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Abstract This paper considers highly ill-posed surface recovery inverse problems, where
the sought surface in 2D or 3D is piecewise constant with several possible level values. These
levels may further be potentially unknown. Multiple level set functions are used when there
are more than two such levels, and we extend the methods and theory of our previous works
to handle such more complex situations. A rather efficient method is developed. Inverse
potential problems in two and three space dimensions are solved numerically, demonstrating
the method’s capabilities for several both known and unknown level values.

Keywords Inverse problem · Level set · Inverse potential · Tikhonov functional · Dynamic
regularization

1 Introduction

Several important applications give rise to problems involving the recovery of distrib-
uted parameter functions from inverse problems with elliptic forward PDEs; see, e.g.,
[9, 12, 15, 23, 24, 28, 33–35, 40]. In most of these references the parameter function to be
recovered, typically related to material conductivity, current, charge, or mass distribution,
is assumed smooth. This enables a reasonably stable practical reconstruction of regularized
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solutions using, e.g., Tikhonov-type functionals [20, 43, 44]. But when discontinuities arise
in the distributed parameter model, which commonly occurs in practical situations, the re-
construction problem becomes very difficult both theoretically and practically; see [2, 29]
as well as the unsatisfactory results reported in Sect. 4 upon using the popular total variation
(TV) regularization.

Fortunately, it is often reasonable to assume further that the solution may take on at each
point only one of two values, thus yielding a shape recovery problem. Better results are then
obtained in a much more stable fashion using algorithms that take this a priori information
directly into account [5, 7, 21, 31, 36]. Level sets are a popular tool in this context, because
they allow description of a discontinuous unknown function in terms of a differentiable
one, thus enabling a more stable iterative process and the use of simpler and more versatile
regularization functionals, and for their insensitivity to topological changes. Many authors
have reported rather satisfactory practical experience using this approach; see, e.g., [6, 10,
13, 14, 21, 22, 36]. For reviews on the use of level set methods for inverse problems, see [18,
41]. Some of the algorithms described in these references can be rather inefficient, but this
is not an inherent defect of level set methods [14].

We note that at present there is want of complete theory for practical level set methods in
this context. A glimpse at the partial efforts reported in [21], where otherwise routine tasks,
such as establishing existence results for corresponding Tikhonov regularizations, become
rather delicate and mandate the addition of unlikely terms to the corresponding functionals,
provides some insight into the issues involved. Of course, the practical solution of highly
ill-posed problems with sparse data is never a completely routine task, but solution discon-
tinuities and corresponding level sets describing them make the analysis even more compli-
cated. In essence, whereas it is easy to devise a guaranteed descent method that improves a
data fitting term at each iteration step (see [6, 36] and Sect. 3 below), the task of choosing
a level set method that yields a reasonable shape solution in a stable way is more delicate.
Nonetheless, the methods proposed in [13, 14] provide a highly efficient and often robust
approach for the approximate solution of such problems.

Further, often situations arise where the sought model may take on at each point only
one of several values. For instance, think of l − 1 homogeneous bodies made of different
materials all buried in a homogeneous sand that serves as background. One can use n level
set functions, with n defined by

2n−1 < l ≤ 2n,

in order to describe a surface with l distinct constant values [11, 41]. If n gets large then the
additional stability that the piecewise constant modeling assumption yields evaporates [1],
but it is useful to consider cases with n = 2 or 3, say. For notational simplicity we assume
until Sect. 4 that l = 2n: if l < 2n then some of the 2n values can be taken the same to arrive
at l different values.

Several multiple level set approaches have been proposed in recent literature, especially
in the area of image analysis. In [42] a piecewise constant level set approach (i.e., the level
set function is assumed to be piecewise constant) using TV regularization is proposed to
solve an EIT problem with a single interior measurement. In [41] the operator P defined in
(2) below is introduced for the first time. A Tikhonov functional based on TV regularization
is proposed and minimized using gradient type methods. In [8] a multiple level set approach
based on TV regularization is proposed. Approximate solutions are obtained by minimizing
a Tikhonov-TV type functional, which is defined on a set of characteristic functions. The
results of [21] have been extended in [11] to the two level set case. It is worth noting that the
multiple level set approach used in [7, 11] to represent the solution of the inverse problem
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is similar to the one considered here. However, the method proposed in this article differs
from the ones introduced in these references, and is based on the efficient level set method
proposed in [13, 14].

At this point, to be more specific, we introduce some notation. A given forward operator,
F(m), predicts the data for each model argument function m = m(x), where m is defined
over a given domain � in 2D or 3D. In the inverse problem a model m is sought such that
F(m) matches observed data b up to the noise level in the data measurements. The forward
model is further given by

F(m) = Qu, (1a)

u = G(m), (1b)

where Q projects the field u to data locations (e.g., along the boundary ∂�), and G(m) is
the inverse of an elliptic-type PDE system defined on the closure of �. Examples of G are
given in Sect. 4 and elsewhere. Importantly, we assume in addition that there are 2n values,
ai1,...,in , ik = 0,1, such that at each point x ∈ �, m(x) takes on one of these values. Then we
can describe the model m using n level set functions ψ1(x), . . . ,ψn(x) as

m(x) =
∑

i1,...,in=0,1

ai1,...,in Ĥi1(ψ
1(x)) · · · Ĥin (ψ

n(x)) at each x,where (2a)

Ĥi(s) =
{

H(s), i = 0,

1 − H(s), i = 1,
(2b)

with H the Heaviside function. Let us write this as m = P (ψ), where ψ = (ψ1, . . . ,ψn).
The so-called output least squares method would attempt to find m by fitting the data in

the least squares sense, i.e., by attempting to bring the expression

φ(ψ;0) = 1

2
‖F(m) − b‖2

2 (3a)

to within the noise level. However, the Fréchet derivative (or Jacobian matrix on the discrete
level), J = F ′(m), has a nontrivial null-space in our applications and a regularization is thus
required.

A Tikhonov-type regularization then calls for the minimization with respect to ψ of

φ(ψ;α) = 1

2
‖F(P (ψ)) − b‖2

2 + αR(ψ), (3b)

where α is a parameter and we now consider the functional

R(ψ) =
n∑

i=1

∫

�

1

2
|∇ψ̂ i |2 + 1

2
β1|ψ̂ i |2 + β2|∇H(ψi)|. (3c)

Here ψ̂ = ψ − ψ0, with ψ0 a given reference function. This function as well as the parame-
ters βj ≥ 0 are to be determined in the sequel. Notice that the last integral in (3c) corresponds
to |H(ψi)|BV , the BV-seminorm of H(ψi), which is formally defined by

|v|BV (�) = sup

{∫

�

v divw dx; w ∈ C1
c (�)

}
,



J Sci Comput

where C1
c (�) is the set of C1 functions with compact support in �. The various terms in

(3c) are all familiar, having appeared and been justified in the literature before. However, in
the sequel we will find occasions for dropping several of them (i.e., setting some of β1, β2

and ψ0 to 0).
In Sect. 2 we recall key points from the theory developed in [11, 21] for such a regular-

ization. For this we must choose βi > 0, i = 1,2, and we set β1 = 1. We further extend this
theory for the case of unknown contrasts, i.e., where some of the values ai1,...,in (for a given
n) are unknown.

Of course, to practically find an approximate minimizer for (3) one must discretize the
equations, and we consider a finite volume or finite element discretization of the PDE prob-
lem that defines the forward operator F . This involves a discrete mesh implying a certain
resolution, or mesh width h (even for nonuniform meshes), so we also consider m as a mesh
function, cf. [25]. We further smooth the projector P , replacing the Heaviside function H

in a standard way by a differentiable function Hh whose derivative is proportional to h−1

over a segment of length O(h) [13, 21]. The theory of Sect. 2 assures us at least of some
regular passage to the limit h → 0. But for a finite, positive resolution h additional approxi-
mations can be usefully considered. In Sect. 3 we extend the fast methods of [13, 14] to the
cases of multiple level sets with known and unknown levels ai1,...,in , and we provide a frame-
work that includes also the method of [11, 21]. Our method does not employ a Tikhonov
regularization, though it is closely related to one. As was shown in [13] for the electrical
impedance tomography (EIT) problem in two dimensions, the Tikhonov-type regularization
method often performs poorly in practice, requiring in particular a delicate adjustment of the
various parameters. On the other hand, the dynamic regularization method, further extended
for large scale problems in [14], allows us to drop the Tikhonov term (i.e., set α = 0 in (3b)),
and rely on a finite number of outer and inner iterations in our scheme to regularize the prob-
lem. The only remnant of (3c) is then a preconditioner, or smoother, which is essential for
its stability.

This paper can be seen as gradually developing a more efficient and more stable method
for a family of difficult inverse problems. Curiously, the more efficient and more stable the
multiple level set method gets, the further it seems to be from our theoretical base. In Sect. 4
we demonstrate the efficacy of our method for an inverse potential problem [11, 13, 21, 28,
29] in 2D and 3D. Conclusions are offered in Sect. 5.

2 Tikhonov-Type Functionals in Continuous Spaces

In this section we present a convergence analysis for the Tikhonov-type approach introduced
in Sect. 1.

2.1 Results for Known Level Values

Here we consider the case where the level values ai1,...,in in (2a) are known. Under this
assumption, the operator P defined by (2) does not depend on the values ai1,...,in , i.e., P =
P (ψ).

Let φ be the Tikhonov functional in (3b), where R is the H 1–T V penalization term
defined in (3c) and βi > 0 i = 1,2, are chosen as above. Since the Heaviside function H

used in (2) is discontinuous, the operator P is discontinuous as well. Thus, one cannot prove
that the Tikhonov functional in (3b) attains a minimizer on the set in (H 1(�))n of level set
functions ψ (see [20]).
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In order to guarantee existence of a minimizer of the Tikhonov functional φ, we intro-
duced the concept of generalized minimizers in [11]. According to this concept, φ(ψ;α)

is no longer considered as a functional on (H 1(�))n, but as a functional defined on the
w-closure of the graph of P , contained in (H 1(�))n × (L∞(�))n. This requires the intro-
duction of a smooth approximation to the Heaviside function H used in (2b). For ε > 0, let
Hε be the function defined by

Hε(s) = 1

2
(tanh(s/ε) + 1). (4)

Both operators H and Hε are considered as mappings from H 1 into L∞. More precisely, we
have:

Definition 1 A generalized minimizer of the Tikhonov functional φ(ψ;α) in (3b) is defined
as a minimizer of the functional

φ̃(z,ψ;α) = 1

2
‖F(P (ψ)) − b‖2

2 + αR(z,ψ), (5)

on the set of admissible parameters

Ad = {(z,ψ) = (z1, . . . , zn,ψ1, . . . ,ψn) ∈ (L∞(�))n × (H 1(�))n;
∃ {ψ1

k }, . . . , {ψn
k } ∈ H 1 and {εk} ∈ R

+ with lim
k→∞

εk = 0, s.t.

lim
k→∞

‖ψj

k − ψj‖L2 = 0 and lim
k→∞

‖Hεk
(ψ

j

k ) − zj‖L1 = 0 for j = 1,2, . . . , n},

where the penalization functional R is defined by

R(z,ψ) = inf
{ψj

k
},{εk}

lim inf
k→∞

∑n

j=1

{‖ψj

k − ψ
j

0 ‖2
H 1 + |Hεk

(ψk)|BV

}
. (6)

Notice that the infimum in (6) is taken over all sequences {ψ1
k }, . . . , {ψn

k } and {εk}, char-
acterizing (z,ψ) as an element of the set of admissible parameters Ad . In the above defini-
tion the functional R : Ad → R

+ corresponds to a relaxation of the penalization term R in
(3c).

In order to prove existence of a minimizer of φ̃(z,φ;α) in Ad , two properties of R
are required, namely, coerciveness and weak lower semi-continuity. For the proof of these
properties the assumption that F is a continuous operator w.r.t. the L1-topology is crucial
[11].

In the next lemma we recall relevant properties of the generalized minimizers of φ, as
well as the above mentioned regularity properties of the functional R in (6):

Lemma 1 (Properties of generalized minimizers and relaxed penalization functional)

(a) The set of admissible parameters Ad is sequentially closed with respect to the
(L1(�))n × (L2(�))n topology.

(b) For each (z,ψ) = (z1, . . . , zn,ψ1, . . . ,ψn) ∈ Ad we have
∑n

j=1(|zj |BV + ‖ψj −
ψ

j

0 ‖2
H 1(�)

) ≤ R(z,ψ).

(c) If {(zk,ψk) = (z1
k, . . . , z

n
k ,ψ

1
k , . . . ,ψn

k )}k∈N is a sequence in Ad with z
j

k → zj in
L1(�) and ψ

j

k ⇀ ψj in H 1(�) for some (z1, . . . , zn,ψ1, . . . ,ψn) = (z,ψ) ∈ Ad , then
R(z,ψ) ≤ lim infk→∞ R(zk,ψk).



J Sci Comput

Proof These results are straightforward generalizations of proofs given in [11], Sect. 3. �

Once the regularity properties of R in Lemma 1 are verified, the classical analysis of
Tikhonov-type regularization methods [20, Chapter 10] applies to the functional φ, as we
see next:

Theorem 1 (Convergence analysis)

(a) (Well-Posedness) The functional φ(ψ;α) in (3b) attains generalized minimizers on Ad .
(b) (Stability) Given α > 0, the problem of minimizing φ(ψ;α) over ψ is stable in the sense

of continuous dependence of the solutions on the data b.

In the sequel, for every α > 0, denote by (zα,ψα) a generalized minimizer of φ(ψ;α) on
Ad .

(c) (Convergence for exact data) Suppose that there exists noiseless data b0 such that
F(m∗) = b0 for some “ground truth”, or “true solution”, m∗. Let b = b0 and βi > 0.
Then, for every sequence of positive numbers {αk}k∈N converging to zero there exists
a subsequence, denoted again by {αk}l∈N, such that (zαk

,ψαk
) is strongly convergent

in (L1(�))n × (L2(�))n. Moreover, the limit (z,ψ) is an element of Ad satisfying
F(P (z)) = b0.

(d) (Convergence for noisy data) Let α = α(δ) be a function satisfying α(δ)
δ→0−→ 0 and

δ2α(δ)−1 δ→0−→ 0. Moreover, let {δk}k∈N be a sequence of positive numbers converging to
zero, and let bδk ∈ Y be corresponding noisy data satisfying ‖bδk − b0‖ ≤ δk . Then there
exists a subsequence, denoted again by {δk}, and a sequence {αk = α(δk)} such that
(zαk

,ψαk
) converges in (L1(�))2 × (L2(�))2 to some (z,ψ) = (z1, . . . , zn,ψ1, . . . ,ψn)

that satisfies F(m) = b0 for m = m(z) = P (z1, . . . , zn).

Proof These results are straightforward generalizations of proofs given in [11], Sect. 4. �

In [11] the generalized minimizers of φ(ψ;α) are approximated by minimizers of
smoothed functionals φε(ψ;α), ε > 0. Then the first order optimality conditions for a min-
imizer of these smoothed functionals are used as motivation for the derivation of a level set
type method.

2.2 Results for Unknown Level Values

Here we consider the case where not all level values ai1,...,in in (2a) are known. Assume that
ai1,...,in are determined by lu ≤ l unknown model parameters. Let us parameterize the un-
known levels in terms of the variables m1, . . . ,mlu which are to be recovered, i.e., ai1,...,in =
ai1,...,in (m1, . . . ,mlu) with prescribed (model) functions ai1,...,in . We now proceed as before,
treating the additional degrees of freedom m1, . . . ,mlu on par with the level set functions.
Notice that the operator P defined by (2) can be written as P = P (ψ,m1, . . . ,mlu), or in
shorthand notation, P = P (ψ,mu).

Analogous to (3), we define the Tikhonov functional

�(ψ,mu;α) = 1

2
‖F(P (ψ,mu)) − b‖2

2 + αS(ψ,mu), (7)

where S(ψ,mu) = R(ψ) + β3
2

∑lu
i=1 |mi − mi,0|2, and mi,0 are given initial guesses for the

unknown values mi , i = 1, . . . , lu.
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Notice that the functional � has lu more degrees of freedom than the functional φ in
(3b).

Definition 2 A generalized minimizer of the Tikhonov functional �(ψ,mu;α) is defined as
a minimizer of the functional

�̃(z,ψ,mu;α) = 1

2
‖F(P (ψ,mu)) − b‖2

2 + αS(z,ψ,mu), (8)

on the set of admissible parameters Ãd = Ad ×R
lu , where the penalization term S is defined

by S(z,ψ,mu) = R(z,ψ) + β3
2

∑lu
i=1 |mi − mi,0|2.

Analogous to Lemma 1 we have the following:

Corollary 1

(a) The set Ãd is sequentially closed with respect to the (L1(�))n × (L2(�))n × R
lu topol-

ogy.
(b) The functional S(z,ψ,mu) is coercive and weak lower semi-continuous on the set of

admissible parameters Ãd .

Sketch of the proof The proof of item (a) follows from Lemma 1(a) and the fact that R
lu

is a metric space. To prove item (b), notice that up to a multiplicative constant the func-
tional S(z,ψ,mu) is obtained by adding the term

∑lu
i=1 |mi −mi,0|2 to R(z,ψ). Then, using

Lemma 1(b) and (c), together with the fact that the R
lu -norm is coercive and weak lower

semi-continuous, the assertion in item (b) follows. �

Once the regularity properties of S in Corollary 1(b) are established, the classical analysis
of Tikhonov type regularization methods applies to the functional �(ψ,mu;α):

Theorem 2 (Convergence analysis)

(a) The Tikhonov functional �(ψ,mu;α) in (7) attains generalized minimizers on Ãd .
(b) Given α > 0, the problem of minimizing �(ψ,mu;α) is stable in the sense of continuous

dependence of the solutions on the data b.

For every α > 0, denote by (zα,ψα,mu,α) a generalized minimizer of �(ψ,mu;α) on Ãd .

(c) Suppose that there exists noiseless data b0 such that F(m∗) = b0 for some ground truth
m∗. Let b = b0 and βi > 0. Then, for every sequence of positive numbers {αk}k∈N

converging to zero there exists a subsequence, denoted again by {αk}l∈N, such that
(zαk

,ψαk
,mu,αk

) is strongly convergent in (L1(�))n × (L2(�))n × R
lu . Moreover, the

limit (z,ψ,mu) is an element of Ãd satisfying F(P (z,mu)) = b0.

(d) Let α = α(δ) be a function satisfying α(δ)
δ→0−→ 0 and δ2α(δ)−1 δ→0−→ 0. Moreover, let

{δk}k∈N be a sequence of positive numbers converging to zero and bδk ∈ Y be corre-
sponding noisy data satisfying ‖bδk −b0‖ ≤ δk . Then, there exist a subsequence, denoted
again by {δk}, and a sequence {αk = α(δk)} such that (zαk

,ψαk
,mu,αk

) converges in
(L1(�))2 × (L2(�))2 × R

lu to some (z,ψ,mu) = (z1, . . . , zn,ψ1, . . . ,ψn,m1, . . . ,mlu)

such that F(m) = b0 for m = m(z,mu) = P (z1, . . . , zn,m1, . . . ,mlu).
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Sketch of the proof Since (0,0,0) ∈ Ãd , the set of admissible parameters is not empty. Then,
given a minimizing sequence {(zk,ψk,mu,k)} for �̃, it follows from the boundedness of the
sequence {�̃(zk,ψk,mu,k;α)} that {(zk,ψk,mu,k)} is bounded in BV (�)n ×H 1(�)n × R

lu .
Thus, the Sobolev compact embedding theorem together with the Bolzano-Weierstrass theo-
rem guarantee the existence of a subsequence converging to some
(z,ψ,mu) ∈ L1(�)n × H 1(�)n × R

lu . Now, Corollary 1(a) guarantees that (z,ψ,mu) ∈
Ãd . Arguing aided by Corollary 1(b) and the weak continuity of F and P , we deduce
that (z,ψ,mu) is a generalized minimizer of �, proving item (a).

The proof of assertion (b) follows the lines of the proof of [20, Theorem 10.2] (notice
that Corollary 1(b) is essential to this proof).

If the data is exact, then the sequence of real numbers {�̃(zαk
,ψαk

,mu,αk
;αk)} is

bounded. Thus, the sequences {zαk
}, {ψαk

} and {mu,αk
} are bounded in BV (�)n, H 1(�)n

and R
lu , respectively. Arguing as in (a), one can extract subsequences (denoted by the same

indexes) converging to some limit (z,ψ,mu) in the topology of (L1(�))n × (L2(�))n ×R
lu .

Moreover, (z,ψ,mu) ∈ Ãd . Now, arguing aided by the continuity of F and the lower semi-
continuity of S , one concludes that F(P (z,mu)) = b0, proving (c).

The existence of (z∗,ψ∗,m∗
u) ∈ Ãd with F(P (z∗,m∗

u)) = b0 follows from the assump-
tions in item (d). Thus, �̃(zαk

,ψαk
,mu,αk

;αk) ≤ δ2
k + αk S(zαk

,ψαk
,mu,αk

). Taking the limit
k → ∞, it follows from the assumptions that ‖F(P (zαk

,mu,αk
)) − bδk‖ → 0 as k → ∞.

Therefore, limk→∞ F(P (zαk
,mu,αk

)) = b0. On the other hand, it follows from the definition
of �̃ that S(zαk

,ψαk
,mu,αk

) ≤ δ2
kα

−1
k + S(z∗,ψ∗,m∗

u). Thus, we conclude from the assump-
tions that lim supk→∞ S(zαk

,ψαk
,mu,αk

) ≤ S(z∗,ψ∗,m∗
u). The proof of assertion (d) follows

similarly to the proof of assertion (c). �

3 Numerical Algorithms

As mentioned in Sect. 1, our first step for designing numerical algorithms is to discretize the
PDE problem that gets inverted in (1b) using a finite volume or finite element method. This
implies a mesh with finite resolution h and we correspondingly discretize also m, ψ , and H .
There is also a finite number of data values in b. Abusing notation in an obvious way and
reshaping mesh functions into vectors, we can write the discretized forward problem again
as (1), where m and u are now vectors and Q becomes a matrix with typically many more
columns than rows. Also define the Jacobian matrices

J = ∂F

∂m
and Ĵ = ∂F

∂ψ
, (9)

see, e.g., [24]. Finally, defining

P ′ = ∂P (ψ)

∂ψ
and P ′

i = ∂P (ψ)

∂ψi

we obtain

Ĵ = JP ′.

Note that P ′ is block diagonal, since P ′
i is diagonal.
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3.1 Minimizing Discrete Tikhonov-Type Functionals

Let us assume at first that the levels ai1,...,in are known. This assumption is removed towards
the end of the present section. The necessary conditions for a minimum of φ(ψ;α) in (3b)
are

∇ψφ(ψ;α) ≡ Ĵ T (F (P (ψ)) − b) + αR′(ψ) = 0. (10)

Further, on the discrete level, for all the methods described below the perimeter of the re-
constructed shapes is controlled also by other means (see the first paragraph of Sect. 3.2),
so we conveniently set β2 = 0 in (3c). Thus, consider

R′(ψ) =
⎛

⎜⎝
(β1I − �)ψ̂1

...

(β1I − �)ψ̂n

⎞

⎟⎠ , (11)

with the differential terms appropriately discretized.
A damped Gauss-Newton method for solving this minimization problem leads to the

following update rule for ψ :

K(ψ;α) δψ = −∇ψφ(ψ;α), δψ =
⎛

⎜⎝
δψ1

...

δψn

⎞

⎟⎠ , (12a)

ψ ← ψ + τδψ, (12b)

K(ψ;α) = Ĵ T Ĵ + α

⎛

⎜⎝
β1I − � 0

. . .

0 β1I − �

⎞

⎟⎠ = Ĵ T Ĵ + α diag(β1I − �). (12c)

The default value for the step size is τ = 1, and it gets decreased if necessary by a standard
weak line search [13] in order to obtain a sufficient decrease in φ(ψ;α).

In [11], following [21], the authors ignore the expensive first term in K(ψ;α) and set
β1 = 1. They also update the reference function ψ0 at the beginning of each iteration (or
“time step”), setting it to the current ψ and holding it fixed for the duration of the current
iteration. This yields an iterated Tikhonov method [38, 39]. We have tested this method
on the problem described in Sects. 4.1–4.2. It produces qualitatively similar results to those
obtained by the method described next, thus validating both programs, and has the advantage
of providing a smooth, stable approach to the solution. However, dropping the data fitting
contribution in the Gauss-Newton matrix also slows down convergence significantly, and
the methods described below are often faster by as much as two orders of magnitude.

3.2 Fast Dynamic Regularization

In [13, 14] we have proposed a dynamic regularization method where we set α = 0 in the
right hand side of (12a). Note that the resulting iterative scheme can no longer be considered
as optimizing a Tikhonov functional. Instead, terminating the iteration after a finite number
of steps yields regularization [13]. Further, we observed there that using β1 = 0 or β1 = 1
produced indistinguishable results, so we simply set β1 = 0 here. Unlike the fast Tikhonov-
type methods studied in [13], this method does not require β2 > 0, i.e., we can set β2 = 0.
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The role of the BV term is to penalize rough boundaries, to arrive at a smooth reconstruc-
tion, and in practice we have found that the discretized Laplacian � used in the dynamic
regularization scheme already takes care of this smoothing. All of this has the combined
effect of replacing the iteration (12a) by

(
Ĵ T Ĵ − α diag(�)

)
δψ = −Ĵ T (F (P (ψ)) − b). (13)

Note that since the matrices in (13) are nonsingular for α > 0 (we ensure this in a standard
way) the obtained direction δψ is a descent direction with respect to the output least squares
function φ(ψ;0) defined in (3a). With a careful line search we obtain a monotonic decrease
in φ(ψ;0) as the iteration proceeds, and we use the discrepancy principle directly on this
function to stop the iteration. This process is therefore more direct than the corresponding
one using continuation with Tikhonov functionals. Indeed, the method is best considered
as directly attempting to minimize φ(ψ;0) until noise takes over, with the α-term in (13)
stabilizing the matrix to keep it away from singularity.

Note that due to the smoothing role of � one cannot simply replace it by the identity, as
the Levenberg-Marquardt method would have it. In fact, for Tikhonov-type regularization,
even the discretized Laplacian operator with natural boundary conditions does not always
suffice to produce a desirable level set function. We refer to [13] for another regularization
term, called R4n there, which occasionally does a better job in this respect.

For larger problems, including almost anything in 3D, the explicit calculation and storage
of the sensitivity matrix J quickly become prohibitive. A preconditioned conjugate gradient
(PCG) inner iteration using the Laplacian as a preconditioner is thus employed instead. The
preconditioner acts as a smoothing operator on the iterative solution, rather than as a means
to speed up convergence. Indeed, without the preconditioner we can also obtain convergence
in not too many more iterations, but the solution is undesirably rough, with many fragmented
regions. We thus view the preconditioner as a smoothing operator.

A single inner PCG iteration requires only two evaluations of F for a matrix-vector
multiplication in (13). Furthermore, instead of solving the system (13) to high accuracy
using PCG we can apply only a few inner iterations, say 3 or 5, which has a regularizing
effect, cf. [26], and this allows not only a very cheap overall iteration but also the reduction
of α to (almost) 0. A highly efficient algorithm is thus obtained, as demonstrated in Sect. 4
and in [14].

Unknown Levels

With a small variation of the above method we can also solve problems where not all values
ai1,...,in are known. We consider the most general case where they are determined by lu
unknown model parameters. As in Sect. 2.2 these are parameterized in terms of the variables
m1, . . . ,mlu .

We proceed as before, treating the additional degrees of freedom m1, . . . ,mlu on par with
the level set functions. This leads again to the iteration (13), where the vector δψ is replaced
by (δψ, δm1, . . . δmlu)

T and the modified Jacobian Ĵ is now defined as

Ĵ = ∂F

∂(ψ,m1, . . . ,mlu)
,

which can be written as

Ĵ = J

(
P ′,

∑

i1,...,in=0,1

Ĥi1 · · · Ĥin

∂ai1,...,in

∂(m1, . . . ,mlu)

)
.
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Fig. 1 The matrix structure of terms of (13) in a picture. For a grid with N points, boundary data on NB

points, lu unknown values mj and n level sets, the P ′
i

are N × N diagonal matrices, J is NB × N , and
∂P

∂(m1,...,mlu )
is N × lu

The matrix forms of these equations are clarified in Fig. 1.

4 Numerical Experiments

In this section we consider several examples with lu < l specified and n = 
log2(l)�.
The cost of one iteration, or step, of our algorithm depends mainly on the cost of solving

the PDEs involved. There are two types of such PDEs. The first is the system (1b) that
gets solved for the forward problem. This is also the essential effort in carrying out one
matrix-vector multiplication involving Ji or J T

i [14, 24]. Let us denote this cost by CF .
The other PDE inversion involves the discrete Laplacian equipped with natural boundary
conditions (and made nonsingular in a standard fashion), and we denote this cost by CP .
For the inverse potential problem discussed in Sect. 4.1, CF ≈ CP , whereas for EIT or DC
resistivity problems considered in [14] the forward solution cost CF dominates CP .

Using this, the cost of evaluating the right hand side in (13) is estimated by (n + 1)CF ,
where n is the number of level set functions. For the iteration of [11] the cost is therefore
nCP + (n+1)CF . This is not much more than the cost of a simple gradient descent iteration.
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The iteration in (13) can be more expensive, though. If a fixed number Nin of PCG inner
iterations is used then the cost of one outer iteration is estimated by n(2CF +CP )Nin + (n+
1)CF .

4.1 Inverse Potential Problem

Our generic test problem in this paper is similar to the one considered in [11, 13, 21, 28].
The forward problem F(m) consists of solving on a domain �, for a given source function
m(x), the Poisson problem

−�u = m, in �,
(14)

u = 0, on ∂�,

and obtaining predicted data Qu as the values of the derivative of u on the boundary ∂�.
The inverse problem then consists of the recovery of m(x) from the boundary data. We thus
have for G(m) in (1b) the solution of a simple Poisson problem.

Note that this inverse problem has no unique solution even under idealized condi-
tions [27–29], unlike the EIT problem. A generalization of this inverse problem, with the
Laplacian in (14) replaced by a generalized Poisson operator with a complicated conduc-
tivity structure, has applications in inverse gravimetry [4, 30], EEG [32], ECG [3], and
EMG [15, 16].

In those applications the solution studied is often the minimum norm solution. Another
favorite regularization method is the “smooth solution”, obtained from a Tikhonov penalty
function discretizing

∫
�

|∇m|2. However, the minimum norm solution method has a ten-
dency to place the sources as close as possible to the boundary, whereas the smooth solution
method introduces excessive smearing of sharp features. In recent years much attention has
been devoted to total variation (TV) regularization, which involves a Tikhonov penalty func-
tional discretizing a standard modification of

∫
�

|∇m| in an attempt to preserve jumps in m;
see, e.g., [2, 30, 44]. In the present context, however, this method does not perform well
either, as we shall see.

In the sequel, m is assumed to be piecewise constant with three possible values m1, m2,
and m3, i.e., l = 3. Without loss of generality we can set the background m3 value to 0, as
it can always be reset by a redefinition of variables in (14). Even under these restrictions,
though, the solution is not unique, and with our method the selection between possible
solutions is made by the choice of initial guess.

The resulting number of level set functions is n = 2, and in (2a) we set a00 = a11 = 0,
a01 = m1, and a10 = m2. Unlike [11] where finite elements were used, we discretize (14)
using the standard finite difference scheme on a uniform mesh with spacing h. The model
m is discretized as a piecewise constant function on the dual mesh. In approximating (2) we
use (4) with ε = h.

4.2 Numerical Experiments in 2D

In this section we follow [11] in the experimental setup, selecting the unit square for �

and obtaining predicted data Qu as the outward normal derivative of u on the mesh points
discretizing the entire boundary ∂�.

We have selected a 64 × 64 discretization mesh, i.e., h = 2−6. (Similar results were ob-
tained upon using h = 2−7.) At first we experiment with known values mi . The “true solu-
tion” depicted in Fig. 2(a) was used on a mesh with width h/2 to generate artificial “exact
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Fig. 2 Model reconstruction for the inverse potential problem in 2D with known mi -levels. The minimum
norm, smooth solution and TV reconstructions all yield poor results. The level set reconstructions are much
more pleasing. The choices Nin = 3 or 5 yield particularly efficient computations

data” on the entire boundary mesh, to which we added 3% Gaussian noise to create the
data used in the following experiment. For comparison with our level set based reconstruc-
tions we computed the minimum norm solution, the “smooth solution” and the TV solution,
depicted in Figs. 2(b–c). The latter two reconstructions were computed by minimizing the
standard Tikhonov regularized least-squares data fitting error function, and selecting the
regularization parameter α using the discrepancy principle [20], to obtain a misfit (defined
in (15) below) of about 5%.

The minimum norm solution is concentrated near the boundary, as predicted, and as such
is the worst. The smooth solution and the TV regularized solution are visually indistinguish-
able! The reason why the TV regularization fails to sharpen the edges, as it is reputed to do
in image processing applications such as denoising and deblurring, is that there is no infor-
mation present in the surface data to indicate sharp edges in the reconstructed solution. Note
that even though the TV regularization allows for sharp edges, it still discourages them. The
penalty on jumps in m can be further reduced by other functionals such as Tukey’s [37],
but this introduces non-convexity and thus potentially spurious solutions into the nonlinear
Tikhonov minimization process. Note that our results contrast the findings in [4], where TV
regularization was claimed to lead to reconstructions with sharp edges. Knowledge about
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Fig. 3 When the iteration is started with an unfortunate configuration the solution may not converge and get
stuck in a local optimum. The misfit in this case did not reduce below 5%

edge existence and location was introduced there through their initial guess, constituting a
restriction which we avoid here.

Turning to the level set based method, we initialized the level set functions as depicted in
Fig. 2(d). Resulting reconstructions are shown in Figs. 2(e–h) based on various choices for
the number of inner iterations. The process is terminated in each case after the misfit value
falls below 5%. The misfit is defined as

‖F(P (ψ)) − b‖2/‖b‖2. (15)

Employing Nin = 3 or 5 for (13) with α = 0 yields a very stable and fast process, despite the
topological change from initial guess to final shapes. With this, the iteration terminates after
Nout = 10 or 6 approximate Gauss-Newton iterations, respectively, with misfit ≈ 3%. If we
take Nin = 50, corresponding to an attempt to solve the outer iteration (13) exactly, then
of course we must select α > 0 or else we would be attempting to solve a singular system.
The choice α = 10−3 yields results of a similar quality at about 10 times the price, compare
Figs. 2(g) and 2(h). If we set Nin = 1 then we are doing preconditioned steepest descent [14,
17], and the iteration terminates at Nout = 150. Note the excellent data fitting depicted in
Fig. 2(i), which is common to all level set method variants.

Turning to the method of [11, 21], we estimate costs as in the beginning of Sect. 4.
Note that using Nin = 5 and CF = CP the cost of one iteration of (13) is equivalent to
that of 33/5 ≈ 7 artificial time steps of [11]. Thus, Nout = 6 outer iterations of (13) are
equivalent in computational cost to less than 50 simpler artificial time steps. Since simple
artificial time methods typically require thousands of steps to converge (cf. [7, 19, 21, 44]),
the demonstrated superiority of (13) is by a significant margin.

If we start the iteration with poor initial conditions, for example with m1 and m2 reversed,
the iteration can get stuck in a local minimum, as depicted in Fig. 3. In order to arrive at the
correct solution the reconstructed regions would have to change places, and in the process
of doing so would temporarily have to increase the data fitting measure. In this run, after
100 additional outer iterations the misfit did not decrease any further.

Next we assume that the exact levels of m1 and m2 are unknown in the same setup as
above, i.e., lu = 2, l = 3. The reconstruction results generally depend on the quality of the
initial guesses m0

1 and m0
2, so really our procedure is effective for sharpening ball-park esti-

mates, not for determining the values of mi from thin air. Figure 4 displays some relatively
successful reconstructions obtained using Nin = 5 and α = 0. Interestingly, the unfortunate
initial condition as in Fig. 3 is now easily recovered from, see Fig. 4(a). This is because the
additional degrees of freedom allow the shapes to “change identity”, by changing their mi

values.
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Fig. 4 Model reconstruction for the inverse potential problem with unknown m1 and m2 levels. Results:
(a) m1 = 0.91, m2 = 1.48, misfit = .025, Nout = 10; (b) m1 = 1.04, m2 = 2.11, misfit = .026, Nout = 10;
(c) m1 = .96, m2 = 1.71, misfit = .026, Nout = 9; (c) m1 = .75, m2 = 1.83, misfit = .024, Nout = 9

Fig. 5 Obtaining good results for the problem of Fig. 3: (a) a warm start configuration is obtained first
by pretending that the mi are unknown and applying 3 iterations; (b) using the results of (a) as the initial
configuration, good results are obtained for the known mi

The added flexibility with respect to the initial guess configuration afforded when the mi

levels are assumed unknown suggests a method for recovery from unfortunate initial guesses
for the problem with known mi levels. We start with a few iterations as in Fig. 4(a) and then
switch to iterating with the known mi values. If the initial choice was such that the shapes
would have had to change place or pass though each other, the effect can be approximately
achieved within the first couple of iterations by refining the parameters mi .
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Fig. 6 (Color online) Model reconstruction in 3D for the inverse potential problem with known and unknown
mi -levels, from data on the boundary. The green (light) shapes in the true model have m1 = 1, the red (dark)
shapes have m2 = 2. The shapes defined by level set functions ψ1 and ψ2 have the corresponding colors.
The recovered m values for the experiment with unknown levels starting at m0

i
= 3 were m1 = 1.42 and

m2 = 1.78

This is demonstrated in Fig. 5. Of course, the above is not a foolproof recipe for solving
all hard, large, nonconvex problems of the type considered here, but it is a simple idea that
is easy to program and apply, and which occasionally works well.

4.3 Numerical Experiments in 3D

We have tested the fast method extending [14] and described in Sect. 3.2 for the same prob-
lem setup as above but in 3D, with the unit cube replacing the unit square for the domain
�. A uniform 323 grid was used for the inversion and a uniform 643 grid was employed
for the artificial data generation with the same amount of noise (3%) as before added. The
discretization of the forward problem is the obvious extension of the 2D method. The for-
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ward problem is solved iteratively using PCG with an incomplete Cholesky factorization as
a preconditioner.

Figure 6 depicts typical reconstructions with known levels m1 = 1 and m2 = 2 and with
unknown levels starting at m0

1 = m0
2 = 3. As before we have chosen initial guesses such that

an iterative process converging to something near the “true model”, or “ground truth”, would
have to go through a topological change. This latter aspect of the setup often proves to be a
major stumbling block for methods that do not use level sets; see Sect. 4.2 as well as, e.g.,
[14].

The resulting performance of our method is essentially similar to that recorded in the
2D case. As such, the efficiency is more impressive in 3D because there are many more
grid points and hence each matrix-vector multiplication is more expensive. A single outer
iteration on our 3 GHz desktop computer takes about 15 seconds.

4.4 Partial Surface Data in 3D

In an attempt at a somewhat more realistic simulation resembling gravimetry, we restrict the
data to the upper surface, and test how well two distinct objects with densities 1 and 2 can be
recovered when they are placed deeper and deeper. We place two objects at eight different
depths, and reconstruct their positions (thus, there are a total of eight experiments). Again
the background density is 0. The two objects are depicted in Fig. 7(a, b), and the last two
rows of subfigures in Fig. 7 show a side view of their positions at various depths from almost
touching the upper surface (where the data is taken) to all the way at the bottom. The shapes
and locations are then reconstructed using three methods: (i) our present fast method with
two level set functions with known values, i.e., l = 3, lu = 0, n = 2, m1 = 1, m2 = 2, m3 =
0, see Figs. 8 and 11; (ii) using TV regularization with the results thresholded, see Figs. 9
and 12; and (iii) our method from [14] using one level set function with assumed density
m1 = 1 and background m2 = 0, see Figs. 10 and 13. The latter illustrates the robustness
of the method against modeling uncertainties. As before we injected 3% artificial noise, set
Nin = 5, and terminated the iteration at a misfit of 5%. The number of outer iterations varied
between 5 for shallow objects and up to 50 for the deepest objects.

We see that beyond a certain depth the two level set method can no longer distinguish
between the two densities, and both objects are identified as having mass 2, yet the lo-
calization of the objects remains fairly accurate. By contrast the TV regularization method
cannot resolve the depth of the objects at all, and it finds a solution with an equivalent source
distribution near the surface. The reconstruction with one level set shows significant shape
distortions for objects near the surface, but for deeper objects it tracks the depth only slightly
less accurately than the two level set method.

We have also experimented with the levels m1 and m2 taken to be unknown. However, the
results are not good enough to be reproduced here: the reconstruction favors large objects
with low density near the surface. This is not surprising as the potential field of a ball of
radius ρ and fixed total mass (or charge) μ is independent of ρ outside the ball, so the actual
density cannot be recovered for distant sources.

5 Conclusions

In this paper we have extended the methods and theory of our previous works [11, 13, 14,
21] to handle highly ill-posed surface recovery inverse problems, where the forward problem
involves inverting elliptic PDEs, and where the sought surface in 2D or 3D is piecewise
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Fig. 7 (Color online) Recovery of two objects of density 1 (green/light) and 2 (red/dark) from data on the
top surface only, as described in Sect. 4.4. The initial configurations for the reconstruction based on two level
sets and on one level set are depicted in (c) and (d), respectively. The last two rows depict a side view of the
true model with the objects placed at various depths

constant with several (not just two) levels that are potentially unknown. Multiple level set
functions are used.

Currently, there is no adequate theory to support practical methods for this class of prob-
lems. The theory developed in Sect. 2, which extends that developed in [11, 21], helps to
highlight some of the difficulties involved: although in practice many technical difficulties
are avoided by using the smoothed Hh rather than H , the limit case as h → 0 remains fragile.

We have further placed the methods developed in the above references on a common
platform that allows understanding their relative logic and merit. The methods presented
and developed in Sect. 3 get progressively more efficient and, frustratingly, also seemingly
further away from supporting theory. The method that we end up using in practice, presented
in Sect. 3.2 for both cases of known and unknown levels, no longer uses a Tikhonov-type
regularization and relies for smoothing effects on a limited number of PCG inner iterations.
This yields efficiency that in many instances improves by an astounding amount on other
methods that have been proposed in the literature in recent years, see for example [7, 11,
18, 19], reducing typical CPU run times on a laptop from several hours to a minute or two.
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Fig. 8 (Color online) Side views of reconstructions of two objects of density 1 (green/light) and 2 (red/dark)
at different depths from data on the top surface only, using two level set functions. Compare respectively with
the true models in Fig. 7(e–l). The noise level was 3% and the iteration was terminated when the misfit fell
below 5%. Observe the good localization achieved even in depths where the two nonzero densities can no
longer be distinguished from each other

Fig. 9 Side views of reconstructions of two objects of density 1 and 2 at different depths from data on the
top surface only, using TV regularization. Compare respectively with the true models in Fig. 7(e–l). To allow
visual comparison we manually defined and depicted a level set to indicate the region where most mass was
located. The noise level was 3% and the iteration was terminated when the misfit fell below 5%. The results
are significantly poorer than in Fig. 8

Correctness of this method has been verified by comparing against another method from
Sect. 3.1.

Our fast method has been tested here on several inverse potential problems in two and
three space variables. It also applies to other problems such as EIT, DC resistivity and elec-
tromagnetic data inversion [14, 17], although we have not tested cases of unknown levels
for those instances. In addition to being fast, an important advantage of our method is that
there is no need to choose the regularization parameter α.

For the inverse potential problem, where the data are given only on the boundary, we
have shown that such information that is not extractable with a TV regularization can yield
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Fig. 10 Side views of reconstructions of two objects of density 1 and 2 at different depths from data on the
top surface only, using one level set function. Compare respectively with the true models in Fig. 7(e–l). The
noise level was 3% and the iteration was terminated when the misfit fell below 5%. Note the relatively good
localization achieved despite the inevitable error in the density levels

Fig. 11 Top views corresponding to Fig. 8

successful reconstructions with a method that uses a few level set functions. A clear case
has been made for the use of our fast multiple level set method in practical applications.

For cases with unknown levels mi , reasonable recovery can often be realized from ball-
park estimates of the levels. Moreover, we have shown an example where pretending not to
know the levels has in effect improved the initial guess to a point where an impasse created
by a bad initial guess got resolved. On the other hand, the practical use of the method for
gravimetry problems in the presence of unknown mi is less clear.

Our level set functions ψi are in H 1(�). One may argue that using instead level set func-
tions that are required to be only in L2(�) (as, e.g., in [36]) could simplify calculations.
However, we have found that using the smoother level set functions produces a more stable
iterative procedure with a more logical shape evolution. Throughout many calculations we
have not encountered any need to re-initialize, as is common in other level set implementa-
tions. The term |∇ψ̂ i |2 in (3c), which yields the Laplacian operator in (12c) or, for the case
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Fig. 12 Top views corresponding to Fig. 9

Fig. 13 Tops views corresponding to Fig. 10

α = 0, corresponds to the Laplacian preconditioner, is at the heart of our algorithms. With
it we obtain extremely efficient and stable methods, while replacing this Laplacian by the
identity often produces poor results.
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