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Abstract
In this paper we consider nonlinear ill-posed problems with piecewise constant
or strongly varying solutions. A class of nonlinear regularization methods
is proposed, in which smooth approximations to the Heavyside function
are used to reparameterize functions in the solution space by an auxiliary
function of levelset type. The analysis of the resulting regularization methods
is carried out in two steps: first, we interpret the algorithms as nonlinear
regularization methods for recovering the auxiliary function. This allows us to
apply standard results from regularization theory, and we prove convergence of
regularized approximations for the auxiliary function; additionally, we obtain
the convergence of the regularized solutions, which are obtained from the
auxiliary function by the nonlinear transformation. Second, we analyze the
proposed methods as approximations to the levelset regularization method
analyzed in [Frühauf F, Scherzer O and Leitão A 2005 Analysis of regularization
methods for the solution of ill-posed problems involving discontinuous
operators SIAM J. Numer. Anal. 43 767–86], which follows as a limit case
when the smooth functions used for the nonlinear transformations converge
to the Heavyside function. For illustration, we consider the application of
the proposed algorithms to elliptic Cauchy problems, which are known to be
severely ill-posed, and typically allow only for limited reconstructions. Our
numerical examples demonstrate that the proposed methods provide accurate
reconstructions of piecewise constant solutions also for these severely ill-posed
benchmark problems.
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1. Introduction

We consider the solution of inverse ill-posed problems

F(x) = yδ, (1)

where F : D(F) ⊂ X → Y is a linear or nonlinear operator between Hilbert spaces X and Y ,
and the available data yδ are some approximation of the correct data y = F(x†) corresponding
to the true solution x†. It is well known that ill-posed problems can be solved in a stable
way only by regularization methods [14, 29], and that the quality of the regularized solutions
depends not only on the quality of the data, e.g. a bound on the data noise ‖y − yδ‖ � δ, but
in particular also on the incorporation of available a priori information in the reconstruction
methods. This is reflected in the dependence of reconstruction errors and convergence rates
on so-called source conditions [14].

In this paper we propose nonlinear regularization methods for problem (1) that allow us
to incorporate a priori information of the following form.

(A) The unknown solution x of (1) has a special structure, namely it can only attain
certain values (piecewise constant) or can be assumed to have steep gradients between
regions of almost constant value (strongly varying).

It is worth mentioning that assumption (A) is valid in several relevant applications such
as mine detection [16], inverse scattering [11], reconstruction of doping profiles in semi-
conductors [23] or process monitoring via impedance tomography [20].

Standard regularization methods, such as Tikhonov regularization, are not appropriate
for the reconstruction of solutions satisfying assumption (A), as they generate good
approximations only for smooth solutions; this is reflected in the dependence of convergence
rates on source conditions. For severely ill-posed problems, only very mild (logarithmic)
source conditions are physically reasonable and, therefore, only poor reconstructions of
piecewise constant or strongly varying solutions can be expected.

Motivated by the unsatisfactory performance of classical regularization methods, special
nonlinear regularization methods, such as BV-regularization [1, 27] or levelset methods [7, 17,
24, 26, 28], have been designed for problems with non-smooth solutions satisfying assumption
(A). The nonlinear regularization method outlined in the following falls into this group of
methods.

In order to facilitate the stable reconstruction of solutions satisfying (A), we consider a
parameterization of the unknown function x in the form

x = Hε(φ), (2)

where the real function Hε denotes a smooth, nonlinear, strictly monotonically increasing
function (see section 2). For simplicity of presentation, let us assume that x is a piecewise
constant function with values in {0, 1}, in which case we choose Hε to be a smooth
approximation of the Heavyside function H. If Hε is strictly monotonically increasing, the
transformation x = Hε(φ) establishes a one-to-one relation between the auxiliary function φ

and the solution x. The function φ acts as a kind of levelset function, i.e. x attains values close
to zero where φ is negative, and values close to 1 where φ is positive; the zero levelset of φ is
the region where the transition from zero to 1 occurs (in x).

By the nonlinear transformation (2), the inverse problem of determining x under
assumption (A) is transformed into the problem of finding an auxiliary function φ solving

G(φ) := F(Hε(φ)) = yδ (3)
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(note that, due to the choice of the function Hε, problem (3) becomes nonlinear, even if the
original inverse problem (1) is linear). For the stable solution of (3), we consider Tikhonov
regularization, i.e. we define approximate solutions as minimizers of a regularized functional

‖Gε(φ) − yδ‖2 + α‖φ − φ∗‖2 (4)

for some α > 0 and some a priori guess φ∗. The choice of the norm for the regularization
term depends on the problem setting, e.g. on the mapping properties of the operator F; see
sections 2 and 3 for details. Since Hε is monotonically increasing, minimizing (4) over some
set D is equivalent to minimizing

‖F(x) − yδ‖2 + α
∥∥H−1

ε (x) − H−1
ε (x∗)

∥∥2
(5)

over H−1
ε (D), which amounts to Tikhonov regularization applied to the original problem (1)

with a nonlinear regularization term. This is the reason why the resulting methods are called
nonlinear regularization methods. While functional (5) may look unusual, regularization
theory for (4) is straightforward (see section 2).

One of the main goals of this paper is to investigate the special case that Hε approximates a
step function H. In this case, the nonlinear regularization methods (4) or (5) can be interpreted
as approximations to a levelset method investigated in [17]. In the limiting case, the auxiliary
function φ is a levelset function in the sense that

x = H(φ) =
{

1, for φ � 0,

0, else.

The approximations obtained by using the smooth parameterization by Hε can be understood
as a relaxation of the levelset method using the discontinuous function H for the transformation.
As a matter of fact, similar relaxations are frequently used for the implementation of levelset
methods, e.g. in the minimization of Mumford–Shah-like functionals in image processing
[9, 10, 25].

In order to illustrate the benefits of our approach, we consider a benchmark example for
severely ill-posed problems, namely the solution of elliptic Cauchy problems, which arise
in several biomedical, engineering and industrial applications (e.g. the inverse problem in
corrosion detection in [3, 8, 19]). Due to the severe ill-posedness of these test problems,
the reconstruction of non-smooth solutions, e.g. the determination of contact and non-contact
zones, or the localization of regions with or without activity, is particularly difficult. As our
numerical test results demonstrate, the nonlinear regularization approach investigated in this
manuscript significantly improves the quality of reconstructions in comparison to standard
regularization methods.

The paper is organized as follows: in section 2, we introduce the parameterization
by smooth functions Hε, and we analyze the resulting nonlinear inverse problems (3) of
determining the (levelset) function φ, and their stable solution by Tikhonov regularization.
Section 3 then deals with the special case that Hε approximates a step function H, in which case
the resulting methods can be analyzed within the framework of levelset methods presented in
[17]. In section 4, we state and discuss our model problems in detail, and verify the conditions
needed for our analysis. Numerical tests are then presented in section 5, and some conclusions
are given in the final section.

2. Nonlinear regularization for inverse problems with strongly varying solutions

In this section we transform the original inverse problem (1) into a nonlinear problem (3)
for determining the auxiliary function φ which parameterizes the solution x = Hε(φ) of
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(1). Before we formulate and analyze this approach in detail, let us summarize some basic
assumptions on the original inverse problem.

2.1. Basic assumptions and parameterization

Let F : D(F ) ⊂ X → Y be a continuous, compact operator between real Hilbert spaces X
and Y . The space X will be chosen in order to reflect the properties of the solution, so for the
reconstruction of solutions with steep gradients, which we are most interested in this section,
we consider the choice X = H 1 over some domain in R

d . The results however carry over
easily to X = L2, which will also be considered in the numerical examples in section 5. We
further assume that a solution x† of the inverse problem with unperturbed data y exists, i.e.
F(x†) = y, and that the solution has a certain structure. For illustration, we consider that

x† ∈ K := {x ∈ X : x � x � x} ⊂ D(F ). (6)

The perturbed data yδ in (1) are assumed to satisfy a bound

‖y − yδ‖ � δ, (7)

for some noise level δ � 0. When considering convergence rates results below, we will further
require that F is Fréchet differentiable and the derivative satisfies a Lipschitz condition

‖F ′(x2) − F ′(x1)‖ � LF ‖x2 − x1‖, (8)

for some LF > 0 and all x1, x2 ∈ D(F ).
In order to facilitate steep gradients in the solution x of (1), we parameterize the function

in the form x = Hε(φ). For this purpose, let Hε be a smooth, strictly monotonically increasing
function satisfying the following conditions:

(i) Hε : R → R, (ii) 0 < H ′
ε(·) � C ′

ε, (iii) |H ′′
ε (·)| � C ′′

ε , (9)

for some positive constants C ′
ε, C

′′
ε . Moreover, we assume that K ⊂ Hε(X ) ⊂ D(F ).

Example 2.1. Assume that x = 0 and x = 1 in the definition of K, and that D(F ) contains
H1 functions with values in [−ε, 1 + ε]. Then the function

Hε(x) = 1 + 2ε

2
(erf(x/ε) + 1) − ε (10)

satisfies conditions (i)–(iii) with C ′
ε ∼ ε−1 and C ′′

ε ∼ ε−2. Moreover, H ′
ε is bounded away

from zero uniformly on H−1
ε ([x, x]).

Note that, in the above example, for any x† ∈ K there exists a unique H−1
ε (x†) =: φ† ∈ X .

Using such a parameterization, we can rewrite the inverse problem (1) for x as a nonlinear
inverse problem for the levelset function φ, namely

Nonlinear problem: define Gε(φ) := F(Hε(φ)). Find φ ∈ X such that

Gε(φ) = yδ. (11)

In what follows, we assume that a solution φ† = H−1
ε (x†) for unperturbed data exists in X .

Remark 2.2. In case H ′
ε(x) is bounded from below by some positive constant for the values

of x that are attained by x†, the existence of φ† is already implied by the attainability of the data
required above. Therefore, the assumption that Gε(φ) = y has a solution is not restrictive.
Note also that, under the given assumption on Hε and D(F ), we have D(Gε) = X .

The nonlinear transformation also allows us to include box constraints on the solution
into the formulation of the operator.

4



Inverse Problems 25 (2009) 115014 H Egger and A Leitão

Let us shortly summarize the main properties of the nonlinear operator Gε.

Proposition 2.3. The operator Gε : X → Y defined by Gε(φ) = F(Hε(φ)) is a compact
continuous operator. If F is injective or Fréchet differentiable, then Gε inherits these properties
as well. Moreover, if (8) holds, then

‖G′
ε(φ2) − G′

ε(φ1)‖X→Y �
(
LF C ′2

ε + C ′′
ε ‖F ′(Hε(φ2))‖X→Y

)‖φ2 − φ1‖X ; (12)

thus Gε is Lipschitz continuous with constant LG := LF C ′2
ε + C ′′

ε supx ‖F ′(x)‖.

Proof. Definition F is the composition of a compact and a continuous operator, and thus
compact. The Fréchet differentiability and the Lipschitz estimate on the derivative follow
by applying the chain rule and the properties of Hε. The injectivity is inherited, since Hε is
strictly monotonically increasing and hence injective. �

To summarize, under the given assumptions on Hε, the nonlinear operator Gε = F ◦ Hε

inherits all properties of F that are relevant for the analysis of Tikhonov regularization methods
[14].

2.2. Regularization

For the stable solution of (11) we consider Tikhonov regularization, i.e. approximate solutions
φδ

α are defined as minimizers of the functional

Jα,ε(φ) := 1

2
‖Gε(φ) − yδ‖2 +

α

2
‖φ − φ∗‖2, (13)

where α > 0 is the regularization parameter and φ∗ is a reference function (e.g. φ∗ = H−1
ε (x∗),

where x∗ is an a priori guess for the solution x†). The existence of minimizers, as well as
convergence for vanishing data noise, now follow by standard arguments [14].

Theorem 2.4. For α > 0, functional (13) attains a minimizer φδ
α ∈ X .

Proof. The operator Gε is continuous and compact; thus, it is weakly continuous.
Consequently, the functional Jα is weakly lower semi-continuous, coercive and bounded
from below, which guarantees the existence of a minimizer. �

In order to guarantee the convergence of the regularized solutions φδ
α with δ → 0, one has

to provide an appropriate strategy for choosing the regularization parameter α in dependence
of the noise level. To simplify the statement of the following theorem, we assume that F is
injective, and thus the solution of the inverse problem is unique (see [14, Chapter 10] for the
general case).

Theorem 2.5. Let F be injective, let x† denote the solution of F(x) = y and let φ† =
H−1

ε (x†) ∈ X . If {yδn} denotes a sequence of perturbed data satisfying ‖y − yδn‖ � δn → 0,
and if αn is chosen such that αn → 0 and δ2

n

/
αn → 0, then the regularized solutions φδ

α

converge to the true solution, i.e.∥∥φδn

αn
− φ†∥∥ → 0 and

∥∥Hε

(
φδn

αn

) − x†∥∥ → 0.

Proof. Standard regularization theory for nonlinear inverse problems [14] guarantees the
convergence of subsequences to a minimum norm solution. Since the solution of (11) is
unique, all subsequences have the same limit. �

Theorem 2.5 is a qualitative statement and does not provide any quantitative information
about the errors

∥∥φδ
α − φ†∥∥ for some given δ. In fact, the convergence can be arbitrarily slow
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in general [14]. In order to guarantee a rate of convergence, a source condition has to be
satisfied, e.g. let x† = Hε(φ

†) and assume that φ† satisfies

φ† = φ∗ + G′
ε(φ

†)∗w for some w ∈ Y. (14)

Then the following quantitative result holds.

Theorem 2.6. Let the assumptions of theorem 2.5 hold. Moreover, assume that F is Fréchet
differentiable with Lipschitz continuous derivative (8) and that φ† satisfies the source condition
(14) for some w with norm ‖w‖ < 1/LG where LG is given in proposition 2.3. Then for the
parameter choice α ∼ δ there holds∥∥φδn

αn
− φ†∥∥ = O(

√
δn),

∥∥Hε

(
φδn

αn

) − x†∥∥ = O(
√

δn).

Proof. The convergence rate for φδ
α follows from standard regularization theory [14] and

proposition 2.3. The result for xδ
α = Hε

(
φδ

α

)
then follows from the fact that H ′

ε is bounded.�

Remark 2.7. Let us consider the source condition (14) in more detail. If X = L2, then by
the chain rule, the source condition can be rewritten as

φ† − φ∗ = H ′
ε(φ

†)F ′∗(x†)w, for some w ∈ Y.

Since Hε is invertible, this condition can always be interpreted as a condition on x†, namely

x† = Hε(φ
†) = Hε

(
H ′

ε

[
H−1

ε (x†)
]
F ′(x†)∗w

)
(for simplicity we have assumed φ∗ = 0). Note that the source condition depends nonlinearly
on the solution x†, even if F is linear. If Hε is a simple scaling, i.e. Hε(φ) = ε−1φ, we obtain
with H ′

ε = ε−1 that

x† = ε−1φ† = ε−1ε−1F ′(x†)∗w = F ′(x†)∗ε−2w = F ′(x†)w̃,

which amounts to the standard source condition for the inverse problem (1).

Throughout this section, we considered parameterization described by smooth functions
Hε for approximating strongly varying solutions of the inverse problem (1). For the
approximation of piecewise continuous functions, it might be advantageous to use a
parameterization by a non-smooth function. The analytical results discussed in this section,
however, no longer apply in that case, and we have to adopt a different analysis technique.

3. Nonlinear regularization for inverse problems with piecewise constant solutions

In this section we consider solving the inverse problem (1) under the assumption that the
solution x† is piecewise constant and binary valued. We concentrate on the case that x† can be
represented as the characteristic function of a sufficiently regular set. Nevertheless, possible
extensions are indicated at the end of this section.

3.1. Basic assumptions

Let � ⊂ R
d be a bounded domain with Lipschitz boundary, and assume that x† can be

represented as the characteristic function of a sufficiently regular set, i.e.

x† ∈ K := {x : x = χD where D ⊂ � is measurable and Hd−1(∂D) < ∞},
where Hd−1(∂D) denotes the (d − 1)-dimensional Hausdorff measure of the boundary ∂D. It
can be shown that the signed distance function of ∂D is in H 1(�), which implies that there
exists a levelset function φ† ∈ H 1(�) such that

x† = H(φ†), (15)
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where H : R → {0, 1} denotes the Heaviside function. Note that H is the pointwise limit of
Hε defined in example 2.1, as ε → 0; so (15) can be understood as the limit case of (2) (see
section 3.4 below). Since H is a discontinuous function, the analysis of section 2 cannot be
applied directly.

For the remainder of this section we further assume that {x ∈ L∞(	) : −ε � x � 1+ε} ⊂
D(F ) for some ε > 0, and that F is a continuous operator with respect to the Lp-topology for
some 1 � p < d/(d − 1), i.e.

‖F(x2) − F(x1)‖Y → 0, as ‖x2 − x1‖Lp → 0.

Our goal in this section is to derive a nonlinear regularization method based on the
discontinuous parameterization (15), in a similar way as we did in section 2 using (2). In
order to make the connection with the results of the previous section, we will utilize the
approximation of the discontinuous Heaviside function H by the smooth strictly increasing
functions Hε (10).

The fact that Hε can attain values in a larger interval [−ε, 1 + ε] ensures that the true
solution x†, which is assumed to be binary valued, can in fact be parameterized by a levelset
function. However, other choices of approximations are possible, e.g. in [17], piecewise linear
continuous (but not continuously differentiable) approximations have been used.

3.2. A Tikhonov method with BV-H1 regularization

For defining regularized solutions, we consider the following Tikhonov-type functional:

Fα(φ) := 1
2‖F(H(φ)) − yδ‖2

Y + α
[
β|H(φ)|BV + 1

2‖φ − φ∗‖2
H 1

]
. (16)

Here α > 0 plays the role of a regularization parameter, β > 0 is a scaling factor, BV denotes
the space of functions of bounded variation [4, 18] and | · |BV is the bounded variation semi-
norm. The Tikhonov functional (16) amounts to the functional Jα,ε of the previous section
with Hε replaced by H and an additional regularization term added (this latter term will allow
us to consider the limit ε → 0).

Since H is discontinuous, we are not able to prove directly that functional (16) attains a
minimizer. However, utilizing the framework of [17], we are able to guarantee the existence
of generalized minimizers.

Definition 3.1. Let Hε be defined as above and 1 � p < d/(d − 1).

(i) A pair of functions (x, φ) ∈ L∞ × H 1 is called admissible if there exists a sequence
{φk}k∈N in H1 such that φk → φ in L2, and there exists a sequence {εk}k∈N of positive
numbers converging to zero such that Hεk

(φk) → x in Lp. The set of admissible pairs is
denoted by Ad := {(x, φ) admissible}.

(ii) The functional Fα(x, φ) is defined on Ad by

Fα(x, φ) := ‖F(x) − yδ‖2
Y + αρ(x, φ), (17)

where ρ(x, φ) := inf lim inf
k→∞

{
β|Hεk

(φk)|BV + 1
2‖φk − φ∗‖2

H 1

}
, the infimum being taken

with respect to all sequences {φk}k∈N and {εk}k∈N characterizing (x, φ) as an element of
Ad.

(iii) A generalized minimizer of Fα(φ) is a minimizer of Fα(x, φ) on Ad.
(iv) A generalized solution of (1) is a pair (x, φ) ∈ Ad such that F(x) = y.

Remark 3.2. The above definitions allow us to consider Fα not only as a functional on H1

but also as a functional defined on the w-closure of the graph of H, contained in L∞ × H 1. In
order to express the relation of the two functionals, we use the same symbol for both. Note
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that for sufficiently regular φ, the definitions coincide, i.e. Fα(H(φ), φ) = Fα(φ). Similarly,
the regularization term in (16) is now interpreted as a functional ρ : Ad → R

+.

3.3. Convergence analysis

In order to prove some relevant regularity properties of the regularization functional ρ in (17)
we require the following auxiliary lemma.

Lemma 3.3. The following assertions hold true:

(i) The semi-norm | · |BV is weakly lower semi-continuous with respect to Lp-convergence,
i.e. let xk ∈ BV and xk → x in Lp, then |x|BV � lim infk→∞ |xk|BV .

(ii) BV is compactly embedded in Lp for 1 � p < d/(d − 1). Any bounded sequence
xk ∈ BV (	) has a subsequence xkj

converging to some x in Lp.

Proof. The results follow from the continuous embedding of Lp into L1 and from [4,
section 2.2.3]. �

We are now ready to prove the existence of a generalized minimizer (xα, φα) of Fα

in Ad.

Theorem 3.4. Let the functionals ρ,Fα and the set Ad be defined as above. Moreover, Let F
be continuous with respect to the Lp topology for some 1 � s < d/(d −1). Then the following
assertions hold true:

(i) the functional ρ(x, φ) is weakly lower semi-continuous and coercive on Ad;
(ii) the functional Fα(x, φ) attains a minimizer on Ad.

Proof. (i) Let (x, φ) ∈ Ad. Then, there exist sequences {φk}k∈N and {εk}k∈N as in
definition 3.1 (i). Thus, by the weak lower semi-continuity of the H1 norm, ‖φ − φ0‖2

H 1 �
lim infk ‖φk −φ0‖2

H 1 . Moreover, lemma 3.3 implies |x|BV � lim infk |Hεk
(φk)|BV . Therefore,

β|x|BV + 1
2‖φ − φ0‖2

H 1 � ρ(x, φ).

The weak lower semi-continuity of ρ follows with similar arguments.
(ii) Since (0,−1) ∈ Ad, we have Ad �= ∅, and moreover inf Fα � Fα(0,−1) < ∞. Let

(xk, φk) ∈ Ad be a minimizing sequence for Fα , i.e. Fα(xk, φk) → inf Fα as k → ∞. Then
ρ(xk, φk) is bounded. Item (i) above implies the boundedness of both sequences ‖φk − φ0‖H 1

and |xk|BV , which by lemma 3.3 allows us to extract subsequences (again denoted by {xk} and
{φk}) such that

xk ⇀∗ x in BV, xk → x in Lp, and φk ⇀ φ in H 1, φk → φ in L2

for some (x, φ) ∈ BV × H 1. Now, arguing with the continuity of F : Lp → Y and item
(ii) above, one obtains

inf Fα = lim
k→∞

Fα(xk, φk) = lim
k→∞

{‖F(xk) − hδ‖2
Y + αρ(xk, φk)}

� lim inf
k→∞

{‖F(xk) − hδ‖2
Y} + lim inf

k→∞
{αρ(xk, φk)}

� ‖F(x) − hδ‖2
Y + αρ(x, φ) = Fα(x, φ).

It remains to prove that (x, φ) ∈ Ad. This is done analogously as in the final part of the proof
of [17, theorem 2.9]. �

The classical analysis of Tikhonov-type regularization methods [14] can now be applied
to the functional Fα .

8



Inverse Problems 25 (2009) 115014 H Egger and A Leitão

Theorem 3.5 (Convergence). Let x† denote the solution of the inverse problem (1), and
let {yδn} denote a sequence of noisy data satisfying (7) with δn → 0. Moreover, let F be
continuous with respect to the Lp topology for some 1 � p < d/(d − 1). If the parameter
choice α : R

+ → R
+ satisfies limδ→0 α(δ) = 0 and limδ→0 δ2 α−1(δ) = 0, then the generalized

minimizers (xn, φn) ofFα(δn) converge (up to subsequences) in Lp×L2 to a generalized solution
(x̄, φ̄) ∈ Ad of (11). If, moreover, F is injective, then x̄ = x†.

The proof uses the standard arguments and is thus omitted. For details, we refer to [17].

3.4. Stabilized approximation

We conclude this section by establishing a connection between the convergence results in
this section with the ones for the case ε > 0 presented in section 2. Namely, we prove
that generalized minimizers of the functional Fα defined in (17) can be approximated by
minimizers of smoothed functionals

Fα,ε(φ) := 1
2‖F(Hε(φ)) − yδ‖2 + α

[
β|Hε(φ)|BV + 1

2‖φ − φ∗‖2
H 1

]
. (18)

The existence of minimizers φδ
α of Fα,ε in H1 is established in the following Lemma.

Lemma 3.6. For any φ∗ ∈ H 1, ε > 0, α > 0 and β � 0, the functional Fα,ε in (18) attains
a minimizer.

Proof. For β > 0, the statement follows from theorem 3.4, with H replaced by Hε. Note that
in the case ε > 0, there is a unique relation between φ and x := Hε(φ). The case β = 0 was
implicitly analyzed in theorem 3.4 (see also theorem 2.4). �

Remark 3.7 (strongly varying solutions, case ε > 0). With a similar analysis as in theorem 2.5
for the case β = 0, respectively theorem 3.5 for β > 0, it follows that for fixed ε > 0 (at
least subsequences of) the minimizers φδ

α of (18) converge to a (generalized) solution φ† of
the nonlinear problem (11), if α(δ) is such that α(δ) → 0 and δ2/α → 0 with δ → 0. In
particular, xδ

α = Hε

(
φδ

α

)
converges in Lp to the solution x† of the original problem (1) if the

solution is assumed to be unique and satisfy x† = Hε(φ
†).

In the sequel, we show in which sense the minimizers of the smoothed functional (18)
approximate the generalized minimizers of functional (16).

Theorem 3.8. Let F be continuous with respect to the Lp topology for some 1 � p < d/(d−1).
For each α > 0 and ε > 0 denote by φδ

α,ε a minimizer of Fα,ε. Given α > 0 and a sequence
εk → 0+, there exists a subsequence

(
H

(
φδ

α,εk

)
, φδ

α,εk

)
converging in Lp(	) × L2(	) and the

limit is a generalized minimizer of Fα in Ad.

Proof. The minimizers φα,εk
of Fα,εk

are uniformly bounded in H1. Moreover, Hεk
(φα,εk

)

is uniformly bounded in BV . Then these sequences converge strongly in Lp × L2 to a limit
(̃x, φ̃) ∈ L∞ × L2, and consequently (̃x, φ̃) ∈ Ad. In order to prove that (̃x, φ̃) minimizes
Fα,, one argues with the continuity of F : Lp → Y and theorem 3.4. �

Remark 3.9. Let us further clarify the relation to the nonlinear regularization methods
discussed in section 2. For this purpose, consider the stabilized functional (18), and assume
that ε > 0 is fixed, which will be the typical setting in a numerical realization. Then

|Hε(φ)|BV =
∫

�

|∇Hε(φ)| �
√

|�|‖H ′
ε‖L∞‖∇φ‖L2 �

√
|�|C ′

ε‖φ − φ∗‖H 1

9
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if conditions (9) hold and φ∗ is constant. Thus for ε fixed, the BV -regularization term can be
omitted, and the stabilized functional (18) can be replaced by the Tikhonov functional (13) of
section 2. This is the form, we will actually use in our numerical experiments.

3.5. Possible extensions

Provided F has the correct mapping properties, the results of section 2 hold also for the choice
X = L2. Let us show now that it is possible to choose L2 spaces for the levelset function, even
in the setting of this section.

Remark 3.10. Let Ad be defined as the set of all pairs (x, φ) ∈ L∞ × L2 which can
be approximated by a sequence of functions φk ∈ L2 and εk > 0 such that Hεk

(φk) ∈
BV,Hεk

(φk) → x in Lp and φk → φ in H−1. Obviously, this set is larger than the previous
set of admissible pairs, so it is not empty. Moreover, the set is closed under weak convergence,
i.e. the convergence of Hεk

(φk) in Lp and φk in H−1, and the results of this section carry over
almost verbatim, if the H1 regularization is replaced by the term ‖φ − φ∗‖L2 .

Remark 3.11. Another possible extension is to relax also the BV regularization norm, e.g.
to utilize ‖H(φ)‖2

L2 + ‖φ − φ∗‖2
L2 as a regularization term. In this case, the set of admissible

parameters could be defined as pairs (x, φ) ∈ L∞ × L2 which can be approximated by
sequences φk ∈ L2 and εk > 0 in the sense that φk → φ in H−1 and Hεk

(φk) → x in H−s

for some s > 0. In this case, we would have to require that F is a continuous operator from
H−s to Y , which is in fact the case for our model problem investigated in the next section.
The advantage of this approach would be that any binary valued solution x† ∈ L∞ would be
admissible (the corresponding admissible pair being (x†, 0)).

4. A model problem for severely ill-posed problems

In this section, we introduce a model problem for severely ill-posed problems, and verify the
conditions needed to apply the theoretical results of the previous sections.

4.1. A Cauchy problem for the Poisson equation

Let � ⊂ R
3 be an open bounded set with piecewise Lipschitz boundary ∂�. We assume that

∂� = 	1 ∪ 	2, where 	i are two open disjoint parts of ∂�. In the sequel, we consider the
elliptic Cauchy problem: find u ∈ H 1(�) such that

−
u = f in �, and u = g, uν + u = h at 	1, (19)

where uν := du
dn

denotes the normal derivative of u, the pair of functions (g, h) ∈
H 1/2(	1) × H

1/2
00 (	1)

′ are the Cauchy data and f ∈ L2(�) is a known source term in
the model.

We call u ∈ H 1(�) a solution of the Cauchy problem (19), if it satisfies −
u = f in the
weak sense and the boundary conditions u = g, uν + u = h on 	1 in the sense of traces.

A solution of (19) also satisfies the mixed boundary value problem

−
u = f in �, uν + u = h at 	1, uν = x at 	2. (20)

If the function x is known, the solution u of the Cauchy problem can be computed stably by
solving the mixed boundary value problem (20). We would like to mention that in general
x ∈ H

1/2
00 (	2)

′, and that for any such x problem (20) has a unique solution in H 1(�). The
Cauchy problem (19) can thus be rephrased as finding the unknown Neumann data x = uν |	2 .

10
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4.2. Formulation as an operator equation

We will now rewrite (19), (20) in the form of an operator equation in Hilbert spaces. To this
end, let u denote the solution of (20) and let F be defined by

F : x �→ u|	1 . (21)

It is straightforward to check that u is the solution of (19)–(20) if, and only if, x is a solution
of the following problem.

Inverse problem: Let y = u|	1 , with u defined as in (20). Find a function x such that

F(x) = y. (22)

For convenience, we will in the sequel consider F as an operator on L2(	2), i.e. we tacitly
assume that a solution x is in L2(	2) rather than only in H

1/2
00 (	2)

′. Since we are interested in
the determination of piecewise constant solutions, this assumption is no further restriction.

The next result summarizes the main mapping properties of the operator F.

Proposition 4.1. The mapping F : L2(	2) → L2(	1), x �→ y = u|	1 , with u defined as in
(20), is an injective, affine linear, bounded and compact operator.

Proof. The boundary value problem (20) has a unique solution in H 1(�), which depends
continuously on the data, i.e.

‖u‖H 1(�) � B(‖f ‖L2(�) + ‖h‖H−1/2(	1) + ‖x‖H−1/2(	2)),

for some B ∈ R. By the trace theorem, u|	1 is in H 1/2(	1), which implies continuity of the
operator F, and compactness follows from compact embedding of H 1/2(	1) ↪→ L2(	1). The
affine linearity of F is obvious, and the injectivity follows from the unique solvability of the
boundary value problem (20). �

Remark 4.2. Since F is affine linear, it can be written in the form F(x) = Lx + v|	1 , where
v is defined by

−
v = f in �, vν + v = h on 	1, vν = 0 on 	2,

and L is a linear operator. In the case f = 0 and h = 0, which will be considered in the
numerical tests in the next section, we have v = 0, and thus F = L becomes linear.

While the results of section 2 can be applied without further assumptions, we require a
slightly more accurate assessment of the mapping properties of F in order to be able to apply
the results of section 3.

Corollary 4.3. The operator F defined in (21) is continuous from L3/2(	2) to L2(	1) as well
as from H

−1/2
00(	2)

to L2(	1).

Proof. By the Sobolev embedding theorem [2], Hp(	2) is compactly embedded in Lp(	2)

for p < 2(1 − s)−1. Since 	2 ⊂ R
2, we have in particular H 1/2(	2) ↪→ Lp(	2) for p < 4.

This implies

H
1/2
00 ⊂ H 1/2 ⊂ L3 and L3/2 = [L3]′ ⊂ H−1/2 ⊂ [

H
1/2
00

]′
.

Hence x is an admissible Robin datum for (20), and the rest of the proof follows the lines of
the previous result. �

Corollary 4.4. The Cauchy Problem (22) is ill-posed.

The Ill-posedness follows directly from the compactness and affine linearity of the forward
operator F. According to [6], the Cauchy problem is in general even severely ill-posed; see
also the example presented in section 5.

11
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4.3. Remarks on noisy Cauchy data

In practice, only perturbed data (gδ, hδ) are available for problem (19). In this case, we assume
the existence of a consistent Cauchy data pair (g, h) ∈ H 1/2(	1) × H

1/2
00 (	1)

′ such that

‖g − gδ‖H 1/2(	1) + ‖h − hδ‖H−1/2(	1) � δ̃. (23)

The Cauchy problem with noisy data is then defined by the operator equation

F δ(x) = yδ,

where F δ(x) := uδ|	1 with uδ being defined as the solution of (20) with h replaced
by hδ . From (23) and the continuous dependence of u on h one immediately obtains
‖F δ(x) − F(x)‖H 1/2(	1) � Cδ̃, and ‖y − yδ‖H 1/2(	1) = ‖g − gδ‖ � δ̃. Since F is affine
linear, perturbations in the operator can be related to perturbations in the data, and it again
suffices to consider the unperturbed problem for the analysis, see [14]. Since we consider F
as an operator mapping into L2, we can also relax the assumptions on the data noise, i.e. we
only require a bound on the data noise in the form

‖yδ − y‖L2(	1) � δ.

Summarizing, the Cauchy problem F(x) = yδ conforms to the standard conditions of inverse
ill-posed problems with compact operators, and the basic results of regularization theory apply.
In particular, for the choice

X = L2(	2) or X = H 1(	2) and Y = L2(	1),

the operator F satisfies all the assumptions made in the previous sections.

5. Numerical realization and experiments

In this section, we illustrate the advantages of the levelset-type approaches discussed in the
previous sections by numerical experiments. After introducing the discretization of our model
problem, we sketch algorithms for minimizing the Tikhonov functional Jα,ε. The section is
concluded with the presentation of some numerical tests.

5.1. A test problem and its ill-posedness

Let a > 0 and define � := (0, 1) × (0, 1) × (0, a). We split the boundary ∂� into three parts,
i.e. ∂� = 	M ∪ 	L ∪ 	a with

	M := (0, 1)2 × {0}, 	a := (0, 1)2 × {a} and 	L := ∂� \ 	0 ∪ 	a.

We assume that measurements can be made at 	M ; hence, Cauchy data are given there. The
lateral boundary 	L is isolated, and the third part 	a is assumed to be inaccessible. The aim
of solving the Cauchy problem is to determine the local flux distribution x at this inaccessible
part of the boundary. The forward problem hence is governed by the mixed boundary value
problem

−
u = 0 in �, uν + u = 0 on 	M, uν = 0 on 	L, uν = x on 	a, (24)

and the inverse problem can be written as the operator equation

Lx = y (25)

where the operator L is defined by Lx = u|	M
and u denotes the solution of (24). Thus, the

inverse problem consists in determining the Neumann trace x at the inaccessible part 	a of the
boundary from measurements u|	M

.

12
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For a solution of the forward problem, we consider the following method based on Fourier
series: let xm,n denote the Fourier coefficients of a function x with respect to the expansion

x(s, t) =
∑
m,n

xm,n cos(mπs) cos(nπt).

The forward operator L then has the Fourier series representation

(Lx)(s, t) =
∑
m,n

xm,nA
−1
m,n cos(mπs) cos(nπt)

where the amplification factors Am,n are given by

Am,n = wm,nπ sinh(wm,nπa) + cosh(wm,nπa) with wm,n :=
√

m2 + n2.

A direct inversion of L leads to amplification of the (m, n)th Fourier component of the data
perturbation by the factor Am,n, which shows that the Cauchy problem (24) is exponentially
ill-posed.

5.2. Implementation of the nonlinear regularization method

For the stable solution of the Cauchy problem (25), we consider the nonlinear regularization
methods of section 2 with either L2 or H1 regularization. Recall that these methods can be
considered as approximations to the levelset methods investigated in section 3, cf theorem 3.8
and remark 3.9. Let us shortly discuss how minimizers of the Tikhonov functional can be
found numerically.

We start from the necessary first-order conditions for a minimum, which read

0 = H ′
ε(φ)L∗[LHε(φ) − yδ] + α[I − γ
](φ − φ∗) =: Rα,ε(φ), (26)

where γ = 0 in the case of L2 regularization and γ = 1 if we employ H1 regularization. In
both cases L∗ denotes the adjoint of the operator L with respect to the L2 spaces.

For finding a solution to (26) we use a Gauß–Newton strategy, i.e. we start from the initial
guess φ0 = φ∗, and define the update �φk = φk+1 − φk by

[H ′
ε(φk)L

∗LH ′
ε(φk) + α(I − γ
)]�φk = −Rα,ε(φk), (27)

where H ′
ε(φk) has to be understood as pointwise multiplication. The discretized linear systems

(27) are symmetric and can be solved by the conjugate gradient method.
The iteration (27) is stopped as soon as the norm of Rα,ε is sufficiently small. Instead

of applying the iteration (27) with fixed α = α(δ), we choose a sequence of regularization
parameters αk = max{α(δ), α0q

k} for some 0 < q < 1, and stop the outer Newton iteration,
as soon as the discrepancy ‖Gε(φk) − yδ‖ � τδ for some τ > 1. For our numerical tests,
we choose α(δ) = δ−1.9, and we stop the outer Newton iteration as soon as the αk = α(δ) or
the discrepancy ‖Gε(φk) − yδ‖ � τδ for some τ > 1. Thus, we effectively use an iteratively
regularized Gauß–Newton method [5, 21].

5.3. Numerical tests

In our numerical tests, we choose different values for the thickness a of the domain for
the model problem of subsection 5.1, and try to reconstruct a binary valued coefficient (the
unknown Neumann data) depicted in figure 1(a). The choice of a affects the amplification
factors Am,n and thus the severity of ill-posedness of the inverse problem, see table 3. The
Cauchy data at the measurement boundary 	M are given by h = 0 and g = y. Here, h is
used in the definition of the forward problem (24), and g = y is used as data for the inverse
problem (25).

13
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)b()a(

Figure 1. Setup of the first numerical experiment: (a) true solution (Neumann data at 	a);
(b) measured Dirichlet data at 	M for a domain with thickness a = 0.1.

The data are generated by solving the mixed boundary value problem (24) with x as
depicted in figure 1(a) by a finite difference method on a 100 × 100 × 100 grid and the data
y corresponding to (25) are additionally perturbed by random noise of size δ in the L2(	a)

norm.
For the reconstruction, the forward problems are discretized by the Fourier expansion

discussed in subsection 5.1 using 100×100 Fourier modes. The discretizations for generating
the data and for solving the inverse problem are chosen very fine in order to minimize the
perturbations due to discretization errors.

For a solution of the inverse problem, we consider the nonlinear regularization method
of section 2, and we utilize the Gauß–Newton method outlined in section 5.2 for minimizing
the Tikhonov functional (13). Throughout our numerical experiments we use ε = 0.01, and
as the initial levelset function we choose the constant function φ0 = 0, which is also used as
a priori guess φ∗ and corresponds to an a priori guess x∗ = 0.5.

Test case 1: In the first example, we set a = 0.1. The corresponding data y, and
some iterates obtained with algorithm (27) for a noise level δ = 0.01% are displayed in
figure 2. Figure 3 displays the reconstructions obtained for larger noise levels δ = 1% and
0.1%. In table 1 we compare the iteration numbers and reconstruction errors for the levelset-
type method (13) with L2 and H1 regularization. In both cases, we utilize the Gauß–Newton
methods (27) for the minimization of the Tikhonov functionals. While the reconstructions
obtained for different regularization norms are rather similar, the iteration numbers increase
significantly when regularizing in the stronger norm. This effect has been analyzed in [12, 13]
for iterative regularization of nonlinear and linear problems.

Test case 2: In order to illustrate the advantages of the nonlinear regularization method
(13) over standard regularization methods, we choose the trivial transformation Hε(x) := x,
in which case (13) amounts to standard Tikhonov regularization applied to the solution of
the linear inverse problem (25). For a numerical realization, we again use algorithm (27),
which now amounts to Tikhonov regularization with an iterative choice of regularization
parameter.

14
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Figure 2. Levelset reconstruction xk = Hε(φk) for iterations k = 1, 6, 11, 18 of method (27) with
γ = 0 and noise level δ = 0.01%.

Table 1. Reconstruction errors and iteration numbers (Newton steps and total number of inner
iterations) obtained with the nonlinear levelset-type regularization method (13) with L2 respectively
H1 regularization. Both functionals are minimized numerically by the Gauß-Netwon method (27)
with parameter ε = 0.01 in the nonlinear transformation.

δ ‖xL2 − x†‖L2 N(n) ‖xH1 − x†‖L2 N(n)

10% 0.3258 1 (1) 0.3276 1 (1)
1% 0.2608 5 (13) 0.2661 6 (10)
0.1% 0.1556 11 (52) 0.1604 16 (189)
0.01% 0.0835 17 (241) 0.0953 25 (996)

Figure 4 displays the solutions obtained with the nonlinear regularization method (Hε as
in (10)) and standard Tikhonov regularization (Hε = id) for a noise level of δ = 0.01% and
thickness a = 0.1.

The reconstruction errors of this comparison are listed in table 2. Note that in particular
for small noise levels, the reconstructions obtained by the nonlinear regularization methods
are much better, e.g. in order to obtain a reconstruction comparable to the one of the nonlinear
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Figure 3. Levelset reconstructions x∗
k = Hε(φ

∗
k ) using L2 regularization (γ = 0) for thickness

a = 0.1 and noise levels δ = 0.1% (left) and δ = 1% (right).

Figure 4. Comparison of the reconstructions obtained for a noise level δ = 0.01% by the nonlinear
regularization method (13) (left) and standard Tikhonov regularization (right). γ = 0 in both cases,
and the functionals are minimized numerically by the Gauß–Newton method (27).

Table 2. Reconstruction errors and iteration numbers (Newton steps and total number of inner
iterations) obtained with the nonlinear levelset-type regularization method (NL) and standard
Tikhonov regularization (TIK). Both functionals are minimized numerically by the Gauß–Netwon
method (27).

δ ‖xNL − x†‖L2 N(n) ‖xT IK − x†‖L2 N(n)

10% 0.3258 1 (1) 0.3213 2 (2)
1% 0.2608 5 (13) 0.2708 8 (9)
0.1% 0.1556 11 (52) 0.2012 14 (44)
0.01% 0.0835 17 (241) 0.1416 18 (112)

regularization method with a noise level of δ = 0.1%, data with only δ = 0.01% noise have
to be used for the standard Tikhonov regularization.

Test case 3: In a final test case, we study the influence of ill-posedness on the quality of the
reconstructions by varying the thickness parameter a.
16
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Figure 5. Levelset reconstructions x∗
k = Hε(φ

∗
k ) using L2 regularization (γ = 0) for noise levels

δ = 0.01% and domain thickness a = 0.2 (left) and a = 0.5 (right). The second row displays the
corresponding data yδ . Note that the data are almost constant for the thick domain a = 0.5.

Table 3. Number of Fourier components that can be stably reconstructed for varying thickness of
the computational domain according to the condition A−1

m,n � δ.

δ 10% 1% 0.1% 0.01%

a = 0.1 7 42 134 289
a = 0.2 3 18 47 91
a = 0.5 2 5 12 21

Figure 5 displays the reconstructions obtained with the nonlinear regularization methods
discussed in this paper and the corresponding data for different choices of the thickness
parameter a.

The results obtained for a = 0.5 are not satisfactory, although a small noise level
δ = 0.01% has been used. Let us shortly highlight why this is the case: for stability reasons,
only Fourier components corresponding to amplification factors with A−1

m,n � δ should be used
for stable reconstructions; the other Fourier components are damped out by the regularization
procedure. In table 3 we list the number of Fourier components that actually satisfy this
condition.
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Since the non-smooth solution x† cannot be represented well by only few Fourier
components, only relatively bad reconstructions are obtained for thick domains. The presence
of only few relevant Fourier components is also reflected in the data yδ , which are almost
constant for a = 0.5 (see figure 5).

6. Final remarks and conclusions

In this paper the stable solution of inverse problems with piecewise constant or strongly varying
solutions has been considered. These problems have been approached by parameterizing the
unknown function via some auxiliary levelset function.

The nonlinear inverse problems arising from the parameterization of the solution by
operators Hε (ε > 0) have been analyzed in the framework of Tikhonov regularization for
nonlinear inverse problems. The limit case ε → 0, which corresponds to a parameterization
of the solution by the Heaviside operator H, has also been considered. The resulting
discontinuous, nonlinear inverse problem is analyzed in the framework of a levelset approach
introduced in [17]. The connection between this levelset approach and the nonlinear
regularization methods above has been discussed in detail.

For the limit case ε → 0, we considered different regularization terms, BV × L2 and
L2 ×L2, as alternatives to the BV ×H 1 regularization functional proposed in [17]. Moreover,
for ε > 0, the BV component in the BV -H1 regularization case is dominated by the H1 term
in the penalization term, which justifies to omit the BV term for the numerical realization in
section 5; see also [17, 30, 31].

This motivates the use of Newton-type methods for the solution of the optimality systems
for the Tikhonov functionals, which together with an iterative solution of the linearized
(Newton) systems makes the considered approach very efficient, compared e.g. with fixed-
point algorithms considered previously [15, 22]).

The nonlinear regularization methods have then been applied for solving an elliptic Cauchy
problem with strongly varying solution (a classical example for severely ill-posed problems).
A comparison with classical Tikhonov regularization applied to the linear inverse problem
illustrates that the quality of the reconstructions can be improved considerably by the use
of nonlinear regularization methods. We also tested and compared L2 and H1 penalization
of the levelset function, and observed that the minimizer of the Tikhonov functional with
L2 penalization can be obtained using a much smaller number of steps of the Newton-type
method, in accordance with results on regularization in Hilbert Scales [13, 12].
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