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(Communicated by Otmar Scherzer)

Abstract. In this article a modified Levenberg-Marquardt method coupled
with a Kaczmarz strategy for obtaining stable solutions of nonlinear systems
of ill-posed operator equations is investigated. We show that the proposed
method is a convergent regularization method. Numerical tests are presented
for a non-linear inverse doping problem based on a bipolar model.

1. Introduction. In this paper we propose a new method for obtaining regularized
approximations of systems of nonlinear ill-posed operator equations.

The inverse problem we are interested in consists of determining an unknown
quantity x ∈ X from the set of data (y0, . . . , yN−1) ∈ Y N , where X , Y are Hilbert
spaces and N ≥ 1 (the case yi ∈ Yi with possibly different spaces Y0, . . . , YN−1 can
be treated analogously). In practical situations, we do not know the data exactly.
Instead, we have only approximate measured data yδ

i ∈ Y satisfying

(1) ‖yδ
i − yi‖ ≤ δi , i = 0, . . . , N − 1 ,

with δi > 0 (noise level). We use the notation δ := (δ0, . . . , δN−1). The finite set of
data above is obtained by indirect measurements of the parameter x, this process
being described by the model

(2) Fi(x) = yi , i = 0, . . . , N − 1 ,

where Fi : Di ⊂ X → Y , and Di are the corresponding domains of definition.
Standard methods for the solution of system (2) are based in the use of Itera-

tive type regularization methods [1, 6, 11, 12, 13] or Tikhonov type regularization
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methods [6, 19, 23, 24, 25, 20] after rewriting (2) as a single equation F(x) = y,
where

F : = (F0, . . . , FN−1) :
⋂N−1

i=0
Di → Y N(3)

and y := (y0, . . . , yN−1).
The starting point of our approach is the Levenberg-Marquardt method [10, 17,

18, 5] for solving ill-posed problems, which is defined by

xδ
k+1 = xδ

k − (F′(xδ
k)∗F′(xδ

k) + αI)−1F′(xδ
k)∗(F(xδ

k) − yδ) .

where F′(z) is the Frechet-derivative of F in z and F′(z)∗ is its adjoint. Motivated
by the ideas in [8, 4, 9, 3], we propose in this article a loping Levenberg-Marquardt-
Kaczmarz method (l-LMK method) for solving (2). This iterative method is defined
by

(4) xδ
k+1 = xδ

k + ωk hk ,

where

(5) hk := (F ′
[k](x

δ
k)∗F ′

[k](x
δ
k) + αI)−1F ′

[k](x
δ
k)∗(yδ

[k] − F[k](x
δ
k))

and

(6) ωk :=

{

1 if ‖F[k](x
δ
k) − yδ

[k]‖ ≥ τδ[k]

0 otherwise
.

Here α > 0 is an appropriately chosen number (see (11) below), [k] := (k mod N) ∈
{0, . . . , N − 1}, and xδ

0 = x0 ∈ X is an initial guess, possibly incorporating some
a priori knowledge about the exact solution, and τ > 1 a fixed constant (see (11)
below).

The l-LMK method consists in incorporating the Kaczmarz strategy into the
Levenberg-Marquardt method. This procedure is analog to the one introduced in
[8], [4], [9], and [3] regarding the Landweber-Kaczmarz (LK) iteration, the Steepest-
Descent-Kaczmarz (SDK) iteration, the Expectation-Maximization-Kaczmarz
(EMK) iteration, and the Iteratively Regularized Gauss-Newton-Kaczmarz
(IRGNK) respectively. As usual in Kaczmarz type algorithms [22], a group of N
subsequent steps (starting at some multiple k of N) is called a cycle. The l-LMK
iteration should be terminated when, for the first time, all xδ

k are equal within a
cycle. That is, we stop the iteration at

(7) kδ
∗ := min{lN ∈ N : xδ

lN = xδ
lN+1 = · · · = xδ

lN+N} ,

Notice that kδ
∗ is the smallest multiple of N such that

(8) xδ
kδ
∗

= xδ
kδ
∗
+1 = · · · = xδ

kδ
∗
+N ,

or equivalently (see Proposition 2 below) such that

ωkδ
∗
−1 = ωkδ

∗

= · · · = ωkδ
∗
+N−1 = 0 .

For exact data (δ = 0) we have ωk = 1 for each k and the l-LMK iteration reduces
to the Levenberg-Marquardt-Kaczmarz (LMK) method. For noisy data however,
the l-LMK method is fundamentally different from the LMK method: The bang-
bang relaxation parameter ωk effects that the iterates defined in (4), (5) become
stationary if all components of the residual vector ‖Fi(x

δ
k) − yδ

i ‖ fall below a pre-
specified threshold. This characteristic renders (4), (5) a regularization method in
the sense of [6] (see Section 4).
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The article is outlined as follows. In Section 2 we formulate basic assumptions
and derive some auxiliary estimates required for the analysis. In Section 3 we prove
a convergence result for the LMK method. In Section 4 we prove a semiconvergence
result for the l-LMK method. In Section 5 a numerical experiment for an inverse
doping problem is presented. Section 6 is devoted to final remarks and conclusions.

2. Assumptions and basic results. We begin this section by introducing some
assumptions, that are needed for the convergence analysis presented in the next sec-
tions. These assumptions derive from the classical assumptions used in the analysis
of iterative regularization methods [6, 12, 20].

(A1) The operators Fi and their linearizations F ′
i – see (A2) – are continuous and

the corresponding domains of definition Di have nonempty interior, i.e., there exists

x0 ∈ X , ρ > 0 such that Bρ(x0) ⊂
⋂N−1

i=0 Di, where Bρ(x0) is the ball of radius ρ
around x0. Moreover, we assume the existence of C > 0 such that

(9) ‖F ′
i (x)‖ ≤ C , x ∈ Bρ(x0)

(notice that xδ
0 = x0 is used as starting point of the l-LMK iteration).

(A2) We assume that the local tangential cone condition [6, 12]

(10) ‖Fi(x̄)−Fi(x)−F ′
i (x)(x̄− x)‖Y ≤ η‖Fi(x̄)−Fi(x)‖Y , ∀ x, x̄ ∈ Bρ(x0)

holds for some η < 1. This is a uniform assumption on the nonlinearity of the
operators Fi. Note that F ′

i (x) need not necessarily be the Fréchet derivative of Fi

at x, but it should be a bounded linear operator that continuously depends on x,
see (A1).

(A3) There exists an element x∗ ∈ Bρ/2(x0) such that F(x∗) = y, where y =
(y0, . . . , yN−1) are the exact data satisfying (1).

We are now in position to choose the positive constants α and τ in (5), (6). For
the rest of this article we shall assume

(11) α >
C2q

1 − q
, τ >

1 + η

1 − η
> 1 , η + (1 + η)τ−1 < q < 1

for some 0 < q < 1.
In the sequel we verify some basic facts that are helpful for the convergence

analysis derived in the next two sections. The first result concerns some useful
identities.

Lemma 2.1. Let xδ
k, hk and α be defined by (4), (5) and (11) respectively. More-

over, assume that (A1) - (A3) hold true.
a) For all k ∈ N we have

yδ
[k] − F[k](x

δ
k) − F ′

[k](x
δ
k)hk = α(F ′

[k](x
δ
k)F ′

[k](x
δ
k)∗ + αI)−1(yδ

[k] − F[k](x
δ
k)) .

b) Moreover, if ωk = 1, we have

hk = −α−1F ′
[k](x

δ
k)∗

[

F ′
[k](x

δ
k)(xδ

k+1 − xδ
k) + F[k](x

δ
k) − yδ

[k]

]

,

F ′
[k](x

δ
k)(xδ

k+1−xδ
k)+F[k](x

δ
k)−yδ

[k] = α(F ′
[k](x

δ
k)F ′

[k](x
δ
k)∗+αI)−1(F[k](x

δ
k)−yδ

[k]) .

c) Define Bδ
k := α(AkA∗

k+αI)−1(F[k](x
δ
k)−yδ

[k]) = F ′
[k](x

δ
k)(xδ

k+1−xδ
k)+F[k](x

δ
k)−

yδ
[k] (we write Bk = Bδ

k for δ = 0). Then

(12) q ‖F[k](x
δ
k) − yδ

[k]‖ ≤ ‖Bδ
k‖ ≤ ‖F[k](x

δ
k) − yδ

[k]‖ .
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Proof. The proof of a) and b) is straightforward and will be omitted. To prove c)
notice that

‖α(AkA∗
k + αI)−1(F[k](x

δ
k) − yδ

[k])‖ ≥
α

C2 + α
‖F[k](x

δ
k) − yδ

[k]‖ ≥ q ‖F[k](x
δ
k) − yδ

[k]‖

with Ak := F ′
[k](x

δ
k). On the other hand, we have ‖α(AkA∗

k + αI)−1(F[k](x
δ
k) −

yδ
[k])‖ ≤ ‖F[k](x

δ
k) − yδ

[k]‖.

Remark 1. According to [10] the Levenberg-Marquardt-iteration should be imple-
mented with variable αk, which for the LMK would mean that αk is chosen in such
a way that hk = hk(α) in (5) satisfies

(13) ‖F ′
[k](x

δ
k)hk + F[k](x

δ
k) − yδ

k‖ = q ‖F[k](x
δ
k) − yδ

k‖ ,

for some 0 < q < 1. From (12) and monotonicity of the mapping α 7→ ‖Bδ
k‖, (see,

e.g., [6]), it follows that α as chosen in (11) is larger than the αk’s defined in [10]
(see [7, Theorem 3.3.1]).

It is worth noticing that Lemma 2.2 as well as Proposition 1 remain valid with
αk chosen as in (13).

The following lemma is an important auxiliary result, which will be used to prove
a monotonicity property of the l-LMK iteration.

Lemma 2.2. Let xδ
k, hk, α and q be defined by (4), (5) and (11) respectively.

Moreover, assume that (A1) - (A3) hold true. If xδ
k ∈ Bρ(x0) for some k ∈ N, then

(14)

‖xδ
k+1 − x∗‖2 − ‖xδ

k − x∗‖2 ≤ 2
ωk

α
‖Bδ

k‖
[

(η − q)‖F[k](x
δ
k) − yδ

[k]‖ + (1 + η)δ[k]

]

− ‖xδ
k+1 − xδ

k‖
2 ,

where Bδ
k is defined as in Lemma 2.1.

Proof. Let Ak := F ′
[k](x

δ
k). If ωk = 0, (14) is obvious. If ωk = 1, it follows from (4),

(5) and Lemma 2.1 that

‖xδ
k+1 − x∗‖2 − ‖xδ

k − x∗‖2

= 2 〈xδ
k+1 − xδ

k, xδ
k+1 − x∗〉 − ‖xδ

k+1 − xδ
k‖

2

= −2α−1 〈Ak(xδ
k+1 − xδ

k) + F[k](x
δ
k) − yδ

[k],

Ak(xδ
k+1 − x∗) ± Akxδ

k ± F[k](x
δ
k) ± yδ

[k]〉

− ‖xδ
k+1 − xδ

k‖
2

= −2α−1
[

‖Bδ
k‖

2 + 〈Bδ
k, Ak(xδ

k − x∗) − F[k](x
δ
k) + yδ

[k] ± F[k](x
∗)〉

]

− ‖xδ
k+1 − xδ

k‖
2

= 2α−1
[

− ‖Bδ
k‖

2 + 〈Bδ
k, −F[k](x

∗) + F[k](x
δ
k) + Ak(x∗ − xδ

k)〉

+ 〈Bδ
k, F[k](x

∗) − yδ
[k]〉

]

− ‖xδ
k+1 − xδ

k‖
2 .
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Now, applying the Cauchy-Schwarz inequality, (1) and (10) with x̄ = x∗ ∈ Bρ/2(x0),

x = xδ
k ∈ Bρ(x0), leads to

‖xδ
k+1 − x∗‖2 − ‖xδ

k − x∗‖2

≤ 2α−1
[

− ‖Bδ
k‖

2 + ‖Bδ
k‖ η‖F[k](x

δ
k) − F[k](x

∗) ± yδ
[k]‖ + ‖Bδ

k‖δ[k]

]

− ‖xδ
k+1 − xδ

k‖
2

≤ 2α−1‖Bδ
k‖

[

− ‖Bδ
k‖ + η‖F[k](x

δ
k) − yδ

[k]‖ + (η + 1)δ[k]

]

− ‖xδ
k+1 − xδ

k‖
2 .(15)

The estimate (14) follows now plugging (12) into (15).

Our next goal is to prove a monotonicity property, known to be satisfied by
classical iterative regularization methods (e.g., Landweber [6], steepest descent [21]),
and also by Kaczmarz type methods (e.g., loping Landweber-Kaczmarz [8], loping
Steepest-Descent-Kaczmarz [4], loping Expectation-Maximization-Kaczmarz [9]).

Proposition 1 (Monotonicity). Under the assumptions of Lemma 2.2, for all k <
kδ
∗ the iterates xδ

k remain in Bρ/2(x
∗) ⊂ Bρ(x0) and satisfy (14). Moreover,

(16) ‖xδ
k+1 − x∗‖2 ≤ ‖xδ

k − x∗‖2 , k < kδ
∗ .

Proof. From (A3) it follows that x0 ∈ Bρ/2(x
∗). If ω0 = 0, then xδ

1 = xδ
0 = x0 ∈

Bρ/2(x
∗) and (16) is satisfied with equality for k = 0. If ω0 = 1, it follows from

Lemma 2.2 that (14) holds for k = 0. Then we conclude from (6) and (14) that

‖xδ
k+1 − x∗‖2 − ‖xδ

k − x∗‖2 ≤ 2α−1‖Bδ
k‖‖F[k](x

δ
k) − yδ

[k]‖
[

η + (1 + η)τ−1 − q
]

.

Due to (11) the last term on the right hand side is non positive. Thus, (16) holds
for k = 0. In particular we have xδ

1 ∈ Bρ/2(x
∗). The proof follows now using an

inductive argument.

In the next two sections we provide a complete convergence analysis for the l-
LMK iteration, showing that it is a convergent regularization method in the sense
of [6].

3. Convergence for exact data. Unless otherwise stated, we assume in the se-
quel that (A1) - (A3) hold true and that xδ

k, hk, α, τ and q are defined by (4), (5)
and (11). Our main goal in this section is to prove convergence in the case δi = 0,
i = 0, . . . , N − 1. As already observed in Section 1 the l-LMK reduces in this case
to the LMK iteration (i.e. ωk = 1 in (6)). For exact data y = (y0, . . . , yN−1), the
iterates in (4) are denoted by xk, in contrast to xδ

k in the noisy data case.

Remark 2. It is worth noticing that there exists an x0-minimal norm solution of
(2) in Bρ/2(x0), i.e., a solution x† of (2) such that ‖x† − x0‖ = inf{‖x − x0‖ : x ∈

Bρ/2(x0) and F(x) = y}. Moreover, x† is the only solution of (2) in Bρ/2(x0) ∩
(

x0 + ker(F ′(x†))⊥
)

. This assertion is a direct consequence of [11, Proposition 2.1].
For a detailed proof we refer the reader to [12].

In the sequel we derive some estimates that are helpful for the proof of the
convergence result. From Proposition 1 it follows that (14) holds for all k ∈ N.
Since the data is exact, (14) can be rewritten as

(17) ‖xk+1−x∗‖2−‖xk−x∗‖2 ≤ 2α−1(η−q)‖Bk‖ ‖F[k](xk)−y[k]‖−‖xk+1−xk‖
2 .
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Now inserting (12) into (17) and summing over all k, leads to

(18a)
∞
∑

k=0

‖F[k](xk) − y[k]‖
2 ≤ α[2q(q − η)]−1‖x0 − x∗‖2 < ∞

(notice that q > η + (1 + η)τ−1 > η), and also to

(18b)
∞
∑

k=0

‖Bk‖2 ≤ α[2(q − η)]−1‖x0 − x∗‖2 < ∞ .

On the other hand, neglecting the last term on the right hand side of (17) and
summing over all k, leads to

(18c)
∞
∑

k=0

‖Bk‖ ‖F[k](xk) − y[k]‖ ≤ α[2(q − η)]−1‖x0 − x∗‖2 < ∞ .

Finally, neglecting the first term on the right hand side of (17) and summing over
all k, leads to

(18d)
∞
∑

k=0

‖xk+1 − xk‖2 ≤ ‖x0 − x∗‖2 < ∞ .

Theorem 3.1 (Convergence for exact data). For exact data, the iteration xk con-
verges to a solution of (2), as k → ∞. Moreover, if the kernel condition [5]

(19) N (F′(x†)) ⊆ N (F′(x)) for all x ∈ Bρ(x0) ,

is satisfied, where F is defined as in (3), then xk → x†.

Proof. We define ek := x†−xk. From Proposition 1 it follows that ‖ek‖ is monotone
non-increasing. Therefore, ‖ek‖ converges to some ǫ ≥ 0. In the following we show
that ek is in fact a Cauchy sequence.

In order to show that ek is a Cauchy sequence, it suffices to prove |〈en−ek, en〉| →
0, |〈en − el, en〉| → 0 as k, l → ∞ with k ≤ l for some k ≤ n ≤ l [11, Theorem 2.3].
Let k ≤ l be arbitrary, k = k0N + k1, l = l0N + l1, k1, l1 ∈ {0, . . . , N − 1}, let
n0 ∈ {k0, . . . , l0} be such that

(20)
N−1
∑

s=0

{

‖xn0N+s+1 − xn0N+s‖ + ‖Fs(xn0N+s) − ys‖
}

≤

≤
N−1
∑

s=0

{

‖xi0N+s+1 − xi0N+s‖ + ‖Fs(xi0N+s) − ys‖
}

, for all i0 ∈ {k0, . . . , l0} ,
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and set n = n0N + N − 1. Therefore

|〈en − ek, en〉|

=
∣

∣

∣

n−1
∑

i=k

〈(xi+1 − xi), (xn − x†)〉
∣

∣

∣

=
∣

∣

∣

n−1
∑

i=k

α−1〈F ′
[i](xi)(xi+1 − xi) + F[i](xi) − y[i], F

′
[i](xi)(xn − x†)〉

∣

∣

∣

=
∣

∣

∣

n−1
∑

i=k

α−1〈F ′
[i](xi)(xi+1 − xi) + F[i](xi) − y[i],

F ′
[i](xi)(xn − xi) + F ′

[i](xi)(xi − x†)〉
∣

∣

∣

≤
n−1
∑

i=k

α−1‖Bi‖
[

(1 + η) ‖F[i](xn) − F[i](xi)‖ + (1 + η) ‖F[i](xi) − F[i](x
†)‖

]

≤ α−1(1 + η)
n−1
∑

i=k

‖Bi‖
[

‖F[i](xn) − y[i]‖ + 2‖F[i](xi) − y[i]‖
]

(21)

With i = i0N + i1 we get

‖F[i](xn) − y[i]‖

= ‖Fi1(xn0N+N−1) − yi1‖

≤ ‖Fi1(xn0N+i1) − yi1‖ +
N−2
∑

s=i1

‖Fi1(xn0N+s+1) − Fi1 (xn0N+s)‖

≤ ‖Fi1(xn0N+i1) − yi1‖ +
1

1 − η

N−2
∑

s=i1

‖F ′
i1(xn0N+s)(xn0N+s+1 − xn0N+s)‖

≤ ‖Fi1(xn0N+i1) − yi1‖ +
C

1 − η

N−2
∑

s=i1

‖xn0N+s+1 − xn0N+s‖

≤
(

1 +
C

1 − η

) N−2
∑

s=i1

{

‖xn0N+s+1 − xn0N+s‖ + ‖Fs(xn0N+s) − ys‖
}

.

Hence, by minimality (20) we get

‖F[i](xn) − y[i]‖ ≤
(

1 +
C

1 − η

)

N−1
∑

s=0

{

‖xi0N+s+1 − xi0N+s‖ + ‖Fs(xi0N+s) − ys‖
}

.

Inserting this into (21) we obtain

|〈en − ek, en〉|

≤ 2α−1(1 + η)
n−1
∑

i=k

‖Bi‖ ‖F[i](xi) − y[i]‖ +
(

1 +
C

1 − η

)

(1 + η) sum2(22)
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342 Johann Baumeister, Barbara Kaltenbacher and Antonio Leitão

with

sum2 =
n0−1
∑

i0=k0

N−1
∑

i1=0

α−1‖F ′
i1

(xi0N+i1)(xi0N+i1+1 − xi0N+i1)

+Fi1(xi0N+i1) − yi1‖
N−1
∑

s=0

{

‖xi0N+s+1 − xi0N+s‖ + ‖Fs(xi0N+s) − ys‖
}

≤ N
n0−1
∑

i0=k0

N−1
∑

i1=0

{1

2

(

α−1‖F ′
i1(xi0N+i1)(xi0N+i1+1 − xi0N+i1)

+Fi1(xi0N+i1) − yi1‖
)2

+ ‖xi0N+i1+1 − xi0N+i1‖
2 + ‖Fi1(xi0N+i1) − yi1‖

2
}

≤
N

min{2α, 1}

n
∑

i=k0

{

α−1‖Bi‖
2 + ‖xi0N+i1+1 − xi0N+i1‖

2

+‖Fi1(xi0N+i1) − yi1‖
2
}

.

Hence by (18a), (18c), (18d), (18b), both terms on the right hand side of (22) go
to zero as k, l → ∞. Analogously one shows that 〈en − el, en〉 → 0 as l → ∞.

Thus, ek is a Cauchy sequence and xk = x† − ek converges to some element
x+ ∈ X . Since the residuals ‖F[k](xk) − y[k]‖ converge to zero, x+ is a solution of
(2).

Now assume N (F′(x†)) ⊆ N (F′(x)), for x ∈ Bρ(x0). Since xk+1 − xk is ei-
ther zero or hk, it follows from Lemma 2.1 b) that xk+1 − xk ∈ R(F ′

[k](xk)∗) ⊂

N (F ′
[k](xk))⊥ ⊂ N (F′(xk))⊥ ⊂ N (F′(x†))⊥. An inductive argument shows that all

iterates xk are elements of x0 +N (F′(x†))⊥. Therefore, x∗ ∈ x0 +N (F′(x†))⊥. By
Remark 2, x† is the only solution of (2) in Bρ/2(x0) ∩ (x0 + N (F′(x†))⊥), and so
the second assertion follows.

Remark 3. In order to consider the variable choice of α according to (13) let us
consider for the moment a condition which is slightly stronger than the tangential
cone condition, namely the range invariance condition

(A2’) There exist linear bounded operators Ri(x̄, x) satisfying

(23) F ′
i (x̄) = Ri(x̄, x)F ′

i (x) , ‖Ri(x̄, x) − I‖ ≤ cR , x, x̄ ∈ Bρ(x0) ,

for some 0 < cR < 1.

Notice that from F ′
i (x)(x̄ − x) =

( ∫ 1

0
Ri(x + θ(x̄ − x), x) dθ

)−1
(Fi(x̄) − Fi(x)), it

follows that (A2’) implies (A2) with η = cR(1 − cR)−1.
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If (A2) is substituted by (A2’) in Theorem 3.1, the estimates can be improved to

|〈en − ek, en〉|

≤
cR

2(1 − cR)

n0−1
∑

i0=k0

N−1
∑

i1=0
{

ωi0N+i1

αi0N+i1

‖F ′
i1(xi)(xi0N+i1+1 − xi0N+i1 + Fi1 (xi0N+i1) − yi1‖

2

+ 1
q2

ωi0N+i1

αi0N+i1

‖F ′
i1(xi)(xn0N+i1+1 − xn0N+i1) + Fi1 (xn0N+i1) − yi1‖

2
}

(24)

+
N

2q2

n0−1
∑

i0=k0

N−1
∑

i1=0
{

ωi0N+i1

αi0N+i1

‖F ′
i1(xi)(xi0N+i1+1 − xi0N+i1 + Fi1 (xi0N+i1) − yi1‖

2

+
ωn0N+i1

αn0N+i1

‖F ′
i1(xi)(xn0N+i1+1 − xn0N+i1) + Fi1(xn0N+i1) − yi1‖

2
}

.

This suggests that if, instead of (20) the index n0 is chosen from the more natural
requirement

N−1
∑

s=0

ωn0N+s

αn0N+s
‖F ′

s(xn0N+s)(xn0N+s+1 − xn0N+s) + Fs(xn0N+s) − ys‖2 ≤

N−1
∑

s=0

ωi0N+s

αi0N+s
‖F ′

s(xi0N+s)(xi0N+s+1 − xi0N+s) + Fs(xi0N+s) − ys‖2

for all i0 ∈ {k0, . . . , l0} ,

then the analysis might extend to the variable parameter choice (13). Note however,
that due to the factor

ωi0N+i1

αi0N+i1

(instead of an in this context desirable i0-independent

factor
ωn0N+i1

αn0N+i1

) in (24), this is unfortunately not the case.

4. Convergence for noisy data. Throughout this section, we assume that (A1)
- (A3) hold true and that xδ

k, hk, α, τ and q are defined by (4), (5) and (11).
Our main goal in this section is to prove that xδ

kδ
∗

converges to a solution of (2)

as δ → 0, where kδ
∗ is defined in (7). The first step is to verify that, for noisy data,

the stopping index kδ
∗ is well defined.

Proposition 2. Assume δmin := min{δ0, . . . δN−1} > 0. Then kδ
∗ in (7) is finite,

and the estimate kδ
∗ = O(δ−2

min) holds true. Moreover,

(25) ‖Fi(x
δ
kδ
∗

) − yδ
i ‖ < τδi , i = 0, . . . , N − 1 .

Proof. Assume by contradiction that for every l ∈ N, there exists a i(l) ∈ {0, . . . , N−
1} such that ‖Fi(l)(xlN+i(l)) − yδ

i(l)‖ ≥ τδi(l). From Proposition 1 it follows that

(14) holds for k = 1, . . . , lN . Summing over k, leads to

−‖x0 − x∗‖2 ≤
lN−1
∑

k=1

2
ωk

α
‖Bδ

k‖
[

(η − q) ‖F[k](x
δ
k+1) − yδ

[k]‖ + (1 + η)δ[k]

]

, l ∈ N .

Using the fact that either ωk = 0 or ‖F[k](x
δ
k) − yδ

[k]‖ > τδ[k], we obtain

(26) ‖x0 − x∗‖2 ≥
lN−1
∑

k=1

2
ωk

α
‖Bδ

k‖ δ[k]

[

τ(q − η) − (1 + η)
]

.
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From equations (12), (26) and the fact that ωl′N+i(l′) = 1 for all l′ ∈ N, we obtain

(27) ‖x0 − x∗‖2 ≥
[

τ(q − η) − (1 + η)
]

2l
qτδ2

min

α
, l ∈ N .

Due to (11), the right hand side of (27) tends to +∞ as l → ∞, which gives a
contradiction. Consequently, the minimum in (7) takes a finite value.

To prove kδ
∗ = O(δ−2

min), it is enough to take l = kδ
∗/N ∈ N in (27) and estimate

kδ
∗ ≤ αN ‖x0 − x∗‖2

(

2qτ [τ(q − η) − (1 + η)] δ2
min

)−1

.

It remains to prove (25). Assume to the contrary that ‖Fi(x
δ
kδ
∗

) − yδ
i ‖ ≥ τδi

for some i ∈ {0, . . . , N − 1}. From (6) and (7) it follows that ωkδ
∗
+i = 1 and

xδ
kδ
∗
+i+1 = xδ

kδ
∗
+i respectively. Thus, from (14) and (12) it follows that

0 ≤ 2α−1‖Bδ
kδ
∗
+i‖

[

(η − q)‖Fi(x
δ
kδ
∗
+i) − yδ

i ‖ + (1 + η)δi

]

≤ 2α−1 ‖Fi(x
δ
kδ
∗

) − yδ
i ‖

2
[

(η − q) + (1 + η)τ−1
]

.

However, since ‖Fi(x
δ
kδ
∗

)− yδ
i ‖ ≥ τδmin > 0, the inequality above leads to [(η− q)+

(1 + η)τ−1] ≥ 0. This contradicts (11), completing the proof of (25).

Lemma 4.1. Let δj = (δj,0, . . . , δj,N−1) ∈ (0,∞)N be given with limj→∞ δj = 0.

Moreover, let yδj = (y
δj

0 , . . . , y
δj

N−1) ∈ Y N be a corresponding sequence of noisy data

satisfying ‖y
δj

i − yi‖ ≤ δj,i, i = 0, . . . , N − 1, j ∈ N. Then, for each fixed k ∈ N we

have limj→∞ x
δj

k = xk.

Proof. The proof of Lemma 4.1 uses an inductive argument in k. First assume

k = 0 and notice that x
δj

0 = x0 for j ∈ N. Now, take k > 0 and assume that for

all k′ ≤ k we have limj→∞ x
δj

k′ = xk′ . Two cases must be considered: If ωk = 1 we
estimate

‖x
δj

k+1 − xk+1‖
2

≤ ‖x
δj

k − xk‖ + ‖h
δj

k − hk‖

≤ ‖x
δj

k − xk‖

+ ‖(F ′
[k](x

δ
k)∗F ′

[k](x
δ
k) + αI)−1F ′

[k](x
δ
k)∗ − (F ′

[k](xk)∗F ′
[k](xk) + αI)−1F ′

[k](xk)∗‖

· ‖yδ
[k] − F[k](x

δ
k)‖

+ ‖(F ′
[k](xk)∗F ′

[k](xk) + αI)−1F ′
[k](xk)∗‖ · ‖yδ

[k] − y[k] − F[k](x
δ
k) + F[k](xk)‖

≤ ‖x
δj

k − xk‖

+ 9/4 α−1‖F ′
[k](x

δ
k) − F ′

[k](xk)‖‖yδ
[k] − F[k](x

δ
k)‖

+ 1/2 α−1/2
{

δ[k] + ‖F[k](x
δ
k) − F[k](xk)‖

}

,

(28)

where we have used the identity

(A∗A + αI)−1A∗ − (B∗B + αI)−1B∗

= (A∗A + αI)−1(A∗ − B∗) + (A∗A + αI)−1(B∗B − A∗A)(B∗B + αI)−1B∗

= (A∗A + αI)−1(A − B)∗

+ (A∗A + αI)−1(A∗(B − A) + (B∗ − A∗)B)(B∗B + αI)−1B∗

Inverse Problems and Imaging Volume 4, No. 3 (2010), 335–350



On Levenberg-Marquardt-Kaczmarz iterative methods 345

and the estimates

‖(A∗A + αI)−1‖ ≤ α−1 ,

‖(A∗A + αI)−1A∗‖ ≤ 1/2 α−1/2 ,

‖A(A∗A + αI)−1A∗‖ ≤ 1 .

for linear operators A, B. Otherwise, if ωk = 0 we have x
δj

k+1 = x
δj

k and ‖F[k](x
δj

k )−

y
δj

[k]‖ ≤ τδk,j . Therefore,

‖x
δj

k+1 − xk+1‖ = ‖x
δj

k − (xk + hk)‖ ≤ ‖x
δj

k − xk‖ + 1/2 α−1/2‖F[k](xk) − y[k]‖

≤ ‖x
δj

k − xk‖

+ 1/2 α−1/2
{

‖F[k](xk) − F[k](x
δj

k )‖ + ‖F[k](x
δj

k ) − y
δj

[k]‖ + ‖y
δj

[k] − y[k]‖
}

≤ ‖x
δj

k − xk‖ + 1/2 α−1/2
{

‖F[k](xk) − F[k](x
δj

k )‖ + (τ + 1)δk,j

}

.(29)

Thus, it follows from (28), (29), the continuity of F[k], F ′
[k], and the induction

hypothesis that lim
j→∞

x
δj

k+1 = xk+1.

Now we are ready to state a semi-convergence result for the loping Levenberg-
Marquardt-Kaczmarz iteration. For the proof, both Proposition 2 and Lemma 4.1
are required.

Theorem 4.2 (Convergence for noisy data). Let δj = (δj,0, . . . , δj,N−1) be a given

sequence in (0,∞)N with limj→∞ δj = 0, and let yδj = (y
δj

0 , . . . , y
δj

N−1) ∈ Y N be a
corresponding sequence of noisy data satisfying

‖y
δj

i − yi‖ ≤ δj,i , i = 0, . . . , N − 1 , j ∈ N .

Denote by kj
∗ := k∗(δj , y

δj ) the corresponding stopping index defined in (7). Then

x
δj

kj
∗

converges to a solution x+ of (2). Moreover, if (19) holds, then x
δj

kj
∗

converges

to x†.

Proof. The proof follows the lines of [4, Theor.3.6] (see also [11]) and is divided
into two cases. For the first case Proposition 2 and Lemma 4.1 are needed. For the
second case, we need Proposition 1, Theorem 3.1 and Lemma 4.1.

5. Numerical experiment.

5.1. Description of the model problem. In this section we introduce a model
which plays a key rule in inverse doping problems related to measurements of the
current flow, namely the linearized stationary bipolar case close to equilibrium.

This model is obtained from the drift diffusion equations by linearizing the
Voltage-Current (VC) map at U ≡ 0 [14, 2], where the function U = U(x) denotes
the applied potential to the semiconductor device. This simplification is motivated
by the fact that, due to hysteresis effects for large applied voltage, the VC-map
can only be defined as a single-valued function in a neighborhood of U = 0. Ad-
ditionally, we assume that the electron mobility µn(x) = µn > 0 and hole mobility
µp(x) = µp > 0 are constant and that no recombination-generation rate is present
[16, 15].

Inverse Problems and Imaging Volume 4, No. 3 (2010), 335–350



346 Johann Baumeister, Barbara Kaltenbacher and Antonio Leitão

Under these assumptions the Gateaux derivative of the VC-map ΣC at the point
U = 0 in the direction h ∈ H3/2(∂ΩD) is given by the expression

(30) Σ′
C(0)h =

∫

Γ1

(

µn eVbi ûν − µp e−Vbi v̂ν

)

ds,

where the concentrations of electrons and holes (û, v̂) (written in terms of the Slot-
boom variables) solve

div (µneV 0

∇û) = 0 in Ω(31a)

div (µpe
−V 0

∇v̂) = 0 in Ω(31b)

û = −v̂ = −h on ∂ΩD(31c)

∇û · ν = ∇v̂ · ν = 0 on ∂ΩN(31d)

and the potential V 0 is the solution of the thermal equilibrium problem

λ2 ∆V 0 = eV 0

− e−V 0

− C(x) in Ω(32a)

V 0 = Vbi(x) on ∂ΩD(32b)

∇V 0 · ν = 0 on ∂ΩN .(32c)

Here Ω ⊂ R
d is a domain representing the semiconductor device; the boundary ∂Ω of

Ω is divided into two nonempty disjoint parts: ∂Ω = ∂ΩN∪∂ΩD. The Dirichlet part
of the boundary ∂ΩD models the Ohmic contacts, where the potential V as well as
the concentrations û and v̂ are prescribed; the Neumann part ∂ΩN of the boundary
corresponds to insulating surfaces, thus a zero current flow and a zero electric field
in the normal direction are prescribed; the Dirichlet part of the boundary splits
into ∂ΩD = Γ0 ∪ Γ1, where the disjoint boundary parts Γi, i = 0, 1, correspond to
distinct contacts (differences in U(x) between different segments of ∂ΩD correspond
to the applied bias between these two contacts).

The function C(x) is the doping profile and models a preconcentration of ions
in the crystal, so C(x) = C+(x) − C−(x) holds, where C+ and C− are concentra-
tions of negative and positive ions respectively. In those subregions of Ω in which
the preconcentration of negative ions predominate (P-regions), we have C(x) < 0.
Analogously, we define the N-regions, where C(x) > 0 holds. The boundaries be-
tween the P-regions and N-regions (where C changes sign) are called pn-junctions.
Moreover, Vbi is a given logarithmic function [2].

5.2. Inverse doping problem. The inverse problem we are concerned with con-
sists in determining the doping profile function C in (32) from measurements of the
linearized VC-map Σ′

C(0) in (30). Notice that we can split the inverse problem in

two parts: The first step is to define the function γ(x) := eV 0(x), x ∈ Ω, and solve
the parameter identification problem

(33)
div (µnγ∇û) = 0 in Ω

û = −U(x) on ∂ΩD

∇û · ν = 0 on ∂ΩN

div (µpγ
−1∇v̂) = 0 in Ω

v̂ = U(x) on ∂ΩD

∇v̂ · ν = 0 on ∂ΩN

for γ, from measurements of [Σ′
C(0)](U) =

∫

Γ1
(µnγûν − µpγ

−1v̂ν) ds. The second

step consists in the determination of the doping profile in C(x) = γ(x) − γ−1(x) −
λ2∆(ln γ(x)), x ∈ Ω. Since the evaluation of C from γ can be explicitly performed
in a stable way, we shall focus on the problem of identifying the function parameter
γ in (33).
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Summarizing, the inverse doping profile problem in the linearized stationary
bipolar model (close to equilibrium) for pointwise measurements of the current
density reduces to the identification of the parameter γ in (33) from measurements
of the DN map

Λγ : H3/2(∂ΩD) → R .
U 7→

∫

Γ1
(µnγûν − µpγ

−1v̂ν) ds

In the formulation of the inverse problem we shall take into account some restrictions
imposed by the practical experiments, namely

i) The voltage profile U ∈ H3/2(∂ΩD) must satisfy U |Γ1
= 0 (in practice, U is

chosen to be piecewise constant on the contact Γ1 and to vanish on Γ0);
ii) The identification of γ has to be performed from a finite number N ∈ N of

measurements, i.e. from the data
{

(Ui, Λγ(Ui))
}N−1

i=0
∈

[

H3/2(Γ0) × R
]N

.

Therefore, we can write this particular inverse doping profile problem in the abstract
formulation of system (2), namely

(34) Fi(γ) = Λγ(Ui) =: yi , i = 0, . . . , N − 1 ,

where Ui are fixed voltage profiles chosen as above; X := L2(Ω) ⊃ D(Fi) := {γ ∈
L∞(Ω); 0 < γm ≤ γ(x) ≤ γM , a.e. in Ω}; Y := R.

To the best of our knowledge, assumptions (A1) - (A3) are not satisfied for
the Dirichlet-to-Neumann operator Λγ . Therefore, although the operators Fi are
continuous [2], the analytical convergence results of the previous sections do not
apply for system (34).

In the following numerical experiment we assume that nine measurements are
available, i.e. N = 9, in (34). The domain Ω ⊂ R

2 is the unit square, and the
boundary parts are defined as follows

Γ1 := {(x, 1) ; x ∈ (0, 1)} , Γ0 := {(x, 0) ; x ∈ (0, 1)} ,

∂ΩN := {(0, y) ; y ∈ (0, 1)} ∪ {(1, y) ; y ∈ (0, 1)} .

The fixed inputs Ui, are chosen to be piecewise constant functions supported in Γ0

Ui(x) :=

{

1, |x − xi| ≤ 2−4

0, else
i = 0, . . . , N − 1 ,

where the points xi are uniformly spaced in [0, 1]. The parameter γ to be identified
is shown in Figure 1 (a) (notice that γ(x) ∈ [0, 10] a.e. in Ω). In Figure 1 (b) a
typical voltage source Ui (applied at Γ0) and the corresponding solution û of (33)
are shown. In these two pictures, as well as in the forthcoming ones, Γ1 is the lower
left edge and Γ0 is the top right edge (the origin corresponds to the upper right
corner).

For comparison purposes we implemented both the l-LMK and the l-LK iter-
ation. The initial condition for both methods is presented in Figure 2 (c). The
linear system in the l-LMK is solved inexactly by three CG steps, so the numerical
effort for one step of the l-LMK is three times the one for one step of the l-LK.
In the computations it turned out that the performance of the l-LMK is not very
sensitive to the value of α. The “exact“ data yi, i = 0, . . . , 8, were obtained by solv-
ing the direct problems (33) using a finite element type method and adaptive mesh
refinement (approx 8000 elements). Artificially generated (random) noise of 5% was
introduced to yi in order to generate the noisy data yδ

i for the inverse problem. In
order to avoid inverse crimes, a coarser grid (with approx 2000 elements) was used
in the finite element method to implement the l-LMK and l-LK iterations.
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(a) (b)

Figure 1. In picture (a) the parameter γ to be identified is shown.
In picture (b) a typical voltage source Ui (boundary condition) and the
corresponding solution û of (33) are shown.

For both iterative methods the same stopping rule (7) was used. We assumed
exact knowledge of the noise level and chose τ = 2. In Figure 2 (e) we plot, for
each one of the iterations, the number of non-loped inner steps in each cycle. For
the l-LMK iteration (solid red line) the stopping criterion is achieved after 24
cycles, while the l-LK iteration (dashed blue line) is stopped after 205 cycles. In
this picture one also observes that the computational effort to perform the l-LMK
cycles decreases much faster than in the l-LK iteration.

The quality of the final result obtained with the l-LMK method can be seen
at Figure 2 (b), where the iteration error for the approximation obtained after 24
cycles is depicted. In Figure 2 (a) we present the iteration error for the l-LK
iteration after 205 cycles, when the stopping criterion is reached.

Since the same noisy data and the same stopping rule were used for both itera-
tions, the quality of the final results in Figures 2 (a) and (b) is similar. However, the
l-LMK iteration needed a much smaller number of cycles to reach the stopping cri-
terion than the l-LK iteration (starting from the same initial guess). Moreover, the
number of actually performed inner steps per cycle is much smaller for the l-LMK
iteration. All these observations lead us to conclude that the l-LMK iteration is
numerically much more efficient than the l-LK iteration.

6. Conclusions. In this article we propose a new iterative method for inverse
problems of the form (2), namely the l-LMK iteration. In the case of exact data
this method reduces to the LMK iteration.

In the l-LMK iteration we omit an update of the LMK iteration (within one
cycle) if the corresponding i-th residual is below some threshold. Consequently, the
l-LMK method is not stopped until all residuals are below the specified threshold.
We provide a complete convergence analysis for the l-LMK iteration, proving that
it is a convergent regularization method in the sense of [6]. Moreover, we provide
a numerical experiment for a nonlinear inverse doping problem and observe that
the l-LMK iteration generates results that are comparable with other Kaczmarz
type iterations. The specific example considered in Section 5.2 indicates that the
l-LMK iteration is numerically more efficient than the l-LK iteration.
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(a) (b)

(c) (d)
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(e)

Figure 2. Numerical experiment with noisy data: On picture (a) the
iterative error obtained with the l-LK method after 205 cycles. On
picture (b) the iterative error obtained with the l-LMK method after
24 cycles. On picture (c) the initial condition for both iterative meth-
ods. On picture (d) the approximate solution obtained with the l-LMK
method after 24 cycles. On picture (e) the number of non-loped in-
ner steps in each cycle for l-LMK (solid red) and l-LK (dashed blue),
respectively.
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[22] F. Schöpfer, T. Schuster and A. K. Louis, An iterative regularization method for the solution

of the split feasibility problem in Banach spaces, Inverse Problems, 24 (2008), 055008.
[23] T. I. Seidman and C. R. Vogel, Well posedness and convergence of some regularisation meth-

ods for non–linear ill posed problems, Inverse Probl., 5 (1989), 227–238.
[24] A. N. Tikhonov, Regularization of incorrectly posed problems, Soviet Math. Dokl., 4 (1963),

1624–1627.
[25] A. N. Tikhonov and V. Y. Arsenin, “Solutions of Ill-posed Problems,” John Wiley & Sons,

Washington, D.C., 1977, Translation editor: Fritz John.

Received July 2009; revised October 2009.

E-mail address: baumeist@math.uni-frankfurt.de
E-mail address: barbara.kaltenbacher@uni-graz.at
E-mail address: acgleitao@gmail.com

Inverse Problems and Imaging Volume 4, No. 3 (2010), 335–350

http://www.ams.org/mathscinet-getitem?mr=MR2099135&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2217377&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2435694&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1654603&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1408680&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0742928&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2282270&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2519860&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1435869&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1359706&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2459012&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0043348&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2321649&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2334308&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2235655&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0010666&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0153071&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1244325&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1245014&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1391882&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2438943&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0991919&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0455365&return=pdf

	1. Introduction
	2. Assumptions and basic results
	3. Convergence for exact data
	4. Convergence for noisy data
	5. Numerical experiment
	5.1. Description of the model problem
	5.2. Inverse doping problem

	6. Conclusions
	REFERENCES

