where the term exp(λT ) instead of
cosh(

√
λT ) appears.

Theorem 3.1. The operatorRT in (2.10) is a regularization operator with qualifica-
tion µ0 = ∞:

If the data are exact,y = Fu† andu† satisfies a source condition for someµ > 0

∃ ω ∈ X : u† = (F ∗F )µω, (3.7)

we have the estimate
‖uT − u†‖ ≤ CµT−2µ.

If the data are contaminated with noise,‖y − yδ‖ ≤ δ and y = Fu† with u† as
in (3.7), then we have

‖uT,δ − u†‖ ≤ CµT−2µ + δT.

In particular, the a-priori parameter choiceT ∼ δ−1/(2µ+1) yields the optimal order
convergence rate

‖uT,δ − u†‖ ∼ δ2/(2µ+1).

Proof: See [12, Theorem 3.1].

Comparing the dynamic programming approach with the Showalter method, one
observes that they are quite similar, withT 2

dyn ∼ TSw. Hence, to obtain the same order
of convergence we only need

√
TSw of the time for the Showalter method.
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3.2. Dynamic inverse problems

Before we examine the regularization properties of the method derived in Subsec-
tion 2.2, we state a result about existence and uniqueness of the Riccati equa-
tions (2.12).

Theorem 3.2. If F , L, M ∈ C([0, T ],L(X, Y )), then the Riccati equation(2.12)has
a unique symmetric positive semidefinite solution inC1([0, T ],L(X)).

Proof: See [11, Theorem 3.1].

Remark 3.3. It is well known in control theory that the existence of a solution to (2.12)
can be constructed from the functional

V (t, ξ) := min
u(t)=ξ

u∈H1([t,T ],X)

1
2

∫ T

t

〈F (s)u(s)− y(s), L(s)[F (s)u(s)− y(s)]〉

+ 〈u′(s),M(s)u′(s)〉 ds. (3.8)

This functional is quadratic inu and, from the Tikhonov regularization theory (see,
e.g., [7]), it admits a unique solutionu, and is quadratic inξ. Furthermore, the leading
quadratic part(ξ, Q(t)ξ) is a solution to the Riccati Equation.

Next we consider regularization properties of the method derived in Subsection 2.2.
The following lemma shows that the solutionu of (2.13) satisfies the necessary opti-
mality condition for the functional

J(u) =
1
2

∫ T

0
〈F (s)u(s)− y(s), L(s)[F (s)u(s)− y(s)]〉

+ 〈u′(s),M(s)u′(s)〉 ds (3.9)

(notice that this is the cost functionalJ(u, v) in (2.11) withv = u′).

Lemma 3.4. LetQ(t), b(t), u(t) be defined by(2.12), (2.13), together with the bound-
ary conditionsQ(T ) = 0, b(T ) = 0 andu(0) = u0. Then,u(t) solves

F ∗(t)L(t)F (t)u(t)− (M(t)u(t)′)′ = F ∗(t)L(t)y(t), (3.10)

together with the boundary conditionsu(0) = u0, u′(T ) = 0.

Proof: See [11, Lemma 3.3].

Since the cost functional in (3.9) is quadratic, the necessary first order conditions
are also sufficient. Thus, the solutionu(t) of (3.10) is actually a minimizer of this
functional. Including the boundary conditions we obtain the following corollary:
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Corollary 3.5. The solutionu(t) of (3.10) is a minimizer of the Tikhonov functional
in (3.9)over the linear manifold

H := {u ∈ H1([0, T ], X) | u(0) = u0}.

In particular, this means that the above procedure is a regularization method for
the inverse problem (1.1). Bellow we summarize a stability and convergence result.
The proof uses classical techniques from the analysis of Tikhonov type regularization
methods (cf. [7, 8]) and thus is omitted.

Theorem 3.6. LetM(t) ≡ αI, α > 0, L(t) > 0, t ∈ [0, T ] andJα be the correspond-
ing Tikhonov functional given by(3.9).
Stability:Let the datay(t) be noise free and denote byuα(t) the minimizer ofJα. Then,
for every sequence{αk}k∈N converging to zero, there exists a subsequence{αkj}j∈N,
such that{uαkj

}j∈N is strongly convergent. Moreover, the limit is a minimal norm so-
lution.
Convergence:Let‖yδ(t)− y(t)‖ ≤ δ. If α = α(δ) satisfies

lim
δ→0

α(δ) = 0 and lim
δ→0

δ2/α(δ) = 0.

Then, for a sequence{δk}k∈N converging to zero, there exists a sequence{αk :=
α(δk)}k∈N such thatuαk

converges to a minimal norm solution.

For the sake of completeness we also include the corresponding algorithms for the
discretized dynamical case. Instead of having a continuous time variable we assume
that the data and the operator are given on discrete time stepsk = 1, . . . , N . Instead
of (3.9) a functional is used where the integrals are replaced by sums, the derivatives by
differences very similar to (1.4). The operatorsF (t), L(t) are replaced by sequences
Fk, Lk, k = 1, . . . N , the datay(t) are now given as a sequenceyk and instead of a time
dependent solutionu(t) we are looking for a sequence of solutionsuk. The dynamic
programming approach goes through in a similar manner and as a result we obtain an
iterative procedure instead of the evolution equations (2.12), (2.13). The details can
be found in [11, 12], we just state the iterations. SetQN+1 := 0, bN+1 := 0 and fix
an initial guessu0. The corresponding minimizer of the discrete version of (3.9) can
be found by two backwards iterations onQ and b and a forward iteration onu (for
simplicity we putM = I):

Qk−1 = (Qk + α−1I)−1Qk + F ∗
k−1Lk−1Fk−1, k = N + 1, . . . , 2, (3.11)

bk−1 = (Qk + α−1I)−1bk − F ∗
k−1Lk−1yk−1, k = N + 1, . . . , 2, (3.12)

uk = (Qk + αI)−1(αuk−1 − bk), k = 1, . . . , N. (3.13)

It can be shown that the sequenceuk defined in this way satisfies the optimality con-
ditions for (3.9) and that it is a minimizer similar as in Corollary 3.5. By standard
Tikhonov theory this implies that this iterative procedure is a regularization.
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4. Application to a dynamical EIT problem

4.1. The model

As a motivation for considering dynamical inverse problem we stated the dynamical
impedance tomography problem, namely to identify a time-dependent conductivity
coefficient in (1.3), from the measurements of the associated Dirichlet-to-Neumann
(DN) mapΛσ. To be more concrete we assume that for a fixed timet u( · , t) is a so-
lution to (1.3) on a fixed domainΩ, with Dirichlet dataf ∈ H1/2(∂Ω). For anyf
we can measure the associated Neumann datag = ∂u( · , t)/∂n ∈ H−1/2(∂Ω). The
knowledge of all pairs of Cauchy data(f, g) is equivalent to knowing the DN map
Λσ( · ,t) : f → g. Note that the equation (1.3) does not involve derivatives oft and the
time-dependence ofu and henceΛσ( · ,t) is only introduced by the time-dependence of
the coefficientσ( · , t).

The inverse problem associated to dynamical EIT is to identify the parameterσ( · , t)
on Ω × [0, T ] from the time-dependent DN mapΛσ( · ,t). Hence, in our notation to
parameter-to-data mapF (σ) is σ → Λσ( · ,t). However, this map is nonlinear and does
not fit into the framework of our work, which right now only deals with linear operators.
It is therefore necessary to linearize the problem. We assume that the conductivity coef-
ficient is a small (time-dependent) perturbation of a constant background conductivity:
σ(x, t) = 1 + γ(x, t). In this case it makes sense to subtract the constant-conductivity
operatorΛ1 from the data and linearize the parameter-to-data map:

γ(x, t) → Λ1+γ( · ,t) − Λ1 ∼ F ′(1)γ,

HereF ′(1) denotes the Fréchet-derivative of the nonlinear parameter-to-data map at
conductivity 1. Now the forward operatorF (t) in (1.1) can be identified withF ′(1)
and the problem fits into the framework of the linear dynamical inverse problems. Note
that in this case the forward operator does not depend on time, but the data and the
solution do, so that we have a problem of the formFu(t) = y(t), which of course can
be handled by the dynamic programming approach. Since we use simulated datay(t)
we can either consider linearized data perturbed with random noisey(t) = F ′(1)γ(t)+
noise, or we can as well take the nonlinear datay(t) = Λ1+γ( · ,t) − Λ1 and treat the
linearization error as a data error.

The linearized operator DN operatorF ′(1)γ has the following form: It maps the
Dirichlet valuesf to the Neumann valuesg = (∂w/∂n)|∂Ω, with w the solution of of
the linearized problem of the form

∆w = −∇ · (γ( · , t)∇u0), w
∣∣
∂Ω = 0,

∆u0 = 0, u0
∣∣
∂Ω = f.

(4.1)

Remark 4.1. Let us note that the dynamical inverse problems approach can also be
used as adimension reduction, in the sense that we can solve a three-dimensional prob-
lem by considering it as a two-dimensional one with a parameter dependent operator
and solution. This parameter represents the third dimension. If the dependence of the
forward operator on the third dimension is low we can interpret the third dimension
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as a time-variable and use the framework in this paper to solve a three-dimensional
problem by using only the corresponding operators for the planar case, which obvi-
ously is much simpler. Such an approach works, if the the three-dimensional problem
can be approximated by two-dimensional ’slices’, as it is usually done in computerized
tomography or electrical impedance tomography.

But contrary to the standard approach where each 2D-slice is treated separately, our
approach allows a coupling of the solutions in each slice, to build a continuous 3D
solution. Moreover, we do not have the restriction that each two-dimensional problem
is of same type, since we allow our operatorF to depend on time (or the third space
dimension). This can happen if, for instance, the geometry of the problem changes with
the third dimension. All in all we think that the dynamical programming framework
can improve a 2D-slicing approach.

Let us consider the computational aspect of the problem. For the numerical setting
it is more convenient to work with the Neumann-to-Dirichlet (ND) operator instead of
the DN, since it is a smoothing operator, whereas the latter is not.

For a discretization we use piecewise linear finite elementφi for the solutions of
the differential equation (1.3) or its linearized version (4.1). Forγ we use piecewise
constant elements. The discretization of the boundary function is simply obtained by
using the boundary trace of the finite elementsφ̃i = φi|∂Ω.

It is well know that with finite elements the Neumann problem has a discrete form(
A11 A12

A21 A22

)(
ui

ub

)
=

(
0

Mg

)
,

where the matricesA11, A12, A21, A22 are sub-matrices of the stiffness matrixAi,j =∫
Ω γ∇φi∇φj with respect of a splitting of the indices into the interior and boundary

components. The matrixM is coming from the contribution of the Neumann-data
g =

∑
giφ̃i in the discretized equations and is defined as

Mi,l =
∫

∂Ω
φ̃lφ̃i dσ. (4.2)

It is easy to show that the discretized ND mapG is given the Schur-Complement of the
stiffness matrix with respect to the interior components:

G :=
(
A22−A21A

−1
11 A12

)−1
M. (4.3)

SinceG is in the data space we need a Hilbert space to measure the error. For this task
the Hilbert-Schmidt inner product can be used as in [11]. IfG1, G2 are discretized ND
maps we use as inner product

(G1, G2) = trace(G1 .G2).

4.2. Numerical results

In this section we present the numerical results for the dynamical impedance tomogra-
phy. We consider Equation (1.3) on the unit ball with a time-dependent conductivity
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Figure 1. Reconstruction results for linearized data without noise

parameterσ(x, t) = 1+ γ(x, t), whereγ represents an inhomogeneity. For the first ex-
ample we used noise-free data for the linearized problem, i.e.y( · , t) = F ′(1)γ( · , t).

The inhomogeneityγ was chosen as the characteristic function of two circles one
with fixed radiusr = 0.1 the other one with increasing radius moving around the cen-
ter of the unit ball on an orbit of radius 0.5. The space domain was discretized by a
triangular mesh where we used both piecewise linear finite elements for the solution
u of Equation (1.3) as well as forγ. The time-domain was discretized into 50 uni-
form time-steps. Figure 1 shows the reconstructed solution over time. The results were
computed by the discrete iterations defined in (3.11)–(3.13). The location of the circles
can be clearly seen from the pictures. Note that we used anL2-regularization matrix,
hence the images are blurred, which is to be expected with such a linear regularization.
For a characteristic functionγ, as in our example, a bounded variation type regular-
ization would be suited better, but it is not clear how to incorporate such a nonlinear
regularization term into this dynamic programming framework.

For the second example we used the full nonlinear datay = Λ1+γ( · ,t)−Λ1 ∼ F ′(1)γ,
and added 1% white noise to the data. But for the computation of the evolution we still
used the linearized operatorF ′(1). The results are shown in Figure 2. Also in this
case — even with a systematical error due to the linearization — we still get fairly
good results.
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Figure 2. Reconstruction results for full nonlinear data with 1 % random noise

5. Conclusions

Each method derived in this paper require, in a first step, the solution of an evolutionary
equation (of Hamilton-Jacobi type). In a second step, the components of the solution
vector{uk} are computed one at a time. This strategy reduces significantly both the
size of the systems involved in the solution method, as well as storage requirements
needed for the numerical implementation. These points turn out to become critical for
long time measurement processes.

Some detailed considerations about complexity: Assume that allF (tk) are dis-
cretized as(n × m) matrices. The main effort is the matrix multiplication for the
update step forQk: In each step this requiresO(n3 + n2m) calculations. Hence the
overall complexity is of the orderO(nT (n3 +n2m)) operations. If the discrete version
is used, then in each step a matrix-inversion has to be performed, which is also of the
orderO(n3). which leads to the same complexity as above. In contrast, the method in
[20] requiresO((n + nT )3 + (nT + m)nnT ). Although this is only of cubic order in
comparison to a quartic order complexity for the dynamic programming approach, it is
cubic innT . Hence ifnT is large, the method proposed in this paper (which is linear
in nT ) will be more effective than the method in [20].
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