
Inverse Problems in Science and Engineering

2011, 1–17, iFirst

Level-set approaches of L2-type for recovering shape and contrast in

ill-posed problems

A. De Cezaroa and A. Leitãob*
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We investigate level-set-type approaches for solving ill-posed inverse problems,
under the assumption that the solution is a piecewise constant function. Our goal
is to identify the level sets as well as the level values of the unknown parameter
function. Two distinct level-set frameworks are proposed for solving the inverse
problem. Among both of them, the level-set function is assumed to be in L2.
Corresponding Tikhonov regularization approaches are derived and analysed.
Existence of minimizers for the Tikhonov functionals is proven. Moreover,
convergence and stability results of the variational approaches are established,
characterizing the Tikhonov approaches as regularization methods.
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1. Introduction

Several inverse problems of interest consist of identifying an unknown physical quantity

u2X, that can be represented by a piecewise constant real function over a bounded given

domain 
, from the set of data y2Y, where X, Y are Hilbert spaces. The relation between

the unknown parameter function and the problem data is described by the model

FðuÞ ¼ y, ð1Þ

where F: D(F )�X!Y, what corresponds to the fact that the set of data is obtained by

indirect measurements of the parameter. In practical applications the exact data y2Y is, in

general, not known. One is given only approximate measured data y�2Y, corrupted by

noise of level �4 0 and satisfying

ky� ÿ ykY � �: ð2Þ

Level-set approaches in the case where the unknown function u is piecewise constant

distinguishing between two given values, were considered in [1–9]. In this case, since the

level values of u are known, one needs only to identify the level sets of u, i.e. the inverse

problem reduces to a shape identification problem. In the case where the unknown
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function u is a piecewise constant function distinguishing between several given values,

multiple level set approaches were considered in [6,10,11]. For numerical implementations

of level-set-type methods for solving inverse problems, we refer the reader to [12,13].

If the level values of u are also unknown, the inverse problem becomes harder, since

one has to identify both the level sets as well as the level values of the unknown parameter

u. In this case, the dimension of the parameter space increases by the number of unknown

level values.

Our starting point in this article is the assumption that the parameter function u in (1)

is a piecewise constant function assuming two distinct unknown values, i.e. u(x)2 {c1, c2};

a.e. in 
�R
d. In this case one can assume the existence of an open measurable set D��


s.t. u(x)¼ c1, x2D¼: D1 and u(x)¼ c2, x2
/D¼:D2.

In this article we propose two level-set approaches to represent the unknown

parameter u:

(1) Standard level set approach (sLS): This approach consists in introducing

the level set function �, in L2(
), which acts as a regularization on the parameter space.

We use the Heaviside projector, H, to represent a solution of (1) in the form

u ¼ c1Hð�Þ þ c2ð1ÿHð�ÞÞ ¼: Psð�, c
j Þ: ð3Þ

Notice that u(x)¼ ci, x2Di, where the sets Di are defined by D1¼ {x2
; �(x)� 0} and

D2¼ {x2
; �(x)5 0}. Thus, the operator Ps establishes a straightforward relation

between the level sets of � and the sets Di representing our a priori knowledge about the

solution u.

Within this sLS framewok, the inverse problem in (1), with data given as in (2), can be

written in the form of the operator equation

FðPsð�, c
j ÞÞ ¼ y�: ð4Þ

In order to obtain approximate solutions to (4), we propose the minimization of the

Tikhonov functional

G�,sð�, c
j Þ :¼ kFðPsð�, c

j ÞÞ ÿ y�k2Y þ �
n

�1jHð�ÞjBV þ �2k�k
2
L2ð
Þ þ �3kc

j k2
R

2

o

ð5Þ

based on TV–L2 penalization. Here jH(�)jBV is the functional defined by

j jBV :¼ sup{
R


 r � � dx; � 2 C1
cð
;R

nÞ, k�kL1ð
Þ � 1g. Concurrent approaches were

proposed in [5,6,14] (using TV penalization) and [3,11] (using TV-H1 penalization).

(2) Piecewise constant level set approach (pcLS): In the sequel, we introduce the

piecewise constant level set function �2L2(
) such that �(x)¼ i, x2Di, i¼ 1, 2. Then,

defining the auxiliary functions  1(t) :¼ 2ÿ t and  2(t) :¼ tÿ 1, we represent the

characteristic functions of the subdomains Di in the form �Di
ðxÞ ¼  ið�ðxÞÞ.

Consequently, a solution of (1) can be written in the form

u ¼ c1 1ð�Þ þ c2 2ð�Þ ¼: Ppcð�, c
j Þ: ð6Þ

Notice that the piecewise constant assumption on � corresponds to the constraint

K(�)¼ 0, where K(�) :¼ (�ÿ 1)(�ÿ 2) is a smooth non-linear operator.

2 A. De Cezaro and A. Leitão
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Within this framework, the inverse problem in (1), with data given as in (2), can be

written in the form of the abstract operator equation

FðPpcð�, c
j ÞÞ ¼ y�,

s.t. � 2 fL2ð
Þ; Kð�Þ ¼ 0g:

�

ð7Þ

Approximate solutions to (7) can be obtained by minimizing the Tikhonov functional

G�, pcð�, c
j Þ :¼ kFðPpcð�, c

j ÞÞ ÿ y�k2Y þ �3kKð�ÞkL1
þ �

n

�1jPpcð�, c
j ÞjBV þ �2kc

j k2
R

2

o

: ð8Þ

Notice that the minimization of the functional G�, pc furnishes a regularized solution to the

system of operator equations:

FðPpcð�, c
j ÞÞ

Kð�Þ

� �

¼
y�

0

� �

:

The penalization term in (8) corresponds basically to a TV regularization strategy.

One should notice that, in the limit case �! 0 (Recall that in the presence of noise,

�4 0, the regularization parameter � is a function of the noisy level, i.e., �¼ �(�); see

Theorem 7.) the minimizers ð �, c
j
�Þ of G�,pc converge to some limit ð , cj Þ satisfying

FðPpcð , cÞÞ ¼ y and Kð Þ ¼ 0. Thus, the limit level-set function  is indeed piecewise

constant (as suggested by the name of the approach).

It is worth noticing that � is the unique regularization parameter in the Tikhonov

functionals (5) and (8). The constants �j appearing in these functionals play the role of

scaling factors, which may allow the introduction of a priori information about the

solution. In particular, the factor �3 in (8) relates to a very relevant a priori information,

namely the fact that the unknown parameter is piecewise constant (Remark 5). In

Section 4 we describe in detail the factors �j which are effectively used in the numerical

experiments with exact and noisy data.

This article is outlined as follows. In Section 2 we introduce the concept of generalized

minimizers for the functional G�,s in (5). Basic properties of the generalized minimizers are

verified, as well as regularization properties of the penalization term of G�,s. Moreover, we

derive a convergence analysis for the Tikhonov method related to the sLS approach. We

prove a well-posedness result, and also convergence results for exact and noisy data. In

Section 3 we derive the convergence analysis for the pcLS approach. Section 4 is devoted

to numerical experiments. Level-set-type methods based on the sLS and pcLS approaches

are implemented for solving a two-dimensional inverse potential problem.

2. The sLS approach

We shall consider the model problem described as in Section 1 under the following general

assumptions:

(A1) 
�R
d, d¼ 2, is bounded with piecewise C1 boundary @
.

(A2) The operator F: D�Lp(
)!Y is continuous and Fréchet-differentiable on D with

respect to the Lp-topology, where 1� p5 d/(dÿ 1)¼ 2.

(A3) ", � and �j, j¼ 1, 2, 3 denote positive parameters.

(A4) Equation (1) has a solution, i.e. there exists a u2L1(
) satisfying F(u)¼ y; there

exists a function �2L2(
) satisfying jr�j 6¼ 0 in a neighbourhood of {�¼ 0} such that

H(�)¼ z2L1(
) and there exist constants values cj2R such that Ps(z, c
j)¼ u.

Inverse Problems in Science and Engineering 3
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For each "4 0, we define the operator

Ps,"ð�, c
j Þ :¼ c1H"ð�Þ þ c2ð1ÿH"ð�ÞÞ , ð9Þ

where H" is the smooth approximation to H given by

H"ðtÞ :¼
1þ t=" for t 2 ÿ", 0½ �

HðtÞ for t 2 R= ÿ", 0½ �

�

:

2.1. The concept of generalized minimizers

In order to guarantee the existence of a minimizer of G�,s in (5), we adapt to the level-set

framework described above, the concept of generalized minimizers formulated in [3].

Definition 1 Let the operators H, Ps, H" and Ps," be defined as above.

(a) A vector (z,�, cj)2L1(
)�L2(
)�R
2 is called admissible when there exists a

sequence {�k} of L2(
)-functions satisfying limk!1 k�k ÿ �kHÿ1ð
Þ ¼ 0, and there

exists a sequence {"k}2R
þ converging to zero such that H"k ð�kÞ 2 Lpð
Þ and

limk!1 kH"kð�kÞ ÿ zkLpð
Þ ¼ 0.

(b) A generalized minimizer of G�,s is considered to be any admissible vector (z,�, cj)

minimizing

G�ðz,�, c
j Þ :¼ kFðqðz, cj ÞÞ ÿ y�k2Y þ �Rðz,�, cj Þ ð10Þ

over the set of admissible vectors, where q: L1(
)�R
23 (z, cj) ° c1zþ

c2(1ÿ z)2L1(
), and the functional R is defined by

Rðz,�, cj Þ :¼ �ðz,�Þ þ �3kc
j k2

R
2 , ð11Þ

with �ðz,�Þ :¼ infflim infk!1ð�1jH"k ð�kÞjBV þ �2k�kk
2
L2
Þg. Here the infimum is

taken over all sequences {"k} and {�k} characterizing (z,�, cj) as an admissible

vector.

2.2. Preliminary results

In the sequel we investigate relevant properties of the admissible vectors as well as

properties of the penalization functional R in (11). We start by verifying some

basic properties of the operators Ps,", H" and q that will be necessary in the subsequent

analysis.

LEMMA 1 Let 
 and p be given as in (A1), (A2). The following assertions hold true.

(i) Let {zk} be a sequence in L1(
) converging to some element z2L1(
) in the

Lp-topology and fc
j
kg be sequences of real numbers converging to cj, j¼ 1, 2. Then

qðzk, c
j
k Þ converges to q(z, cj) in the Lp-topology.

(ii) Let (z,�)2L1(
)�L2(
) be such that H"(�)! z in Lp(
) as "! 0 and let cj2R.

Then Ps,"(�, c
j)! q(z, cj) in Lp(
) as "! 0.

4 A. De Cezaro and A. Leitão
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Proof It is enough to prove assertion (i). Since 
 is bounded, the constant functions are

in Lp(
). Therefore,

kqðzk,c
j
kÞÿqðz,cj ÞkLpð
Þ

¼kc1kzkþ c2kð1ÿzkÞÿc1zÿ c2ð1ÿ zÞkLpð
Þ

¼kc1kðzkÿ zÞþ ðc1kÿ c1Þzþ c2k
�

ð1ÿzkÞÿ ð1ÿ zÞ
�

þðc2kÿc2Þð1ÿ zÞk
Lpð
Þ

� jc1kjkzkÿ zkLpð
Þþjc1kÿ c1jkzkLpð
Þþjc2kjkzkÿ zkLpð
Þþjc2kÿ c2jk1ÿ zkLpð
Þ

and the assertion follows. g

LEMMA 2 Let ðzk,�k, c
j
kÞ be a sequence of admissible vectors converging in

Lp(
)�Hÿ1(
)�R
2 to some (z,�, cj) in L1(
)�L2(
)�R

2. Then (z,�, cj) is also an

admissible vector.

Sketch of the proof For each k2N, it follows from Definition 1 that there exists a

sequence f�lkg in L2(
) and a sequence f"lkg in R
þsuch that as l!1 we have �lk ! �k in

Hÿ1(
) and H"l
k
ð�lk Þ ! zk in Lp(
). Thus, we can select a monotone increasing index

function : N!N such that

"
ðkÞ
k �

1

2
"
ðkÿ1Þ
kÿ1 ,



�
ðkÞ
k ÿ �k





Hÿ1ð
Þ
� kÿ1,



H
"
ðkÞ

k

ÿ

�
ðkÞ
k

�

ÿ zk




Lpð
Þ
� kÿ1,

for every k2N. Now, the lemma follows arguing with the triangular inequality. g

In the sequel, we prove coercivity and weak lower semi-continuity of the penalization

functional R. These properties are fundamental for the convergence analysis in Section 2.3.

First, however, we briefly recall some facts about the space BV(
). For a proof, we refer the

reader to [15, Chap. 5].

LEMMA 3 The following assertions hold true:

(i) The semi-norm j�jBV is weakly lower semi-continuous with respect to Lp-convergence,

i.e., if {xk}2 BV(
) converges to x in the Lp-norm, then x2 BV(
) and

jxjBV� liminfk!1jxkjBV.

(ii) BV(
) is compactly embedded in Lp(
) for 1� p5 d/(dÿ 1). Consequently, any

bounded sequence {xk}2 BV(
) has a subsequence converging in Lp(
) to some

x2 BV(
).

LEMMA 4 The functional R in (11) is coercive on the set of admissible vectors.

Sketch of the proof Let (z,�, cj) be an admissible vector. From the definition of �(z,�)

and the definition of admissible vectors, we can guarantee the existence of sequences

{�k}2L2(
) and {"k}2R
þsuch that "k! 0, �k!� in Hÿ1(
), H"k ð�kÞ ! z in Lp(
), and

[11, Lemma 3]

�ðz,�Þ ¼ lim inf
k!1

�

�1jH"kð�kÞjBV þ �2k�kk
2
L2ð
Þ

	

: ð12Þ

From (12), the weak lower semi-continuity of the L2-norm, and part (i) of Lemma 3,

it follows that

�ðz,�Þ � �1 lim inf
k!1

jH"kð�kÞjBV þ �2 lim inf
k!1

k�kk
2
L2ð
Þ � �1jzjBV þ �2k�k

2
L2ð
Þ: ð13Þ

Inverse Problems in Science and Engineering 5
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Thus, it follows from (11), (13) that �1jzjBV þ �2k�k
2
L2ð
Þ þ �3kc

j k2
R

2 � Rðz,�, cjÞ, conclud-

ing the proof. g

LEMMA 5 The functional R in (11) is weak lower semi-continuous on the set of admissible

vectors, i.e. given a sequence fðzk,�k, c
j
kÞg of admissible vectors such that zk! z in Lp(
),

�k*� in L2(
), c
j
k ! cj in R, for some admissible vector (z,�, cj), then

Rðz,�, cj Þ � lim inf
k!1

Rðzk,�k, c
j
kÞ:

Sketch of the proof Since the norm in R
2 is lower semi-continuous, it is enough to prove

the weak lower semi-continuity of �. We argue by contradiction. Let fðzk,�k, c
j
kÞg and

(z,�, cj) be given as above and assume that �(z,�)4 lim infk!1 �(zk, �k). Consequently,

there exists a constant c4 0 such that �(z,�)� c4 lim infk2N �(zk,�k). Arguing as in

[11, Lemma 5] we prove the following Claim.

Claim For every sequence fðzl,�l, c
j
l Þg of admissible vectors satisfying zl! z in Lp(
) and

�l!� in Hÿ1(
) such that �ðzl,�l Þ � c, we have �ðz,�Þ � c.

Notice that this claim is a sufficient condition for the weak lower semi-continuity of �.

Indeed, if the claim holds true, the constant c above cannot exist. g

2.3. Convergence analysis

Our first goal is to prove that for any positive parameters �, �1, �2, �3, the functional G�,s
in (5) is well posed.

THEOREM 6 The functional G�,s in (5) attains minimizers on the set of admissible vectors.

Proof Notice that the set of admissible vectors is not empty, since (0, 0, 0, 0) is admissible.

Let fðzk,�k, c
j
kÞg be a minimizing sequence for G�, i.e. a sequence of admissible vectors

satisfying G�ðzk,�k, c
j
kÞ ! infG� � G�ð0, 0, 0, 0Þ51. Then, fG�ðzk,�k, c

j
kÞg is a bounded

sequence of real numbers. Therefore, fðzk,�k, c
j
kÞg is uniformly bounded in BV�L2�R

2.

Thus, Lemma 3, the Sobolev compact embedding theorem [16] and the Bolzano–

Weierstraß theorem guarantee the existence of a subsequence (denoted again by

fðzk,�k, c
j
kÞg) and the existence of (z,�, cj)2Lp(
)�L2(
)�R

2 such that �k*� in

L2(
), �k!� in Hÿ1(
), zk! z in Lp(
) and c
j
k ! cj in R.

From Lemma 2 we conclude that (z,�, cj) is an admissible vector. Moreover, from

Lemma 5 together with the continuity of F and q we obtain

infG� ¼ lim
k!1

G�ðzk,�k, c
j
kÞ ¼ lim inf

k!1

�

kFðqðzk, c
j
kÞÞ ÿ y�k2Y þ �Rðzk,�k, c

j
kÞ
	

� kFðqðz, cj ÞÞ ÿ y�k2Y þ �Rðz,�, cj Þ ¼ G�ðz,�, c
j Þ,

proving that (z,�, cj) minimizes G�. g

In the next theorem we present the main convergence and stability results. The proofs

use classical techniques from the analysis of Tikhonov-type regularization methods

(see, e.g. [17,18]) and will be omitted.

THEOREM 7 The following assertions hold true.

(i) [Convergence for exact data] Assume that we have exact data, i.e. y�¼ y and �j4 0,

j¼ 1, 2, 3. For every �4 0 denote by ðz�,��, c
j
�Þ a minimizer of G� on the set of

6 A. De Cezaro and A. Leitão
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admissible vectors. Then, for every sequence of positive numbers {�k} converging to

zero there exists a subsequence, denoted again by {�k}, such that ðz�k ,��k , c
j
�k
Þ is

strongly convergent in Lp(
)�Hÿ1(
)�R
2.Moreover, the limit is a solution of (4).

(ii) [Convergence for noisy data] Let �¼ �(�) be a function satisfying lim�!0 �(�)¼ 0

and lim�!0 �
2
�(�)ÿ1¼ 0. Moreover, let {�k} be a sequence of positive numbers

converging to zero and fy�kg 2Y be corresponding noisy data satisfying (2). Then,

there exist a subsequence, denoted again by {�k}, and a sequence {�k :¼ �(�k)} such

that ðz�k ,��k , c
j
�k
Þ converges in Lp(
)�Hÿ1(
)�R

2 to solution of (4).

3. The pcLS approach

In the sequel, we consider the model problem described in the introduction under

assumptions (A1)–(A3). Moreover, we also require

(A40) There exists u2L1(
) satisfying F(u)¼ y. Moreover, there exists a function

�2 BV(
)�L2(
) and constants c1 6¼ c22R such that Ppc(�, c
j)¼ u and K(�)¼ 0.

Differently from the operator Ps, the operator Ppc(�, c
j) (for fixed constants cj) is 1–1,

continuous and continuously differentiable from L2(
) onto L2(
). Consequently, the set

of admissible vectors for the Tikhonov functional in (8) is defined in the following way.

Definition 2 Let the operator Ppc be defined as in (6) and �4 0. A vector

(�, cj)2L2(
)�R
2 is called admissible when �2 BV(
) and jc2ÿ c1j � �.

From (6), it follows that Ppc maps admissible vectors to BV(
). The next two lemmas

are devoted to the investigation of relevant properties of operators K and Ppc, respectively.

LEMMA 8 Let K be the operator defined in Section 1. The following assertions hold true:

(i) K is a continuous map from L2(
) to L1(
).

(ii) If kKð�ÞkL1ð
Þ ¼ 0 for some �2L2(
), then �(x)2 {1, 2}; a.e. in 
.

Proof Assertion (i) follows from

Z




jKð�Þ ÿ Kð Þj �

Z




jð�ÿ 1Þð�ÿ  Þj þ

Z




jð ÿ 2Þð ÿ �Þj,

together with the Cauchy–Schwarz inequality. Assertion (ii) follows directly from the

definitions of K and the L1-norm. g

LEMMA 9 Let Ppc be the operator defined in (6). The following assertions hold true:

(i) For every admissible vector (�, cj) it holds jPpc(�, c
j)jBV� �j�jBV.

Moreover, if ð�k, c
j
kÞ is a sequence of admissible vectors converging in Lp(
)�R

2 to

some admissible vector (�, cj), then

(ii) Ppcð�k, c
j
kÞ converges to Ppc(�, c

j) in Lp(
).

(iii) jPpcð�, c
j ÞjBV � lim infk!1 jPpcð�k, c

j
kÞjBV.

(iv) jPpcð�, c
j ÞjBV � �k�kL2

.

Proof Assertion (i) follows from the identity jPpc(�, c
j)jBV¼ jc2ÿ c1j j�jBV.

Assertion (ii): Since c
j
k ! cj in R

2 and �k!� in Lp(
), it follows that c
j
k�k ! cj� in

Lp(
) and we conclude that Ppcð�k, c
j
kÞ ¼ c1kð2ÿ �kÞ þ c2kð�k ÿ 1Þ ! Ppcð�, c

j Þ in Lp(
).
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Assertion (iii) follows from part (ii) together with Lemma 3 (i), while assertion (iv) is a

corollary of part (i). g

Notice that Lemma 9 (iv) guarantees the coercivity of the functional jPpc(�, �)jBV (w.r.t.

the L2-norm) on the set of admissible parameters.

We are now ready to state and prove the convergence analysis results for the pcLS

approach. Let Rpcð�, c
j Þ :¼ �1jPpcð�, c

j ÞjBV þ �2kc
j k2

R
2 be the penalization term of G�,pc

in (8). Given �, �1, �2, �34 0, the next result guarantees that the functional G�,pc is well

posed.

THEOREM 10 The functional G�,pc in (8) attains minimizers on the set of admissible vectors.

Proof Let fð�k, c
j
kÞg be a minimizing sequence for G�,pc, i.e. a sequence of admissible

vectors satisfying G�, pcð�k, c
j
kÞ ! infG�, pc, k!1. Then, fRpcð�k, c

j
kÞg is a bounded

sequence of real numbers. Therefore, it follows from Lemma 9 (iv) the existence of a

subsequence {�k} and � 2 L2ð
Þ such that �k * � in L2(
). Moreover, from Lemma 9 (i)

and (ii) we conclude that � 2 BVð
Þ and that this subsequence also satisfies �k ! �

in Lp(
).

On the other hand, the boundedness of fRpcð�k, c
j
kÞg also guarantees the existence of

subsequences fc
j
kg converging to cj in R

2.

Clearly, ð�, cj Þ is an admissible vector. Moreover, from (A2), Lemmas 9 (iii) and

Lemma 8 (i) it follows that

infG�, pc ¼ lim
k!1

G�, pcð�k, c
j
kÞ

¼ lim inf
k!1



FðPpcð�k, c
j
kÞÞ ÿ y�k2Y þ �3kKð�kÞkL1

þ �Rpcð�k, c
j
kÞ
	

� kFðPpcð�, c
j ÞÞ ÿ y�k2Y þ �3kKð�ÞkL1

þ �Rpcð�, c
j Þ ¼ G�, pcð�, c

j Þ,

proving that ð�, cj Þ minimizes G�,pc. g

The convergence and stability results in Theorem 7 hold true for the pcLS approach, as

we shall see next.

THEOREM 11 Assume that we have exact data and �j4 0, j¼ 1, 2, 3. For every �4 0 denote

by ð��, c
j
�Þ a minimizer of G�,pc on the set of admissible vectors. Then, for every sequence of

positive numbers {�k} converging to zero there exists a subsequence such that ð��k , c
j
�k
Þ is

strongly convergent in Lp(
)�Hÿ1(
)�R
2. Moreover, the limit is a solution of (7).

In the case of noisy data, let �¼ �(�) be a function chosen as in Theorem 7. Given a

sequence {�k} of positive numbers converging to zero and fy�kg 2 Y be corresponding noisy

data satisfying (2), there exist a subsequence, denoted again by {�k}, and a sequence

{�k :¼�(�k)} such that ð��k , c
j
�k
Þ converges in Lp(
)�Hÿ1(
)�R

2 to solution of (7).

Notice that the limit elements (�, cj) obtained from the convergence-stability

(Theorem 11) satisfy not only F(Ppc(�,c
j))¼ y, but also kKð�ÞkL1

¼ 0. Therefore, due to

Lemma 8 (ii), we conclude that the limit level-set function � is piecewise constant.

4. Numerical experiments

In this section we discuss the numerical implementations of iterative methods based on the

sLS and pcLS approaches. We use an inverse potential problem as test problem, similar to

the one considered in [3,11,19–21].
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The forward problem consists of solving on a given Lipschitz domain 
�R
n, for a

given source function u2L2(
), the Poisson boundary value problem

ÿDw ¼ u, in 
, w ¼ 0 on @
: ð14Þ

This problem can be modelled by the operator F: L2(
)!L2(@
), F(u) :¼w�j@
 [22]. The

corresponding inverse problem is the so-called inverse potential problem, which consists of

recovering an L2-function u, from measurements of the Cauchy data of its corresponding

potential w (the measurements are available only on the boundary of 
).

Using this notation, the inverse potential problem can be written in the abbreviated

form F(u)¼ y�, where the available noisy data y�2L2(@
) have the same meaning as in (2).

It is worth noticing that this inverse problem has, in general, non-unique solution [20].

Sufficient conditions for identifiability are given in [23]. For issues related to redundancy

of data as well as for an example of non-identifiability, we refer the reader to [20].

A generalization of this inverse problem, with the Laplacian replaced by a general elliptic

operator, appears in many relevant applications including inverse gravimetry [22,24],

EEG [25] and EMG [26].

Remark 1 Notice that the operator F above is a continuous and continuously

differentiable mapping from L2(
) to L2(@
). Moreover, continuity of F w.r.t. the

L1-topology can be proved in the parameter space D consisting of characteristic functions

(see (A2)).

In our experiments we follow [11] in the experimental setup, selecting 
¼ (0, 1)� (0, 1)

and assuming that the unknown parameter is a piecewise constant function of the form

u¼ 1þ�D, where D��
. In particular, we allow piecewise constant functions u

supported at domains consisting of several connected components. For this class of

parameters no unique identifiability result is known. Nevertheless, our methods prove the

ability to detect the desired (piecewise constant) solutions.

4.1. A level set algorithm based on the sLS approach

The iterative algorithm based on the sLS approach proposed in this article is an explicit

iterative method derived from the formal conditions of optimality for a smooth Tikhonov

functional approximating G�,s in (5). These optimality conditions can be written in the

form of the system

�� ¼ L", �, �ð�, c
1, c2Þ, �cj ¼ L

j
",�,�ð�, c

1, c2Þ, j ¼ 1, 2, ð15Þ

where

L",�,�ð�, c
1, c2Þ ¼ ðc1 ÿ c2Þ�ÿ1

2 H0
"ð�Þ

�F 0ðPs,"ð�, c
1, c2ÞÞ�ðFðPs,"ð�, c

1, c2ÞÞ ÿ y�Þ

ÿ �1ð2�2Þ
ÿ1H0

"ð�Þr �
�

rH"ð�Þ=ð"þ jrH"ð�ÞjÞ
�

, ð16aÞ

L1
",�,�ð�, c

1, c2Þ ¼ ð2�3Þ
ÿ1
ÿ

F 0ðPs,"ð�, c
1, c2ÞÞH"ð�Þ

��
ðFðPs,"ð�, c

1, c2ÞÞ ÿ y�Þ, ð16bÞ

L2
", �, �ð�, c

1, c2Þ ¼ ð2�3Þ
ÿ1
ÿ

F 0ðPs,"ð�, c
1, c2ÞÞð1ÿH"ð�ÞÞ

��
ðFðP"ð�, c

1, c2ÞÞ ÿ y�Þ: ð16cÞ

Inverse Problems in Science and Engineering 9
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Notice that the operatorsH and P in G�,s are substituted by smooth approximationsH"

and P" respectively.

Each step of this iterative method consists of three parts (Table 1): (1) The residual

rk2L2(@
) of the iterate ð�k, c
j
k Þ is evaluated (this requires solving one elliptic BVP of

Dirichlet type); (2) The L2-solution hk of the adjoint problem for the residual is evaluated

(this corresponds to solving one elliptic BVP of Dirichlet type); (3) The update ��k for the

level-set function and the updates �c
j
k for the level values are evaluated (this corresponds to

multiplying two functions).

Remark 2 In order to improve the regularity of the update ��k, the third step in Table 1

can be substituted by

(30) Evaluate the update ��k2H1(
), solving

ðIÿ �DÞ��k ¼ L",�,�ð�k, c
1
k, c

2
kÞ, in 
 ; ð��kÞ� ¼ 0, at @
:

where the positive constant � satisfies �� 1. Notice that this corresponds to the

optimality condition for the functional G�,s in (5) if we add �2�kr�kL2ð
Þ to the the

penalization term. In [27] such a Tikhonov functional (with �¼ 1) based on BV–H1

regularization was proposed. The corresponding update ��k was very smooth and led to a

slow convergence of the iteration.

Remark 3 In [21] another level-set method was proposed in order to attack the inverse

potential problem described above. The level-set method proposed in [21] is different from

the one proposed in this article. The main differences are:

. Here we work with L2 level-set functions, while [21] uses the H1

framework.

. In [21] the regularization parameter �4 0 is kept fixed, while here we define

�t¼ 1/� as time increment and take the limit �!1 in order to derive a

continuous evolution equation for the levelset function (a fixed point equation

related to the system of optimality conditions for the Tikhonov functional).

Table 1. Iterative algorithm based on the sLS approach for the inverse potential problem.

(1) Evaluate the residual rk :¼ FðPs,"ð�k, c
1
k, c

2
kÞÞ ÿ y� ¼ ðwkÞ�j@
 ÿ y�, where wk

solves

Dwk ¼ Ps,"ð�k, c
1
k, c

2
kÞ ,

in 
; wk ¼ 0 , at @
:

(2) Evaluate hk :¼ F 0ðPs,"ð�k, c
1
k, c

2
kÞÞ

�ðrkÞ 2 L2ð
Þ, solving

Dhk ¼ 0 , in 
 ; hk ¼ rk , at @
:

(3) Calculate ��k :¼ L",�,�ð�k, c
1
k, c

2
kÞ and �c

j
k :¼ L

j
",�,�ð�k, c

1
k, c

2
kÞ, as in (16).

(4) Update the level-set function �k and the level values c
j
k, j¼ 1, 2:

�kþ1 ¼ �k þ
1

�
��k , c

j
kþ1 ¼ c

j
k þ

1

�
�c

j
k:
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. In [21] the iteration is based on an inexact Newton-type method, where the inner

iteration is implemented using the conjugate gradient method. Here the iteration

is based on a gradient type method.

4.2. A level set algorithm based on the pcLS approach

The iterative algorithm based on the pcLS approach proposed in this article is an explicit

iterative method based on the operator splitting technique in [28] and derived from the

optimality conditions for the Tikhonov functional G�,pc in (8). First, the operator G�,pc is

splitted in the sum G�, pcð�, c
j Þ ¼ G1

�, pcð�, c
j Þ þ G2

�, pcð�Þ, where

G1
�, pcð�, c

j Þ :¼ kFðPpcð�, c
j ÞÞ ÿ y�k2Y þ ��1jPpcð�, c

j ÞjBV þ ��2kc
j k2

R
2

G2
�, pcð�Þ :¼ �3kKð�ÞkL1ð
Þ:

Each step of the iterative method consists of two parts: (i) The iterate ð�k, c
j
k Þ is updated

using an explicit gradient step w.r.t. the operator G1
�, pc, i.e.

�kþ1=2 :¼ �k ÿ
@

@�
G1
�, pcð�k, c

j
k Þ, c

j
kþ1=2 :¼ c

j
k ÿ

@

@cj
G1
�, pcð�k, c

j
k Þ:

It is worth noticing that this first part is analogue to steps 1–4 in Table 1.

(ii) The obtained approximation ð�kþ1=2, c
j
kþ1=2 Þ is improved by giving a gradient step

w.r.t. the operator G2
�, pc, i.e.

�kþ1 :¼ �kþ1=2 ÿ
d

d�
G2
�, pcð�kþ1=2Þ, c

j
kþ1 :¼ c

j
kþ1=2:

In [29] a similar operator splitting strategy was use to minimize a Tikhonov functional

related to an elliptic inverse problem in EIT.

Remark 4 The pcLS approach described above is characterized by a constraint enforcing

either �¼ 1 or �¼ 2 in 
. It is worth noticing that the resulting (two steps) level-set

algorithm relates to the phase field method used by the dynamic interface community to

analyse front propagation problems [30,31].

4.3. First numerical example: exact data

In this first numerical experiment we aim to identify the right-hand side u of (14) from the

knowledge of the exact data y¼w�j@
. We assume that the level value c2¼ 0 is given, and

that we have to identify only the support of u and the level value c14 0.

The exact data y¼F(u) is obtained by solving numerically the elliptic boundary value

problem in (14) at a very fine grid (the word ‘exact’ here means: up to the precision of the

numerical method used for solving the direct problem). In order to avoid inverse crimes,

the direct problem (14) is solved on an adaptively refined finite element grid with 8.804

nodes. However, in the numerical implementation of the level-set method, all

boundary value problems are solved at an uniform grid with 545 nodes (33 nodes at

each boundary side).
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For this experiment with exact data, the level-set method was tested without the BV

regularization term: we set �1¼ 0, �2¼ 1 (the choice of �3 is discussed in Remark 5).

Moreover, we chose "¼ 2ÿ4 in (9).

In Figure 1 the solution uexact of the inverse problem and the initial guess for the

iterative method based on the sLS approach are presented (the initial guess c10 ¼ 1:5 is used

for the unknown level value). Notice that the support of u is a non-connected proper

subset of 
. In Figure 2 the evolution of the sLS level-set method for the first 1500 iterative

steps is presented. Notice, the shapes of both inclusions are reasonably reconstructed, and

the level value c1 is accurately reconstructed as well. The iteration is stopped when the

residual drops below the predefined precision kFðPs,"ð�k, c
1
kÞÞ ÿ ykL2

5 10ÿ2. For

comparison purposes we present in the second line of this figure the evolution of the

BV–H1 level-set method [27] for the same initial guess.

The same stop criteria is used. Both methods deliver good approximations for the

support of u as well as for the unknown level c1. However, the sLS level-set method uses a

less regular update and converges much faster. In Figure 2 (last line) we present the

iteration error after k¼ 200 steps for sLS level-set method, and after k¼ 1900 steps for the

BV–H1 level-set method.

We performed other numerical simulations with different choice of initial guess ð�0, c
1
0Þ,

and observed that the number of iterative steps required in order to obtain a reasonable

approximation (up to the predefined precision of 10ÿ2 in the L2-norm) strongly depends

on the choice of the initial guess c10. On the other hand, the final result is not sensitive with

respect to the choice of the initial guess �0.

In Figure 3 we present the results obtained for the exact data case which concerns the

level-set method based on the pcLS approach. The initial guess is a smooth (polynomial)

function attaining values in the interval (1, 2). The initial guess for c10 is the same as before.

The evolution of the pcLS level-set method is shown for the first 1000 iterative steps of the

algorithm presented in Subsection 4.2. As in the previous methods, the shape of the

inclusions could be well reconstructed. The level value c1 could be accurately reconstructed

as well. For comparison purposes, we used the same stop criterion as before, i.e.

kFðPpcð�k, c
1
kÞÞ ÿ ykL2

5 10ÿ2.

Remark 5 What concerns the numerical implementation of the level-set method based on

the pcLS approach, some facts have to be observed:

(1) Due to the operator splitting technique, we compute several times the step-part (i)

before a single calculation of step-part (ii) is performed.

Figure 1. First experiment: the picture on the left-hand side shows the coefficient uexact to be
reconstructed. On the right-hand side, the initial condition for the sLS level-set method.
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Figure 2. First experiment sLS: on the first line, plots of Ps,"ð�k, c
1
kÞ, k¼ 50, 100, 200, for the sLS

level-set method. The pictures on the second line show Ps,"ð�k, c
1
kÞ, k¼ 500, 800, 1900, for the BV–H1

level-set method in [27]. On the third line, the picture on the left hand side shows the iteration error
for the sLS level-set method after k¼ 200 iterations, while the other picture shows the iteration error
for the BV–H1 level-set method after k¼ 1900 iterations.

Figure 3. First experiment pcLS: the picture on the top left shows the initial condition for the pcLS
level-set method. On the two subsequent pictures of the first line, plots of �k, for k¼ 1000, 2000. The
bottom left picture shows Ppcð�k, c

1
kÞ for k¼ 2000. The bottom right picture shows the iteration error

after k¼ 2000 iterations.
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(2) Step-part (i) aims to minimize the misfit in the iteration and is the most relevant

component of the iteration step described in Subsection 4.2.

(3) Step-part (ii) aims to drag the iterate �k to a piecewise constant (integer valued)

function. If step-part (ii) is implemented too often, all the iterates �k become

piecewise constant functions and the operator equation is not satisfied in an

satisfactory way. On the other hand, if step-part (ii) is implemented only

seldom, the iterates �k become too smooth and may be trapped in some local

minimizer (due to the non-uniqueness of the inverse potential problem).

Therefore, the determination of how often the step-part (ii) should be

implemented is crucial for the good performance of the algorithm. In our

numerical experiments the step-part (ii) was committed in computation of the

initial 100 iterations; then we started computing the step-part (ii) after every 20

iterations. For all test problems considered in our experiments, this strategy

brought good results.

(4) The constant �3 should be chosen in such a way that �3� 1 in step-part (ii). This

choice guarantees that the dragging effect resulting from step-part (ii) is not

enforced too strongly. If ��2� 2 the iterates once again become piecewise constant

functions and the misfit does not decrease.

4.4. Second numerical example: noisy data

In the sequel we consider once again the inverse potential problem in (14) with the solution

shown in Figure 1. This time, the data y� for the inverse problem is obtained by adding to

the exact data y¼F(u) random generated noise of 25%.

As in the previous experiment, the direct problem is solved at a grid that is finer than

the one used in the numerical implementation of the level-set method. The initial guess

ð�0, c
1
0Þ is the same as in the experiment with exact data (Figure 1), as well as the value used

for ". For this experiment with noisy data, the level-set method was tested with the BV

regularization term: �1¼ 10ÿ3. Moreover, �2¼ 1. We used the generalized discrepancy

with �¼ 2 as stop criteria, i.e. the iteration was stopped when for the first time

kFðPs,"ð�k, c
1
kÞÞ ÿ y�kL2

5 ��.

In Figure 4 we show the evolution of the level-set method based on the sLS approach,

while in Figure 5 the evolution of the level-set method based on the pcLS approach is

shown. The number of iterative steps required to obtain an acceptable approximation is

similar for both approaches. However, the iterative method based on the sLS approach

produced smoother and slightly more accurate approximate solutions.

For comparison purposes we present the evolution of the BV–H1 level-set method [27]

in this noisy data case (Figure 4). The same initial guess and the same stop criteria are

used. The goal is to establish a comparison between the stability of the proposed methods

and the method in [27].

The results in Figure 4 indicate that the sLS method and the method in [27] are able to

produce approximate solutions with similar accuracy. However, the sLS method requires

much less numerical effort. Indeed, the sLS method requires only k¼ 230 iterative

steps to reach the stop criteria, while the previous method in [27] requires over k¼ 2000

iterations to reach the same accuracy. These findings corroborate the results obtained in

Section 4.3.
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5. Conclusions

Two distinct level-set-type approaches for solving ill-posed problems are proposed, where

the level-set functions are chosen in L2-spaces.

. The first approach (sLS) corresponds to an extension of the results obtained in

[11,27] for H1 level-set functions.

Figure 4. Second experiment sLS: on the first line, plots of Ps,"ð�k, c
1
kÞ, k¼ 50, 100, 230, for the sLS

level-set method. The pictures on the second line show Ps,"ð�k, c
1
kÞ, k¼ 500, 800, 2000, for the BV–H1

level-set method in [27]. On the third line, the picture on the left-hand side shows the iteration error
for the sLS level-set method after k¼ 230 iterations, while the other picture shows the iteration error
for the BV–H1 level-set method after k¼ 2000 iterations.

Figure 5. Second experiment pcLS: on the left, plots of �k for k¼ 2000, for the pcLS level-set
method. On the centre the corresponding projection Ppc(�k). On the right-hand side, the iterative
error ek :¼ jPs,"ð�k, c

1
kÞ ÿ uexactj.
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. In the second approach (pcLS) the parameter space consists of piecewise constant

level-set functions. An extra equation is added to (4), namely K(�)¼ 0, in order to

enforce the level-set functions to become piecewise constant.

Based on each one of these two level-set approaches, corresponding Tikhonov

functionals are derived. We provide convergence analysis for the resulting Tikhonov

regularization methods.

Numerical experiments for an inverse potential problem are presented and the

implementation of algorithms for both regularization methods is compared. Moreover, we

compare our results with the BV–H1 level-set method in [27] in the case of exact and noisy

data. This comparison indicates that, although the sLS method and the BV–H1 method are

able to produce approximate solutions with similar accuracy, the numerical effort required

by the sLS method is significantly smaller.
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