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egy for obtaining stable solutions of nonlinear systems of ill-posed operator equations. We
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1. Introduction

In this paper, we propose a new method for obtaining regularized approximations of systems of nonlinear ill-posed oper-
ator equations.

The inverse problem we are interested in consists of determining an unknown physical quantity x 2 X from the set of data
ðy0; . . . ; yN�1Þ 2 YN , where X, Y are Hilbert spaces and N P 1. In practical situations, we do not know the data exactly. Instead,
we have only approximate measured data yd

i 2 Y satisfying
kyd
i � yik 6 di; i ¼ 0; . . . ;N � 1 ð1Þ
with di > 0 (noise level). We use the notation d :¼ ðd0; . . . ; dN�1Þ. The finite set of data above is obtained by indirect measure-
ments of the parameter, and this process being described by the model,
FiðxÞ ¼ yi; i ¼ 0; . . . ;N � 1; ð2Þ
where Fi : Di � X ! Y , and Di are the corresponding domains of definition.
Standard methods for the solution of system (2) are based in the use of iterative-type regularization methods [1,7,13,16,19]

or Tikhonov-type regularization methods [7,23,30,32,33] after rewriting (2) as a single equation FðxÞ ¼ y, where
F :¼ ðF0; . . . ; FN�1Þ :
\N�1

i¼0

Di ! YN ð3Þ
. All rights reserved.
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and y :¼ ðy0; . . . ; yN�1Þ. However, these methods become inefficient if N is large or the evaluations of FiðxÞ and F0iðxÞ
� are

expensive. In such a situation, Kaczmarz-type methods [6,15,22,26], which cyclically consider each equation in (2) sepa-
rately, are much faster [24] and are often the method of choice in practice.

For recent analysis of Kaczmarz-type methods for systems of ill-posed equations, we refer the reader to [4,10,11,17].
The starting point of our approach is the steepest-descent method [7,29] for solving ill-posed problems. Motivated by the

ideas in [10,11], we propose in this article a loping Steepest-Descent-Kaczmarz method (L-SDK method) for the solution of (2).
This iterative method is defined by
xd
kþ1 ¼ xd

k � xkaksk; ð4Þ
where
sk :¼ F0½k�ðxd
kÞ
�ðF½k�ðxd

kÞ � yd
½k�Þ; ð5Þ

xk :¼
1; kF½k�ðxd

kÞ � yd
½k�kP sd½k�;

0; otherwise;

(
ð6Þ

ak :¼ Urelðkskk2
=kF0½k�ðxd

kÞskk2Þ; xk ¼ 1;
amin; xk ¼ 0:

(
ð7Þ
Here, amin > 0, s 2 ½2;1Þ are appropriate chosen numbers (see (13) and (14)), ½k� :¼ ðkmodNÞ 2 f0; . . . ;N � 1g, and
xd

0 ¼ x0 2 X is an initial guess, possibly incorporating some a priori knowledge about the exact solution. The function
Urel : ð0;1Þ ! ð0;1Þ defines a sequence of relaxation parameters and is assumed to be continuous, monotonically increas-
ing, bounded by a constant amax, and to satisfy UðsÞ 6 s (see Fig. 1).

If M is an upper bound for kF0½k�ðxÞk, then kskk2
=kF0½k�ðxd

kÞskk2 P 1=M2 (cf. Lemma 3.2). Hence, the relaxation function Urel

needs only be defined on ½1=M2;1Þ. In particular, if one chooses UrelðsÞ ¼ amin being constant on that interval, then
ak ¼ amin and the L-SDK method reduces to the loping Landweber–Kaczmarz (L-LK) method considered in [10,11]. The con-
vergence analysis of the L-LK method requires amin 6 1=M2, whereas the adaptive choice of the relaxation parameters in the
present paper allows ak being much larger than 1=M2.

The L-SDK method consists in incorporating the Kaczmarz strategy (with the loping parameters xk) in the steepest-des-
cent method. This strategy is analog to the one introduced in [11] regarding the Landweber–Kaczmarz iteration. As usual in
Kaczmarz-type algorithms, a group of N subsequent steps (starting at some multiple k of N) shall be called a cycle. The iter-
ation should be terminated when, for the first time, all xk are equal within a cycle. That is, we stop the iteration at
kd
� :¼ arg minflN 2 N : xd

lN ¼ xd
lNþ1 ¼ � � � ¼ xd

lNþN�1g: ð8Þ
Notice that kd
� is the smallest multiple of N such that
xkd
�
¼ xkd

�þ1 ¼ � � � ¼ xkd
�þN�1: ð9Þ
In the case of noise free data, di ¼ 0 in (1), we choose xk � 1 and the iteration (4)–(7) reduces to the Steepest-Descent-Kacz-
marz (SDK) method, which is closely related to the Landweber–Kaczmarz (LK) method considered in [17].

It is worth noticing that, for noisy data, the L-SDK method is fundamentally different from the SDK method: The bang-
bang relaxation parameter xk effects that the iterates defined in (4) become stationary if all components of the residual vector
kFiðxd

kÞ � yd
i k fall below a pre-specified threshold. This characteristic renders (4)–(7) a regularization method (see Section 3).

Another consequence of using these relaxation parameters is the fact that, after a large number of iterations, xk will vanish
for some k within each iteration cycle. Therefore, the computational expensive evaluation of F0½k�ðxkÞ� might be loped, making
the L-SDK method in (4)–(7) a fast alternative to the LK method in [17]. Since in praxis the steepest-descent method performs
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Fig. 1. Typical examples for relaxation function Urel .
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better than the Landweber method, the L-SDK is expected to be more efficient than the L-LK method [10,11]. Our numerical
experiments (mainly for the nonlinear problem considered in Section 5) corroborate this conjecture.

The article is outlined as follows. In Section 2, we formulate basic assumptions and derive some auxiliary estimates re-
quired for the analysis. In Section 3, we provide a convergence analysis for the L-SDK method. In Sections 4 and 5 we compare
the numerical performance of the L-SDK method with other standard methods for inverse problems in photoacoustic tomog-
raphy and in semiconductors, respectively.

2. Assumptions and basic results

We begin this section by introducing some assumptions, that are necessary for the convergence analysis presented in the
following section. These assumptions derive from the classical assumptions used in the analysis of iterative regularization
methods [7,16,29].

First, we assume that the operators Fi are continuously Fréchet differentiable, and also assume that there exist x0 2 X,
M > 0, and q > 0 such that
kF0iðxÞk 6 M; x 2 Bqðx0Þ �
\N�1

i¼0

Di: ð10Þ
Notice that xd
0 ¼ x0 is used as starting value of the L-SDK iteration. Next we make an uniform assumption on the nonlinearity

of the operators Fi.
Namely, we assume that the local tangential cone condition [7,16]
kFiðxÞ � Fið�xÞ � F0iðxÞðx� �xÞk 6 gkFiðxÞ � Fið�xÞk; x; �x 2 Bqðx0Þ ð11Þ
holds for some g < 1=2. Moreover, we assume the existence of and element
x� 2 Bq=2ðx0Þ such that Fðx�Þ ¼ y; ð12Þ
where y ¼ ðy0; . . . ; yN�1Þ are the exact data satisfying (1).
We are now in position to choose the positive constants amin, s in (7) and (6). For the rest of this article, we shall assume
amin :¼ Urelð1=M2Þ; ð13Þ

s P 2
1þ g

1� 2g
P 2: ð14Þ
In particular, for linear problems we can choose s equal to 2.
In the sequel we verify some basic results that are necessary for the convergence analysis derived in the next section. The

first result concerns the well-definedness and positivity of the relaxation parameter ak.

Lemma 2.1. Let assumptions (10)–(12) be satisfied. Then the coefficients ak in (7) are well-defined and positive.

Proof. If xk ¼ 0, the assertion follows from (7). If xk ¼ 1, then kF½k�ðxd
kÞ � yd

½k�kP sd½k� and the assertion is a consequence of
[29, Lemma 3.1], applied to F½k� instead of F. h

In the next lemma, we prove an estimate for the step size of the L-SDK iteration.

Lemma 2.2. Let sk and ak be defined by (5) and (7). Then
akkskk2
6 kF½k�ðxd

kÞ � yd
½k�k

2; k 2 N: ð15Þ
Proof. It is enough to consider the case xk ¼ 1. It follows from (7) that
akkskk2 ¼ Urel
kskk2

kF0½k�ðxd
kÞskk2

 !
kskk2

6
kskk4

kF0½k�ðxd
kÞskk2 : ð16Þ
Moreover, from the definition of sk we obtain
kF0½k�ðxd
kÞskk ¼ kF0½k�ðxd

kÞF
0
½k�ðxd

kÞ
�½F½k�ðxd

kÞ � yd
½k��k;

kskk2
6 kF0½k�ðxd

kÞF
0
½k�ðxd

kÞ
�½F½k�ðxd

kÞ � yd
½k��kkF½k�ðxd

kÞ � yd
½k�k:
Now, substituting the last two expressions in (16), shows (15). h

The following Lemma is an important auxiliary result, which will be used at several places throughout this article.

Lemma 2.3. Let xd
k, ak, xk, and sk be defined by (4)–(7) and assume that (10)–(12) hold true. If xd

k 2 Bq=2ðx�Þ for some k P 0, then
kxd
kþ1 � x�k2 � kxd

k � x�k2
6 xkakkF½k�ðxd

kÞ � yd
½k�kðð2g� 1ÞkF½k�ðxd

kÞ � yd
½k�k þ 2ð1þ gÞd½k�Þ: ð17Þ
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Proof. If xk ¼ 0, then xkþ1 ¼ xk and (17) follows with equality. If xk ¼ 1, it follows from (4) and (5) and Lemma 2.2 that
1 Thi
kxd
kþ1 � x�k2 � kxd

k � x�k2 ¼ 2hxd
k � x�; xd

kþ1 � xd
ki þ kxd

kþ1 � xd
kk

2 ¼ 2akhxd
k � x�; F0½k�ðxd

kÞ
�ðyd
½k� � F½k�ðxd

kÞÞi þ a2
kkskk2

6 2kakhyd
½k� � F½k�ðxd

kÞ; F
0
½k�ðxd

kÞðxd
k � x�Þi þ akkF½k�ðxd

kÞ � yd
½k�k

2

6 akð2hyd
½k� � F½k�ðxd

kÞ; F
0
½k�ðxd

kÞðxd
k � x�Þ � F½k�ðx�Þ þ F½k�ðxd

kÞi þ 2hyd
½k� � F½k�ðxd

kÞ; y½k� � yd
½k�i

� kyd
½k� � F½k�ðxd

kÞk
2Þ:
Now, applying (11) with x ¼ x� and �x ¼ xd
k 2 Bq=2ðx�Þ � Bqðx0Þ, leads to
kxd
kþ1 � x�k2 � kxd

k � x�k2
6 xkakkF½k�ðxd

kÞ � yd
½k�kð2gkF½k�ðxd

kÞ � y½k�k þ 2d½k� � kF½k�ðxd
kÞ � yd

½k�kÞ:
The last inequality and (1) show (17). h

Our next goal is to prove a monotony property, known to be satisfied by other iterative regularization methods, e.g., by
the Landweber [7], the steepest-descent [29], the LK [17], and the L-LK [11] method.

Proposition 2.4 (Monotonicity). Under the assumptions of Lemma 2.3,
kxd
kþ1 � x�k2

6 kxd
k � x�k2

; k 2 N: ð18Þ
Moreover, all iterates xd
k remain in Bq=2ðx�Þ � Bqðx0Þ and satisfy (17).

Proof. From (12) it follows that x0 2 Bq=2ðx�Þ. If xd ¼ 0, then x1 satisfies (18) with equality and x1 2 Bq=2ðx�Þ � Bqðx0Þ. If xd 6¼ 0,
then Lemma 2.3 implies
kxd
1 � x�k2 � kxd

0 � x�k2 P ð2g� 1ÞkF0ðxd
0Þ � yd;0k þ 2ð1þ gÞd0 P d0ðð2g� 1Þsþ 2ð1þ gÞÞP 0:
Therefore (18), for k ¼ 0, follows from (14). In particular, x1 2 Bq=2ðx�Þ. An inductive argument implies (18) and that
xk 2 Bq=2ðx�Þ � Bqðx0Þ for all k 2 N. The assertions therefore follows from Lemma 2.3. h
3. Convergence analysis of the loping Steepest-Descent-Kaczmarz method

In this section, we provide a complete convergence analysis for the L-SDK iteration, showing that it is a convergent reg-
ularization method in the sense of [7] (see Theorems 3.3 and 3.6 below). Throughout this section, we assume that (10)–(13)
hold, and that xd

k, ak, xk, and sk are defined by Eqs. (4)–(7).
Our first goal is to prove convergence of the L-SDK iteration for d ¼ 0. For exact data y ¼ ðy0; . . . ; yN�1Þ, the iterates in (4)

are denoted by xk.1

Lemma 3.1. There exists an x0-minimal norm solution of (2) in Bq=2ðx0Þ, i.e., a solution xy of (2) such that
kxy � x0k ¼ inffkx� x0k : x 2 Bq=2ðx0Þ and FðxÞ ¼ yg:
Moreover, xy is the only solution of (2) in Bq=2ðx0Þ \ ðx0 þ kerðF 0ðxyÞÞ?Þ.

Proof. Lemma 3.1 is a consequence of [13, Proposition 2.1]. A detailed proof can be found in [16]. h

Lemma 3.2. For all k 2 N, we have ak P amin.

Proof. For xk ¼ 0 the claimed estimate holds with equality. If xk ¼ 1, it follows from (10) that
kskk2
=kF0½k�ðxd

kÞskk2 P kF0½k�ðxd
kÞk
�2 P 1=M2:
Now the monotonicity of Urel implies ak P UrelðM�2Þ ¼ amin. h

Throughout the rest of this article, xy denotes the x0-minimal norm solution of (2). We define ek :¼ xy � xk. From Propo-
sition 2.4, it follows that (17) holds for all k. By summing over all k, this leads to
X1
i¼0

aiky½i� � F½i�ðxiÞk2
6
kx0 � xyk

1� 2g
<1: ð19Þ
Eq. (19) and the monotony of kekk shown in Proposition 2.4 are main ingredients in the following proof of the convergence of
the SDK iteration.
s is a standard notation used in the literature.
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Theorem 3.3 (Convergence for exact data). For exact data, the iteration ðxkÞ converges to a solution of (2), as k!1. Moreover,
if
NðF0ðxyÞÞ �NðFðxÞÞ for all x 2 Bqðx0Þ; ð20Þ
then xk ! xy.

Proof. From (18), it follows that kekk decreases monotonically and therefore that kekk converges to some � P 0. In the fol-
lowing, we show that ek is in fact a Cauchy sequence.

For k ¼ k0N þ k1 and l ¼ l0N þ l1 with k 6 l and k1; l1 2 f0; . . . ;N � 1g, let n0 2 fk0; . . . ; l0g be such that
XN�1

i1¼0

kFi1 ðxNn0þi1 Þ � yi1k 6
XN�1

i1¼0

kFi1 ðxNi0þi1 Þ � yi1k; i0 2 fk0; . . . ; l0g: ð21Þ
Then, with n :¼ Nn0 þ N � 1, we have
kek � elk 6 kek � enk þ kel � enk ð22Þ
and
ken � ekk2 ¼ kekk2 � kenk2 þ 2hen � ek; eni2;
ken � elk2 ¼ kelk2 � kenk2 þ 2hen � el; eni2:

ð23Þ
For k!1, the first two terms of (23) converge to �� � ¼ 0. Therefore, in order to show that ek is a Cauchy sequence, it is
sufficient to prove that hen � ek; eni and hen � el; eni converge to zero as k!1.

To that end, we write i ¼ Ni0 þ i1, i1 2 f0; . . . ;N � 1g and set i� :¼ Nn0 þ i1. Then, using the definition of the Steepest-
Descent-Kaczmarz iteration it follows that
jhen � ek; enij ¼
Xn�1

i¼k

aihF0i1 ðxiÞ�ðyi1 � Fi1 ðxiÞÞ; xy � xni
�����

����� 6
Xn�1

i¼k

ai hyi1 � Fi1 ðxiÞ; F0i1 ðxiÞðxy � xi� Þ þ F0i1 ðxiÞðxi� � xnÞi
��� ���

6

Xn�1

i¼k

aikyi1 � Fn1 ðxiÞkkF0i1 ðxiÞðxy � xi� Þk þ
Xl�1

i¼k

aikyi1 � Fi1 ðxiÞkkF0i1 ðxiÞðxi� � xnÞk: ð24Þ
From (11), it follows immediately that
kF0i1 ðxiÞðxy � xi� Þk 6 ð1þ gÞkyi1 � Fi1 ðxi� Þk: ð25Þ
Again using the definition of the Steepest-Descent-Kaczmarz iteration and Eqs. (7) and (10), it follows that
kF0i1 ðxiÞðxi� � xnÞk 6 Mkxi� � xnk 6 M
XN�2

j¼i1

ajkF0jðxNl0þjÞ�ðFjðxNn0þjÞ � yjÞk 6 amaxM2
XN�1

j¼0

kFjðxNn0þjÞ � yjk: ð26Þ
Substituting (25) and (26) in (24) leads to
jhen � ek; enij 6 c
Xn�1

i0¼k0

XN�1

i1¼0

aikyi1 � Fi1 ðxNi0þi1 Þk
XN�1

j¼0

kFjðxNn0þjÞ � yjk
 !

6 c
Xn�1

i0¼k0

XN�1

i1¼0

kyi1 � Fi1 ðxNi0þi1 Þk
 !2
with c :¼ amaxð1þ gþ amaxM2Þ. So, we finally obtain the estimate
jhen � ek; enij 6
Nc
amin

Xn�1

i0¼k0

XN�1

i1¼0

aNi0þi1kyi1 � Fi1 ðxNi0þi1 Þk
2
:

Because of (19), the last sum tends to zero for k ¼ Nk0 þ k1 !1, and therefore hen; en � eki ! 0. Analogously, one shows that
hen; en � eli ! 0. Therefore, ek is a Cauchy sequence and xk ¼ xy � ek converges to an element x� 2 X. Because all residuals
kF½k�ðxkÞ � y½k�k tend to zero, x� is solution of (2).

Now assume NðF0ðxyÞÞ �NðFðxÞÞ, for x 2 Bqðx0Þ. Then from the definition of xk it follows that
xkþ1 � xk 2 RðF0½k�ðxkÞ�Þ �NðF0½k�ðxkÞÞ? �NðF0ðxkÞÞ? �NðF0ðxyÞÞ?:
An inductive argument shows that all iterates xk are elements of x0 þNðF0ðxyÞÞ?. Together with the continuity of F0ðxyÞ this
implies that x� 2 x0 þNðF0ðxyÞÞ?. By Lemma 3.1, xy is the only solution of (2) in Bq=2ðx0Þ \ ðx0 þNðF0ðxyÞÞ?

�
, and so the second

assertion follows. h
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The second goal in this section is to prove that xd
k� converges to a solution of (2), as d! 0. First we verify that, for noisy

data, the stopping index kd
� defined in (8) is finite.

Proposition 3.4 (Stopping index). Assume dmin :¼minfd0; . . . ; dN�1g > 0. Then kd
� defined in (8) is finite, and
kFiðxd
kd
�
Þ � yd

i k < sdi; i ¼ 0; . . . ;N � 1: ð27Þ
Proof. Assume that for every l 2 N, there exists iðlÞ 2 f0; . . . ;N � 1g such that xlNþiðlÞ 6¼ xlN . From Proposition 2.4 follows that
we can apply (17) recursively for k ¼ 1; . . . ; lN and obtain
�kx0 � x�k2
6

XlN
k¼1

xkakkF½k�ðxd
kÞ � yd

½k�kð2ð1þ gÞd½k� � ð1� 2gÞkF½k�ðxd
kÞ � yd

½k�kÞ; l 2 N:
Using the fact that either xk ¼ 0 or kF½k�ðxd
kÞ � yd

½k�kP sd½k�, we obtain
kx0 � x�k2 P ðsð1� 2gÞ � 2ð1þ gÞÞ
XlN
k¼1

xkakd½k�kF½k�ðxd
kÞ � yd

½k�k: ð28Þ
Eq. (28), Lemma 3.2 and the fact that xl0Nþiðl0 Þ 6¼ xl0N for all l0 2 N, imply
kx0 � x�k2 P ðsð1� 2gÞ � 2ð1þ gÞÞlamindminðsdminÞ; l 2 N: ð29Þ
The right-hand side of (29) tends to infinity, which gives a contradiction. Consequently, fl 2 N : xlNþi ¼ xlN;0 6 i 6 N � 1g 6¼ ;
and the infimum in (8) takes a finite value.

To prove (27), assume to the contrary, that kFiðxd
kd
�
Þ � yd

i kP sdi for some i 2 f0; . . . ;N � 1g. From (6) and (8) it follows that,
xkd

�
¼ 1 and xd

kd
�þi
¼ xd

kd
�þiþ1

, respectively. Thus, Proposition 2.4 and Lemma 2.1 imply
0 6 ð2g� 1ÞkFiðxd
kd
�
Þ � yd

i k þ 2ð1þ gÞdi < diðð2g� 1Þsþ 2ð1þ gÞÞ:
This contradicts (14), concluding the proof of (27). h

The last auxiliary result concerns the continuity of xd
k at d ¼ 0. For y; yd 2 YN , d > 0, and k 2 N we define
Dkðd; y; ydÞ :¼ xkF0½k�ðxd
kÞ
�ðF½k�ðxd

kÞ � yd
½k�Þ � F0½k�ðxkÞ�ðF½k�ðxkÞ � y½k�Þ:
Lemma 3.5. For all k 2 N,
lim
d!0

supfkDkðd; y; ydÞk : yd 2 YN; kyi � yd
i k 6 dig ¼ 0: ð30Þ
Moreover, xd
kþ1 ! xkþ1, as d! 0.

Proof. We prove Lemma 3.5 by induction. The case k ¼ 0 is similar to the general case and is omitted.
Now, assume k > 0 and that (30) holds for all k0 < k. First, we note that (30) and the continuity of Urel obviously imply

xd
kþ1 ! xkþ1, as d! 0. For the proof of (30) we consider two cases. In the first case, xk ¼ 1, we have
kDkðd; y; ydÞk ¼ kF0½k�ðxd
kÞ
�ðF½k�ðxd

kÞ � yd
½k�Þ � F0½k�ðxkÞ�ðF½k�ðxkÞ � y½k�Þk:
In the second case, xk ¼ 0, we have kF½k�ðxd
kÞ � yd

½k�k 6 sdk and consequently
kDkðd; y; ydÞk 6 kF0½k�ðxkÞ�ðF½k�ðxkÞ � y½k�Þk 6 kF
0
½k�ðxd

kÞkðkF½k�ðxkÞ � F½k�ðxd
kÞk þ kF½k�ðxd

kÞ � yd
kk þ kyd

k � y½k�kÞ

6 kF0½k�ðxd
kÞkðkF½k�ðxkÞ � F½k�ðxd

kÞk þ ðsþ 1Þd½k�Þ:
Now (30) follows from (10), the continuity of F ½k� and F 0½k�, and the induction hypothesis (which implies xd
k ! xk). h

Theorem 3.6 (Convergence for noisy data). Assume ðdj
0; . . . ; dj

N�1Þ is a sequence in ð0;1ÞN with limj!1dj
i ¼ 0. Let ðyj

0; . . . ; yj
N�1Þ

be a sequence of noisy data satisfying
kyj
i � yik 6 dj

i; i ¼ 0; . . . ;N � 1; j 2 N
and let kj
:¼ k�ðdj; yjÞ denote the corresponding stopping index defined in (8). Then xdj

kj converges to a solution of (2), as j!1.
Moreover, if (20) holds, then xdj

kj ! xy.

Proof. Let x� denote the limit of the iterates xk which is a solution of (2), cf. Theorem 3.3. From Lemma 3.5 and the continuity
of Fi we know that, for any fixed k 2 N,
xdj

k ! xk; Fiðxdj

k Þ ! FiðxkÞ; as j!1: ð31Þ
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To show that xdj

kj ! x�, we first assume that kj has a finite accumulation point k�. Without loss of generality we may assume
that kj ¼ k� for all j 2 N. From Proposition 3.4 we know that kydj

i � Fiðxdj

k�
Þk < sdj

i and, by taking the limit j!1, that
yi ¼ Fiðxk� Þ. Consequently, xk� ¼ x� and xj

k�
! x� as j!1.

It remains to consider the case where kj !1 as j!1. To that end let e > 0. Without loss of generality we assume that kj

is monotonically increasing. According to Theorem 3.3, we can choose n 2 N such that kxkn � x�k < e=2. Eq. (31) implies that
there exists j0 > n such that kxdj

kn � xknk < e=2 for all j P j0. This and Proposition 2.4 imply
Fig. 2.
right.
kxdj

kj � x�k 6 kxdj

kn � x�k 6 kxdj

kn � xknk þ kxkn � x�k < e
2
þ e

2
¼ e; for j P j0:
Consequently, xdj

kj ! x�.
If (20) holds true, then by Theorem 3.3, x� ¼ xy. Therefore, xdj

kj ! xy, which concludes the proof. h

Remark 3.7. In standard iterative regularization methods, the number of performed iterations plays the role of the regular-
ization parameter [7,16]. A parameter choice rule corresponds to the choice of an appropriate stopping index kd

� ¼ kðd; ydÞ.
For the loping Kaczmarz iterations analyzed in this article, the situation is quite different. If k is fixed, then the iterates xd

k,
do not depend continuously on data yd

i . However, for a fixed sequence ðxkÞ of loping parameters, the iterates xd
k do depend

continuously on yd
i : now, the loping sequences ðxkÞ play the role of the regularization parameters and the particular

sequence xk ¼ xkðd; ydÞ, depending on di and the noisy data yd
i , is the a posteriori parameter choice rule.
4. Limited view problem in photoacoustic computed tomography

In this section, we compare the numerical performance of loping Kaczmarz methods applied to a system of linear equa-
tions related to a limited view problem in photoacoustic computed tomography [8,18,28,34].

Let X :¼ L2ðDÞ denote the Hilbert space of all square integrable functions in the unit disc D � R2, and let Y denote the Hil-
bert space of all functions y : ½0;2� ! R with kyk2 :¼

R 2
0 yðtÞt dt <1. We consider the system,
Mix ¼ yi; i ¼ 0; . . . ;N � 1; ð32Þ
where Mi : X ! Y ,
ðMixÞðtÞ :¼ 1ffiffiffi
p
p

Z
S1

xðni þ trÞdXðrÞ; t 2 ½0;2�; ð33Þ
correspond to a scaled version of the circular mean Radon transform. Solving (32) is the crucial step in three-dimensional
photoacoustic computed tomography with integrating linear detectors [9,28], where the centers of integration, ni, corre-
spond to the positions of the linear detectors. We are particularly interested in the incomplete data case (limited view prob-
lem), where the centers ni ¼ ðsinðpi=ðN � 1ÞÞ; cosðpi=ðN � 1ÞÞÞ are uniformly distributed on the semicircle
S1
þ :¼ fn ¼ ðn1; n2Þ 2 oD : n1 P 0g. Micro-local analysis predicts, that if the centers do not cover the whole circle, certain de-

tails (the invisible boundaries) of x outside the detection region (convex hull of S1
þ) cannot be recovered [21,27,35].

The operators Mi are linear, bounded, and satisfy kMik 6 1, [10]. For linear bounded operators, the tangential cone condi-
tion (11) is satisfied with g ¼ 0. Consequently, the analysis of Section 3 applies, and the L-SDK method (4)–(7) provides a con-
vergent regularization method for solving (32). The adjoint of Mi, required in (5) is given by ðM�

i yÞðnÞ ¼ yðjni � njÞ=
ffiffiffi
p
p

, [10].
In the following numerical examples, we consider the L-SDK method with either the choice UrelðsÞ ¼ maxðamins;2Þ or

UrelðsÞ ¼ amin (which corresponds to the L-LK method). In both cases we use amin ¼ 0:4 or amin ¼ 1, and assume N ¼ 50 mea-
surements. The phantom xy, shown in the left picture of Fig. 2, consists of a superposition of characteristic functions and one
Gaussian kernel. Data yi ¼Mixy were calculated via numerical integration with the trapezoidal rule and 4% noise was added,
such that kyi � yd

i k=kyik 	 0:04. In all examples x0 = 0 was used as initial guess. The regularized solutions xd
kd
�

with amin ¼ 0:4
are depicted in Fig. 3. For both, the L-SDK L-LK method, all visible parts of the phantom xy are reconstructed reliable.
The left picture shows the phantom xy , where the white dots indicate the locations of the detectors. The corresponding data ðyd
i Þi are depicted on the
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Fig. 4. The x-axis shows the number of cycles, while the number of actually performed iterations within each cycle is shown at the y-axis.
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Fig. 5. Evolution of the relative error ln kxy � xd
kk=kxyk.

Fig. 3. Numerical reconstructions xd
kd
�

with amin ¼ 0:4 of the phantom depicted in Fig. 2.
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Figs. 4 and 5 show the number of actually performed iterations and the reconstruction error ed
k :¼ kxd

k � xyk, respectively.
For comparison purposes, the error for the SDK and the LK iteration (without loping parameter) are also included. In all cases,
the smaller relaxation parameter amin gives the smaller reconstruction errors. This behavior is typically for the application of
Kaczmarz-type iterations to Radon transforms [5,25]; therefore in praxis often relatively small relaxation parameters are
chosen. For amin ¼ 1, the loping strategy significantly reduces the reconstruction error of the no-loping iterations. Also, for
amin ¼ 0:4, the regularized solution of the loping Kaczmarz methods (automatically stopped according to (8)) have errors
comparable to the optimal solution of their non-loping counterparts when stopped after the cycle with minimal error (which
is not available in practice).
Table 1
Comparison of the performance of different iterative methods

Cycles Runtime (s) Error (%)

L-SDK 5 21.9 18.2
L-LK 6 21.4 18.5
SDK 4 24.5 18.2
LK 5 16.9 18.1
CGNE 5 38.2 21.6

The non-loping iterations are stopped after the cycle with minimal error, whereas the loping Kaczmarz methods are automatically stopped according to (8).
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To point out the effectiveness of the loping Kaczmarz methods for solving linear inconsistent systems we included the
reconstruction error for the CGNE iteration (conjugate gradient [14,31] applied to normal equations). If stopped appropri-
ately the CGNE method is known to be a regularization method [7,12]. As can be seen in Fig. 5 the reconstruction error
for the L-SDK and the L-LK methods is much smaller that that for the CGNE iteration. In Table 1 run times for reconstructing
an image on a 120
 120 grid are compared (with non-optimized Matlab implementation on iMac with 2 GHz Intel Core Duo
processor).

5. An inverse doping problem

In this section we present another comparison of the numerical performance of the L-SDK, L-LK and LK methods. This time
we consider an application related to inverse doping problems for semiconductors [2,10,20,3]. For details on the mathematical
modeling of this inverse problem we refer the reader to [10, Section 3].

In what follows, we describe the abstract formulation in Hilbert spaces of the problem (the so-called inverse doping prob-
lem in the linearized unipolar model for current flow measurements). Let X :¼ ð0;1Þ 
 ð0;1Þ � R2 be the domain representing
the semiconductor device (a diode). The two semiconductor contacts are represented by the boundary parts:
Fig. 6.
(36). Th
right an
C0 :¼ fðs;0Þ : s 2 ð0;1Þg; C1 :¼ fðs;1Þ : s 2 ð0;1Þg;
(we denote oXD :¼ C0 [ C1) while the insulated surfaces of the semiconductor are represented by oXN :¼
fð0; tÞ : t 2 ð0;1Þg [ fð1; tÞ : t 2 ð0;1Þg. This specific inverse doping problem can be reduced to the identification of the posi-
tive parameter function x (the doping profile C is related to x by C ¼ x� k2Dðln xÞ) in the model
lnr � ðxðnÞruÞ ¼ 0; in X ð34Þ
u ¼ UðnÞ; on oXD ð35Þ
ru � m ¼ 0; on oXN ð36Þ
from measurements of the Voltage–Current map (the forward operator)
Rx : H3=2ðoXDÞ ! R;

U 7!ln

Z
C1

eVbiðnÞumðnÞdC;
In the top left picture, the doping profile to be identified. In the top right picture, a typical voltage profile Ui and the corresponding solution u of (34)–
e initial guess used for the L-SDK, L-LK and LK iterative methods is shown in the bottom picture. The boundary parts C0 and C1 correspond to the top
d to the lower left edge, respectively (the origin is the right corner).
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which maps an applied potential U at oXD to the corresponding total current flow RxðUÞ through the contact C1. Here ln, k are
positive constants and Vbi is a known logarithmic function defined on oXD.

Due to the nature of the practical experiments that can be performed on a factory environment, some restrictions on the
data have to be taken into account:

1. The voltage profiles U 2 H3=2ðoXDÞ must satisfy UðnÞ ¼ 0 at the contact C1.
2. The parameter x has to be determined from a finite number of measurements, i.e. from the data
Fig. 7.
cycles.
errors o
yd
i :¼ RxðUiÞ 2 Y :¼ R; i ¼ 0; . . . ;N � 1; ð37Þ
where the Ui 2 H3=2ðoXDÞ are prescribed voltage profiles satisfying Item 1.

Therefore, we can model the inverse doping problem with a system of operator equations of the form (2), namely
FiðxÞ ¼ yd
i ; i ¼ 0; . . . ;N � 1;
Comparison between the L-SDK, L-LK and LK methods. The top two pictures show the iterative errors obtained by the L-SDK iteration after 10 and 81
The two central pictures show the iterative errors obtained by the L-LK iteration after 80 and 121 cycles. The two bottom pictures show the iterative
btained by the LK after 120 and 380 cycles.



Fig. 8. Comparison between the performance of L-SDK and L-LK methods. The solid line shows the actually performed number of steps within each cycle of
the L-SDK method, while the dashed line gives the corresponding information with respect to the L-LK method.
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where x 2 L2ðXÞ ¼: X is the unknown parameter, yd
i 2 R ¼: Y denote the measured data, Fi : X ! Y defined by FiðxÞ :¼ RxðUiÞ

are the parameter to output maps, with domains of definition
Di :¼ fx 2 L1ðXÞ : 0 < xmin 6 x 6 xmax; a:e:g:
It is worth mentioning that, although the operators Fi are Fréchet differentiable, they do not satisfy the tangential cone con-
dition (11). Therefore, the convergence results derived in Section 3 cannot be applied.

In the following numerical examples we assume that N ¼ 11 Dirichlet–Neumann pairs ðUi; Fiðx0ÞÞ of measurement data
are available. The fixed inputs Ui, are chosen to be piecewise constant functions supported in C0,
UiðsÞ :¼
1; js� sij 6 h;

0; else;

�

where the points si are uniformly distributed on C0 and h ¼ 1=32. The doping profile to be reconstructed is shown in Fig. 6
(top left picture). The top right picture of Fig. 6 shows a typical voltage profile Uj (applied at C0) as well as the corresponding
solution u of (34)–(36). In these pictures, as well as in the forthcoming ones, C1 appears on the lower left edge and C0 on the
top right edge (the origin corresponds to the upper right corner).

In Fig. 7, we show the evolution of the iteration error for the L-SDK, L-LK and LK methods. The same initial guess was used
for the three methods (see Fig. 6). In our computations we chose s ¼ 2:5 in (14). The stopping rule for the L-SDK method is
satisfied after 81 cycles. For the L-LK method, the same stopping criteria is reached only after 121 cycles. In order to obtain
the same accuracy with the LK method, 380 cycles are required. In the top pictures of Fig. 7 one can see the iteration error for
the L-SDK method after 10 and 81 cycles. For comparison purposes, the iteration error for the L-LK method is shown after 80
and 121 cycles (see the central pictures of Fig. 7). The bottom pictures of Fig. 7 show the iteration error for the LK method
after 120 and 380 cycles. The number of actually computed iterative steps within each cycle of the L-SDK and L-LK methods is
shown in Fig. 8.

As one can see in Fig. 8, no more than 2 steepest descent steps per cycle are computed after the 14th cycle of the L-SDK
method. Analogously, no more than 2 Landweber steps per cycle are computed after the 37th cycle of the L-LK method. In
total, for the computation of the LK-approximation in Fig. 7 (380 cycles), 4180 Landweber steps are needed, while the L-LK-
approximation (121 cycles) requires the computation of 258 Landweber steps and the L-SDK-approximation (81 cycles) re-
quires the computation of 184 steepest-descent steps. The L-LK method requires almost 50% more cycles than the L-SDK
method in order to reach the stopping criteria (8). Moreover, the LK method requires almost three times more cycles than
the L-LK method in order to achieve the same accuracy (see [10] for other comparisons between the LK and L-LK methods).

The efficiency of the L-SDK method becomes even more evident when we compare the total number of actually performed
iterative steps. Each cycle of the LK method requires the computation of 11 steps, while in the L-SDK and L-LK methods the
number of actually performed steps per cycle is very small after a few number of cycles.

6. Conclusions

In this paper, we propose a new iterative method for inverse problems of the form (2), namely the L-SDK method. As a by-
product we also formulated the SDK iteration, which is the steepest-descent counterpart of the LK method [17]. In the L-SDK
iteration, we omit an update of the SDK iteration (within one cycle) if corresponding ith residual is below some threshold.
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Consequently, the L-SDK method is not stopped until all residuals are below the specified threshold. We provided a complete
convergence analysis for the L-SDK iteration, proving that it is a convergent regularization method in the sense of Engl et al.
[7].

The abstract theory was applied to thermoacoustic computed tomography and an inverse problem for semiconductors. In
both applications the L-SDK method turned out to be an efficient iterative regularization method.
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