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Abstract. This article is devoted to the convergence analysis of a special fam-
ily of iterative regularization methods for solving systems of ill–posed operator

equations in Hilbert spaces, namely Kaczmarz-type methods. The analysis is

focused on the Landweber–Kaczmarz (LK) explicit iteration and the iterated
Tikhonov–Kaczmarz (iTK) implicit iteration. The corresponding symmetric

versions of these iterative methods are also investigated (sLK and siTK). We

prove convergence rates for the four methods above, extending and comple-
menting the convergence analysis established originally in [22, 13, 12, 8].

1. Introduction.

Inverse problems under consideration. We consider ill-posed problems with a
forward operator that has a block structure: Let

Ai : X → Yi

be linear, where X, Yi are real Hilbert spaces. Whenever necessary, we shall denote
by XC the complexified version of a Hilbert space, i.e., the set of all x1 + ix2 with
x1, x2 ∈ X. Our goal is to solve the system of p equations

(1) Aix = yi , i = 0, . . . , p− 1 ,

where yi are given (possibly noisy) data and the system is assumed to be ill-posed
or ill-conditioned.

In what follows, bold variables are used to denote block-structured ones, i.e.,
objects of a (larger) product space. In order to use a common framework, we define

the operator Â and the data vector ŷ by

Â =

 A0

...
Ap−1

 , ŷ =

 y0

...
yp−1

 .
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The operator Â maps from X to the Hilbert space Y = (Y0, . . . , Yp−1). Thus, the
equation to solve is now

(2) Âx = ŷ .

For generality, we include p corresponding preconditioning operators Mi, for which
we assume for the rest of this paper without further notice the following condition:

(3) Mi : Yi → Yi symmetric bounded positive definite operators, i = 0, . . . , p−1 .

The preconditioned version of the system in (1) is

(4) M
1
2
i Aix = M

1
2
i yi , i = 0, . . . , p− 1 ,

which is clearly equivalent to (1) for positive definite Mi. We collect the precondi-
tioners into a block diagonal matrix M, i.e.,

(5) M = diag(Mi) i = 0, . . . , p− 1 .

It will be convenient to work with the preconditioned operators and data, so let us
define

A := M
1
2 Â =


M

1
2

0 A0

...

M
1
2
p−1Ap−1

 , y := M
1
2 ŷ =


M

1
2

0 y0

...

M
1
2
p−1yp−1

 .

We also represent the noisy data by ŷδ, respectively yδ = M
1
2 ŷδ. As usual, a bound

on the noise is assumed, i.e.,

(6) ‖yδi − yi‖ ≤ δi , i = 0, . . . , p− 1 .

The quantities δi are the noise levels, i.e., the amount of noise in the i-th equation.
In our analysis, however, we only need to know the overall noise level δ,

(7) δ2 =

p−1∑
i=0

δ2
i = ‖ŷ − ŷδ‖2 ,

instead of having information on each δi. We also introduce the noise level in the
preconditioned version

(8) δ2
M :=

p−1∑
i=0

‖M
1
2
i (yδi − yi)‖2 = ‖yδ − y‖2 ≤ ‖M 1

2 ‖2δ2 .

Kaczmarz-type methods. For ill-posed and ill-conditioned problems with a block
structure, the class of Kaczmarz-type iterations is a useful iterative regularization
method. The original Kaczmarz iteration [17] consists of a sequence of successive
orthogonal projections (performed in a cyclic way), aiming to solve a system of
linear equations in Hilbert spaces. This method was successfully applied to the
inverse problem of computerized tomography [29] and was named Algebraic Recon-
struction Technique (ART). We refer the reader to [30] for the application of the
Kaczmarz method to other relevant inverse problems with bilinear structure. It
is worth mentioning that the Kaczmarz iteration is closely related to the method
of adjoint fields cited in the engineering literature [4]. For convergence analysis of
the Kaczmarz method, we refer the reader to [24, 25] (infinite dimensional spaces)
and [26] (finite dimension). Acceleration of the Kaczmarz iteration for inconsistent
linear systems is obtained in [16] by applying under-relaxation. Continuous and
semicontinuous versions of Kaczmarz’ method for the numerical resolution of linear
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algebraic equations arise from tomography and other areas of reconstruction from
projections [28].

It is immediate to observe that Kaczmarz’ strategy can be used in conjunction
with any iterative method for solving ill-posed problems, e.g., gradient-type methods
(Landweber, Steepest descent [10]) or Newton-type methods (Levenberg-Marquardt
[18], IRGN [2], REGINN [34]). Essentially, one applies one iterative step of the
chosen method to each of the equations of the system cyclically.

The investigation of Landweber–Kaczmarz methods for nonlinear ill-posed prob-
lems was initiated about ten years ago [22], where convergence of the iteration
(without rates) was proven in case of exact data (the convergence proof for inex-
act data was incomplete). A complete convergence proof in the noisy data case
(again without rates) was given in [14], where the authors introduced the loping
Landweber–Kaczmarz iteration and changed the stopping criteria in order to carry
out the convergence proofs.

In what follows we give a brief overview on the convergence analysis results for
Kaczmarz-type methods (for both linear and nonlinear problems):
[2006] Iteratively-Regularized-Gauss-Newton–Kaczmarz [5]; convergence with rates;
[2007] Landweber–Kaczmarz [14, 13]; convergence without rates;
[2008] Steepest–Descent–Kaczmarz [7]; convergence without rates;
[2009] Expectation–Maximization–Kaczmarz [11]; convergence without rates;
[2009] Block–Landweber–Kaczmarz [12]; convergence without rates for linear sys-
tems;
[2010] Levenberg–Marquardt–Kaczmarz [3]; convergence without rates;
[2011] Iterated Tikhonov–Kaczmarz [8]; convergence without rates;
[2011] Parallel–Regularized–Newton–Kaczmarz [1]; convergence results with rates;

Notice that in [5] rates of convergence are obtained. In this article however,
the assumptions on the nonlinearity of the operator equation (modeling the inverse
problem) are by far the strongest. Convergence rate results can also be found in
[1]. However, the method described there is not a cyclic (sequential) iteration, but
it consists of solving in parallel all equations of the system and then computing a
convex combination of a (regularized) Newton step for each subproblem.

While convergence results in the remaining articles are obtained using essentially
the tangential cone condition [35, 15], the convergence proof in [5] require more
delicate (stronger) assumptions as the adjoint range invariance condition [10] and
a uniform bound on the convergence of the regularization operators [5, Sec. 3.1,
assumption (3.5)].

Moreover, in order to derive rates of convergence, source conditions (smoothness
assumptions on the solution) are also required.

Aim and scope. Differently from other iterative regularization methods such as
Landweber iteration, CG, or the iterated Tikhonov method, a satisfactory conver-
gence rate analysis for Kaczmarz-type iterations is not yet available, even in the
simplest case of linear problems in Hilbert spaces. A possible explanation is the
fact that Kaczmarz-type methods can be seen as nonsymmetric preconditioned ver-
sions of usual Richardson/Landweber-type iterations, therefore standard spectral
theoretical approach cannot be used to derive rates.

The goal of this paper to close this gap and to establish a convergence rates
analysis of the symmetric and nonsymmetric, implicit and explicit Landweber–
Kaczmarz-type iteration.
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Our approach is based on the well-known formulation of these iterations as Gauss-
Seidel preconditioned Landweber (respectively Tikhonov) iteration [29, 9]. More-
over, we use the holomorphic functional calculus and functional calculus on the
numerical range to obtain estimates for the approximation error and the propa-
gated data error. In combination, this leads to error estimates and convergence
rates (using appropriate parameter choice rules) similar to the standard case for
linear iterative regularization schemes. The methods of estimating the convergence
rates in this paper can be found in the work of Plato [33] for sectorial operators
(see also Nevanlinna [31]). These results, however, are for rather general operator
equations not necessarily ones coming from Kaczmarz-type iterations. The main
difficulty concerning the use of these results is the problem of estimating the spec-
trum of the involved operators. In this work, we use the numerical range, which is a
spectral set, to derive some relevant inequalities. This allows us to state computable
conditions (see, e.g., (39) or (45)) sufficient for convergence rates, assuming a source
condition. It turns out that, for sufficiently small stepsizes, one always obtains the
standard Hölder convergence rates.

The paper is organized as follows. In Section 2, we define four Kaczmarz-type
iterations. The first two are the classical method (here also referred to as the
nonsymmetric LK method) and the iterated Tikhonov–Kaczmarz (iTK) method
(its implicit version). Moreover, for each one of them we define their symmetric
counterparts: sLK and siTK. We also compare them with the classical Landweber
method and the iterated Tikhonov method when applied to the full block system
(i.e., when the Kaczmarz strategy is not employed). Furthermore in Section 2, we
clarify the idea that the above mentioned Kaczmarz iterations can be seen as precon-
ditioned version of the classical Landweber method or iterated Tikhonov method.
In Section 3, we prove convergence rates for the nonsymmetric case. For the sake of
completeness, we also present convergence rates for the symmetric iterations (sLK)
and (siTK). These can be established following the ideas in [10] to analyze itera-
tive regularization methods in Hilbert spaces. In Section 4 we discuss the obtained
results.

2. Kaczmarz and block iteration methods. In this section we define the im-
plicit and explicit Landweber–Kaczmarz iteration (symmetric and nonsymmetric
versions of each method) applied to (4) and contrast them with the usual implicit
or explicit Landweber iteration for block structured systems.

For some of the iteration methods below, we have to relate the preconditioning
operators to the operators Ai of the ill-posed problem appropriately. As a matter
of fact, for the explicit Landweber-based methods, we require the following bound

(9) ‖A∗iMiAi‖ < 2 ∀i = 0, . . . p− 1 .

For bounded preconditioning operators, as the ones used in this paper, this con-
dition can always be satisfied by introducing a stepsize τ > 0, i.e., using scaled
preconditioners τMi instead of Mi. Hence, we also refer to (9) as stepsize con-
straint.

2.1. Nonsymmetric Kaczmarz-type iterations and block iterations. Let us
first define the classical (nonsymmetric) Landweber–Kaczmarz (LK) method with
preconditioning. The LK method defines a sequence of approximate solutions x0,

Inverse Problems and Imaging Volume 8, No. 1 (2014), 149–172



Convergence rates for Kaczmarz-type regularization methods 153

x1, . . ., xk, . . . to (1), respectively to (4), which is based on the iteration

x̄n+1 = x̄n −A∗[n]M[n](A[n]x̄n − yδ[n]) [n] := mod(n, p)

xk := x̄kp k = 0, 1, . . .
(10)

starting at some initial element x̄0 and with Mi given as in (3). The approximate
solutions to (1), respectively to (4), are the iterates xk. Hence, in order to compute
xk+1 from xk, one has to cycle through the equations (4) from top to bottom (i.e.,
i = 0 to i = p− 1) performing Landweber-type steps. Commonly, the LK iteration
is used with the trivial preconditioning Mn = I or M[n] = τ[n]I with τ[n] > 0 being
stepsize parameters.

This iteration can be compared with the one obtained by applying a standard
Landweber iteration to the block system (1), respectively to (4). This is called here
(block) Landweber method, i.e., the sequence of approximate solutions to (4), x0,
x1, . . ., xk, . . . is defined by (compare with (10))

x̄n+1 = x̄n −A∗[n]M[n](A[n]xk−1 − yδ[n]) ,

xk := x̄kp k = 0, 1, . . .
(11)

starting at some initial element x̄0. Equivalently, (11) can be written in the more
common block form

(12) xk = xk−1 −A∗(Axk−1 − yδ) .

Once again, a common preconditioner for the block Landweber iteration is the
choice Mi = τI with a positive stepsize τ .

The block Landweber iteration can be seen as a sequence of explicit Euler steps
for the gradient flow of the least squares functional for (4). For ill-posed opera-
tor equations, the implicit version of the Landweber iteration is usually called the
iterated Tikhonov (iT) method. The implicit version of the block Landweber itera-
tion (12) or (11) is here referred to as (block) iterated Tikhonov regularization, with
iterations xk given by:

x̄n+1 = x̄n −A∗[n]M[n](A[n]xn+1 − yδ[n]) ,

xk := x̄kp k = 0, 1, . . .
(13)

or, more commonly, written as block iteration in the form

(14) xk = xk−1 −A∗(Axk − yδ) .

This iteration is well-defined because I + A∗A is invertible. Note that for compu-
tations, the expression (14) is rewritten as

xk = (I + A∗A)−1
(
xk−1 + A∗yδ

)
.

Both the block Landweber iteration and the LK iteration have implicit coun-
terparts. The implicit variant of the LK iteration (10) is the iterated Tikhonov–
Kaczmarz (iTK) method and is defined by (compare with (10))

x̄n+1 = x̄n −A∗[n]M[n](A[n]x̄n+1 − yδ[n]) ,

xk := x̄kp k = 0, 1, . . .
(15)

starting from an arbitrary initial guess x̄0. This iteration is well-defined because
all the operators I +A∗[n]M[n]A[n] are invertible (in each step of a cycle we have to

solve a linear system involving this operator). Notice that, with the common choice
M[n] = 1

αI, a problem of the type of a Tikhonov-regularization has to be solved in
each step.
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Remark 2.1. In view of the Landweber-Kaczmarz-type iteration, (10), the step-
size condition (9) appears as a natural assumption in order to guarantee that the
iteration operator I − A∗iMiAi is nonexpansive. Let us emphasize that we do not
impose any specific bound on the norm of Mi itself (but only bounds on the norms
of operators Mi in combination with Ai)! Actually, we expect that large parts of our
analysis (e.g., the case of exact data) still holds for unbounded self-adjoint operators
Mi as long as (9) is satisfied. However, allowing unbounded operators Mi leads in
general to serious problems when noisy data are present (notice that Mi acts on yδi ,
which does not have to be well-defined then). In this situation one could consider
Mi(y

δ
i − yi) (if defined) as individual noise level and demand this quantity to be

bounded. To avoid the associated difficulties, we a-priori assume the boundedness
of Mi in this paper.

As a second remark, let us mention, that our framework also covers the classical
Kaczmarz iteration in the finite dimensional case. Using the preconditioners Mi =
(AiA

∗
i )
† (cf. [29]), where † denotes the pseudo-inverse, these operators are bounded

in the finite-dimensional case. Moreover, the operator A∗iMiAi is the projection
onto the range of A∗i . Since the norm of projection operators is clearly bounded by
1, condition (9) holds, so that our analysis is valid for the classical Kaczmarz case
in finite-dimensional spaces.

2.2. Symmetric Kaczmarz-type iterations. Further variants of the Kaczmarz-
type iterations are their symmetric versions [9]. In contrast to the block-iterations,
the iterations LK, iTK, are not invariant if the ordering of the equations are reversed.
For these reasons (and since they are induced by a nonsymmetric block precondi-
tioning) we call them the nonsymmetric Kaczmarz-type iterations. In what follows
we define symmetric variants of LK and iTK.

At first a usual Kaczmarz cycle is performed, followed by another cycle, in which
the order of the equations is reversed. In other words, in the second cycle the first
iteration starts with Ap−1, yp−1, followed by one with Ap−2, yp−2. This yields the
symmetric Landweber–Kaczmarz (sLK) method

x̄n+1 =


x̄n −A∗[n]M[n](A[n]x̄n − yδ[n])

if 0 ≤ mod(n, 2p) ≤ p− 1

x̄n −A∗p−1−[n]Mp−1−[n](Ap−1−[n]x̄n − yδp−1−[n])

if p ≤ mod(n, 2p) ≤ 2p− 1

xk := x̄k2p [n] := mod(n, p) .

(16)

For completeness of the presentation, we also define the symmetric variant of the
iTK method, namely the symmetric iterated Tikhonov Kaczmarz (siTK) method,
which is given by

x̄n+1 =


x̄n −A∗[n]M[n](A[n]x̄n+1 − yδ[n])

if 0 ≤ mod(n, 2p) ≤ p− 1

x̄n −A∗p−1−[n]Mp−1−[n](Ap−1−[n]x̄n+1 − yδp−1−[n])

if p ≤ mod(n, 2p) ≤ 2p− 1

xk := x̄k2p [n] := mod(n, p) .

(17)

It is easy to see that the symmetric versions double the computational amount per
overall iterations. Moreover, comparing the LK method with the block Landweber
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iteration it is clear that the computational complexity is about the same, but the
former is simpler since it does not requires one to store the old iterates xk.

2.3. Kaczmarz iterations and Gauss-Seidel-preconditioning. The approach
for a convergence analysis of Kaczmarz iterations is based on the fact that these
methods can be expressed as ordinary block Landweber iterations (respectively
block iterated Tikhonov methods) preconditioned with a suitable block precondi-
tioner. This has already been observed by Natterer [29], who showed that the classi-
cal Kaczmarz method with preconditioner Mi = ω(AiA

∗
i )
−1 equals an SOR-method.

For general preconditioning matrices Mi, the equivalence of the Landweber–Kaczm-
arz method to a Gauss-Seidel preconditioned Landweber iteration was shown by
Elfving and Nikazad [9]. In this section we extend their results to the iterated
Tikhonov method.

Let us define the lower triangular operator L : Y → Y as the part of AA∗ below
the diagonal as follows

(18) L :=


0 0

M
1
2

1 A1A
∗
0M

1
2

0 0
...

. . . 0

M
1
2
p−1Ap−1A

∗
0M

1
2

0 . . . M
1
2
p−1Ap−1A

∗
p−2M

1
2
p−2 0

 .

Then the following result holds true [9].

Theorem 1. Let xk be the iterates of the Landweber–Kaczmarz method (10). Then
the iteration (10) can be expressed as (nonsymmetric) block-preconditioned Landwe-
ber method of the form

(19) xk+1 = xk −A∗MB(Axk − yδ) ,

with

(20) MB = (I + L)−1 ,

L as in (18), and I the identity operator.

Notice that, since the Mi are bounded, the block operator MB is invertible (this
is a lower triangular operator). Its norm, as well as the norm of its inverse, can be

bounded by constants depending on p and on (‖M
1
2
i Ai‖)

p−1
i=0 . However, except for

nontrivial cases, the operator MB is not symmetric. Thus, (19) cannot be seen as
a symmetric preconditioned version of the classical block Landweber iteration (12).

A brief inspection of the proof of this theorem shows that (I + L)−1 is not
necessarily the only possible choice for MB . Actually, any operator MB satisfying

A∗MB(I + L) = A∗

could be used as well in the iteration (19).
Here, we use a slightly different notation as in [9], where L was defined without

the operators M
1
2
i , but instead MB has the form (D+L)−1 with D = M−1. Because

we built in the Mi into A and y, it is not difficult to see that (19) is equivalent to
the statement in [9].

A similar theorem, again due to Elfving and Nikazad [9], holds for the sLK
method:
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Theorem 2. Let xk be the iterates of the symmetric Landweber–Kaczmarz method
(16). Then the iteration (16) can expressed as a preconditioned Landweber iteration

(21) xk+1 = xk −A∗MSB(Axk − yδ) ,

with

(22) MSB = M∗B(2I− diag(M
1
2
i AiA

∗
iM

1
2
i ))MB ,

and L, I,MB as in Theorem 1.

In contrast to Theorem 1, we have here a symmetric preconditioning operator
MSB , which also justifies the notion of symmetric/nonsymmetric iterations. The
results in Theorem 2 carry over to the iterated Tikhonov case.

Theorem 3. The sequence xk generated by the iterated Tikhonov–Kaczmarz method
(15) can be expressed as a (nonsymmetric) preconditioned block iterated Tikhonov
iteration

(23) xk+1 = xk −A∗NB(Axk+1 − yδ) ,

with

(24) NB = ((I− L)−1)∗ .

Similarly, the iterates xk of the symmetric iterated Tikhonov–Kaczmarz method (17)
can be expressed as preconditioned iterated Tikhonov method

(25) xk+1 = xk −A∗NSB(Axk+1 − yδ) ,

with

NSB = NB

(
2I + diag(M

1
2
i AiA

∗
iM

1
2
i )
)
N∗B .

Proof. The iTK iterates satisfy

x̄n = x̄n+1 +A∗[n]M[n](A[n]x̄n+1 − yδ[n]).

Define the permutation operator P that reverses the order of equations, i.e.,

P


z0

z1

. . .
zp−2

zp−1

 =


zp−1

zp−2

. . .
z1

z0

 .

Moreover, define the vector ω = (ω0, ω1, . . . , ωp) := (x̄p, x̄p−1, . . . , x̄1, x̄0). Thus, ωp
can be expressed as the result of one cycle of a Landweber–Kaczmarz iteration (10)
with initial element ω0 and with Ā = PA, ȳδ = Pyδ, respectively, replacing A, yδ,
in (10) (i.e., with the ordering of the equations reversed) and with −Mi replacing
Mi. Thus, according to Theorem 1, we can express

ωp = ω0 − Ā∗M̄B [Āω0 − ȳδ] ,

with MB defined via (20), (18) using Ā instead of A and −Mi instead of Mi.

(Here we formally use (−Mi)
1
2 instead of Mi, with the rule (−1)

1
2 (−1)

1
2 = −1,

i.e., (−Mi)
1
2AiA

∗
j (−Mi)

1
2 = −M

1
2
i AiA

∗
jM

1
2
i ; all this can be justified by rigorous

calculations.)
Going back to the original variables, this means that

x̄0 = x̄p −A∗P∗M̄BP(Ax̄p − yδ) .
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Rearranging terms, and using the fact P∗M̄BP = NB , we obtain the desired result
in the first case. From this we conclude that, in the symmetric case,

(I + Ā∗N̄BĀ)x2p = xp + Ā∗N̄Bȳ
δ ,

where N̄B is defined as in (24), but with the order of the operators reversed. It can
be verified that PL̄P = L∗, and hence PN̄BP = N∗B . Therefore, with respect to
the original variables, we obtain

(I + A∗N∗BA)x2p = xp + A∗N∗By
δ .

Now, a multiplication with (I+A∗NBA) from the right, together with the identity

(I + A∗NBA)(I + A∗N∗BA) = I + A∗(NSB)A

yield the desired result in the symmetric case.

Theorems 1–3 allow us to use the convergence theory of the ordinary Landweber
iteration and the iterated Tikhonov method in Hilbert spaces to establish conver-
gence rates. The symmetric case is a rather straightforward application of the
according theory [10]. The nonsymmetric case, however, is more demanding and
will be treated in detail in the following section.

3. Analysis of the Kaczmarz-type methods.

3.1. Convergence rates for the nonsymmetric methods. In this section we
present the convergence analysis and establish convergence rates for the Landweber–
Kaczmarz method (10) and for the iterated Tikhonov–Kaczmarz method. Accord-
ing to Theorem 1 the former can be written as a Richardson-type iteration of the
form (19). The main difficulty compared to the symmetric LK method is that the
operator A∗MBA is not symmetric, except in trivial cases. Hence, the classical
analysis based on self-adjoint operators cannot be applied.

For notational simplicity we define G := A∗MBA. The equivalence between
(10) and (19) can be written in the form (see [9])

(26) I −G = (I −A∗p−1Mp−1Ap−1)(I −A∗p−2Mp−2Ap−2) . . . (I −A∗0M0A0) ,

which immediately yields the following result:

Lemma 3.1. If (9) holds, then G is an accretive operator, i.e., it satisfies

Re(Gx, x)XC ≥ 0 , ∀x ∈ XC .

Proof. By definition, for all 0 ≤ i ≤ p−1, the operatorA∗iMiAi is symmetric positive
semidefinite with norm bounded by 2. Thus, (I−A∗iMiAi) is nonexpansive, and so
is I −G. Consequently,

Re(Gx, x)XC = (x, x)XC − Re((I −G)x, x)XC ≥ ‖x‖2XC
− ‖(I −G)‖ ‖x‖2XC

≥ 0

concluding the proof.

It follows from Lemma 3.1 that the spectrum of G is contained in the positive
half space σ(G) ⊂ {λ ∈ C |Re(λ) ≥ 0}, and that the well-known resolvent estimate

‖(G+ tI)−1‖ ≤ C 1

t
∀t > 0 ,

holds true [21, Chpt. 3, Th 3.2], i.e., G is a weakly sectorial operator [32, 33]. For
such operators the fractional powers Gα, α > 0, are well-defined by means of a
Dunford-Schwartz-type integral.
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For the remaining of this section, we adopt the (standard) notation: xδk denotes

the iteration (19) with noisy data (yδi )
p−1
i=0 , while xk denotes the iteration (19) with

exact data (Aix
†)p−1
i=0 , i.e., xk is the iteration with yδ replaced by y = Ax†, where

x† denotes a solution to (1).
First we estimate the propagated data error:

Lemma 3.2. Let (9) hold. Moreover, let xδk be the iteration (19) with noisy data
and xk the iteration (19) with exact data. Then we have the following estimate with
a constant C = C(‖A‖, ‖MB‖)

(27) ‖xδk − xk‖ ≤ CkδM .

If, additionally,

(28) sup
k∈N
‖(I−MBAA∗)k‖ ≤ C1

holds with a constant C1, then

(29) ‖xδk − xk‖ ≤ C
√
kδM ,

where the constant C depends on C1, ‖MB‖, ‖M−1
B ‖ but not on k.

Proof. As for classical Landweber iteration we may write

xδk − xk =

k∑
j=0

(I −A∗MBA)jA∗MB(y − yδ) .

Thus, since I − G is nonexpansive, (27) follows immediately with C = ‖A∗MB‖.
Now assume that (28) holds true. Denoting by gL(x) the polynomial gL(x) =∑k
j=0(1− x)j , we can write

‖xδk − xk‖2

=
(
gL(A∗MBA)A∗MB(y − yδ), gL(A∗MBA)A∗MB(y − yδ)

)
=

AA∗
k∑
j=0

(I−MBAA∗)jMB(y − yδ), gL(MBAA∗)MB(y − yδ)


=
(
M−1

B MBAA∗gL(MBAA∗)MB(y − yδ), gL(MBAA∗)MB(y − yδ)
)

≤ ‖M−1
B (I− (I−MBAA∗)k+1)MB(y − yδ)‖‖gL(MBAA∗)MB(y − yδ)‖

≤ ‖M−1
B ‖‖(I− (I−MBAA∗)k+1‖‖MB(y − yδ)‖

‖gL(MBAA∗)MB(y − yδ)‖

≤ ‖M−1
B ‖(1 + C1)

 k∑
j=0

‖(I−MBAA∗)j‖

 ‖MB(yδ − y)‖‖MB(yδ − y)‖.

This inequality, together with (28), yields an estimate of the order kδ2
M , completing

the proof.

Our next step is to estimate the approximation error term xk − x†. For this
purpose we need the following lemma, which is proven in the Appendix A. Roughly
speaking, it states that I − G is a contraction for elements which are not in the
null-space of G. The precise formulation follows:
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Lemma 3.3. Let (9) hold. Moreover, let η > 0 and x ∈ XC with ‖x‖XC = 1 be
given. If

(30) Re (Gx, x)XC
≥ η ,

then there exists a positive γ < 1 depending on η, p and (‖A∗iM
1
2
i ‖)

p−1
i=0 such that

(31) ‖(I −G)x‖2XC
≤ 1− γ .

Remark 3.4. It follows from the proof in Appendix A that γ in (31) can be
chosen as the largest number ε for which (59)–(61) fails to hold. In particular, for
η sufficiently small (such that (61) implies (59) and (60)), Lemma 3.3 holds true
with the following choice of γ:

γ =

(
η∑p−1

i=0

√
Di

)2p+1

.

We can now estimate the approximation error, assuming that a source condition
is satisfied. As mentioned above, the usual approach via spectral theory is not
possible here due to the lack of symmetry of the corresponding operators. As a
replacement, we use functional calculus on the numerical range.

We define the numerical range of the operator G as

(32) W (G) := {(Gx, x)XC | x ∈ XC, ‖x‖XC = 1} .
With this definition we are ready to state the main lemma needed to derive the
approximation error estimates.

Lemma 3.5. Let (9) hold and assume the existence of a constant h > 0 such that

(33) W (G) ⊂ Σ := {λ ∈ C | |arg(λ)| ≤ tan−1(h) < π
2 } .

Then, there exists a constant C depending on α, h, p and
(
‖A∗iM

1
2
i ‖
)p−1

i=0
, such that

the inequality

‖(I −G)kGα‖ ≤ C

(k + 1)α

holds true for all α > 0.

Proof. It follows from (33), Lemma 3.3, and |((I −G)x, x)| ≤ ‖x‖‖(I −G)x‖ that,
for any η > 0, there exists a constant 0 < γ < 1 with

W (G) ⊂ (Σ ∩ {λ ∈ C | 0 ≤ Re(λ) < η}) ∪ {λ ∈ C | Re(λ) ≥ η ,

|1− λ| <
√

(1− γ)} .

We now fix η = cos(ψ)2, ψ = tan−1(h) and take γ as the corresponding constant in
(31). Using the functional calculus of Crouzeix [6] we conclude that

‖(I −G)kGα‖XC ≤ CC sup
λ∈Σ
|(1− λ)kλα| ,

for some constant CC ≤ 11.08. For the first part of the numerical range, where
Re(λ) < η, we have

|λ| ≤ Re(λ)
√

1 + h2 ≤ η

cosψ
≤ cos(ψ) .

Hence,

|(1− λ)|2 = 1 + |λ|2 − 2|λ| cos(arg(λ)) ≤ 1− |λ| cos(ψ) ,
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which leads to the estimate

|(1− λ)kλα| ≤
∣∣1− |λ| cos(ψ)

∣∣ k2 |λ|α ≤ 1

cos(ψ)α
∣∣1− |λ| cos(ψ)

∣∣ k2 |λ cos(ψ)|α

≤ αα

cos(ψ)α
(
k

2
)−α ≤ (4α)α

cos(ψ)α
1

(k + 1)α
.

For the remaining part of the numerical range we have

|(1− λ)kλα| ≤ 2α(1− γ)
k
2 , ∀Re(λ) ≥ η .

Since the inequality (1 − γ)
k
2 ≤ C ′(k + 1)−α, for all k ≥ 0, holds true with some

constant C ′, the lemma follows with C = max{ (4α)α

cos(ψ)α , 2αC ′}.

Remark 3.6. For a moment we focus our attention to condition (33). Rewriting
(33) in terms of the real and imaginary parts of Gx = G(x+ iy) and G = A∗MBA,
one observes that an equivalent condition to (33) is the existence of an h > 0 such
that

|(A∗MBA−A∗MT
BA)x, y)| ≤h ((A∗MBAx, x) + (A∗MBAy, y))

∀x, y,∈ X, ‖x‖2 + ‖y‖2 = 1 .
(34)

Substituting z = MBAx and v = MBAy, this condition is satisfied if, for all z,
v ∈ Y , the inequality

|(M−TB −M−1
B z, v)| ≤ h

(
(M−1

B z, z) + (M−1
B v, v)

)
holds true. Using the definition of MB (see (20)), it follows that the above inequality
holds if, for all z, v ∈ Y ,

(35) |(LT − L)z, v)| ≤ h ((z, z) + (v, v) + (Lz, z) + (Lv, v)) .

This remark leads to the following lemma:

Lemma 3.7. If q is such that

(36) ‖L‖ ≤ q < 1 ,

then (33) holds with h = q/(1− q).

Proof. We start by proving (35). Notice that

|(LT − L)z, v)| ≤ |(z,Lv)|+ |(Lz, v)| ≤ ‖z‖‖Lv‖+ ‖Lz‖‖v‖ ,
(Lz, z) + (Lv, v) ≥ −‖Lz‖‖z‖ − ‖Lv‖‖v‖ .

Thus, it suffices to prove

‖z‖‖Lv‖+ ‖Lz‖‖v‖+ h (‖Lz‖‖z‖+ ‖Lv‖‖v‖) ≤ h‖z‖2 + ‖v‖2 .

However, that this last inequality is a consequence of

‖z‖‖Lv‖+ ‖Lz‖‖v‖+ h (‖Lz‖‖z‖+ ‖Lv‖‖v‖)
≤ q

(
2‖z‖‖v‖+ h‖z‖2 + h‖v‖2

)
≤ q(1 + h)

(
‖z‖2 + ‖v‖2

)
.

Indeed, the choice h = q/(1 − q) allows us to estimate the right hand side of the
above inequality by h(‖z‖2 + ‖v‖2).

It remains to investigate condition (28). For this purpose we rely on the following
theorem [27, 23] (see also [19]):

Inverse Problems and Imaging Volume 8, No. 1 (2014), 149–172



Convergence rates for Kaczmarz-type regularization methods 161

Theorem 4. Let T be a bounded operator on a complex Banach space. If there is
a constant C such that

(37) ‖(T − λI)−1‖ ≤ C 1

|λ− 1|
, ∀ |λ| > 1 , λ ∈ C ,

then sup
n
‖Tn‖ <∞.

With the setting T = I−MBAA∗, we thus obtain (28) if we can prove

(38) ‖(MBAA∗ − λI)−1‖ ≤ C 1

|λ|
|λ− 1| > 1 , λ ∈ C .

The next result establishes a sufficient condition for (38).

Lemma 3.8. If

(39) ‖L‖+
1

2
‖AA∗‖ < 1 ,

then (38) is satisfied. Consequently, the propagated data error estimate (28) is also
satisfied.

Proof. We prove (38). Define S(λ) := (AA∗ − λI) for λ ∈ C. From the definition
of MB , we obtain for each λ in (38)

‖(MBAA∗ − λI)−1‖ ≤ ‖M−1
B ‖‖(AA∗ − λ(I + L))−1‖

= ‖M−1
B ‖‖(S(λ)− λL)−1‖

≤ ‖M−1
B ‖

(
I− S(λ)−1λL

)−1
S(λ)−1‖

≤ C‖S(λ)−1‖ 1

1− |λ|‖S−1(λ)‖‖L‖
,

≤ C 1

|λ|
|λ|‖S(λ)−1‖ 1

1− |λ|‖S−1(λ)‖‖L‖
,

as long as |λ| ‖S−1(λ)‖ ‖L‖ < 1.
In order to prove this condition we use the estimate (for self-adjoint operators)

‖S−1(λ)‖ ≤ sup
t∈[0,‖AA∗‖]

1

|λ− t|
.

It is worth noticing that the supremum in the following expression is attained for
λ→ 2,

sup
λ,|λ−1|>1

|λ| ‖S−1(λ)‖ = sup
λ,|λ−1|>1

sup
t∈[0,‖AA∗‖]

|λ|
|λ− t|

=
2

2− ‖AA∗‖
.

From the hypothesis we conclude that 2
2−‖AA∗‖‖L‖ < 1. Thus, inequality (38)

holds true. Equation (28) follows now from Theorem 4.

In the sequel, we present the main result of this section, where convergence rates
for the LK method are derived. The following theorem is then a collection of the
previous results.

Theorem 5. Let L,A satisfy (39). Moreover, assume that the source condition

x0 − x† = (A∗MBA)νw , for some 0 < ν <∞
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is satisfied. Then, the iterates of the Landweber–Kaczmarz method (10) satisfy the
error estimate

‖xk − x†‖ ≤ C1
1

kν
+ C2

√
kδM ,

with some positive constants C1, C2. In particular the a-priori parameter choice

rule k ∼ δ
−2

2ν+1

M yields the optimal order convergence rate

‖xk − x†‖ ∼ δ
2ν

2ν+1

M ≤ C‖M 1
2 ‖δ

2ν
2ν+1 .

Notice that, by introducing a stepsize τ and making Mi sufficiently small, we can
always achieve that the hypothesis in this theorem (except for the source condition)
is satisfied.

3.2. Analysis of the nonsymmetric iterated Tikhonov–Kaczmarz method.
In what follows, we derive convergence rates for the iTK method (15) (in the block
form (23)) in the nonsymmetric case. First of all, from the equivalence between
(15) and (23), it follows that

(I + A∗NBA) = (I +A∗0M0A0)(I +A∗1M1A1) . . . (I +A∗p−1Mp−1Ap−1) .

In particular (I+A∗NBA)−1 is well defined and, since all Mi are symmetric positive
definite, we have

‖(I + A∗NBA)−1‖ ≤ 1 .

We first investigate the propagated data error,

Lemma 3.9. Let xδk denote the iteration (23) with noisy data, and xk the iteration
(23) with exact data. Then we have the estimate with a constant C = C(‖A‖, ‖NB‖)

(40) ‖xδk − xk‖ ≤ CkδM .
If, additionally,

(41) sup
k∈N
‖(I + NBAA∗)−k‖ ≤ C1

holds with a constant C1, then

(42) ‖xδk − xk‖ ≤ C
√
kδM ,

where the constant C depends on C1, ‖NB‖, ‖N−1
B ‖ but not on k.

Proof. We may express iteration (23) as

xδk − xk =

k−1∑
j=0

(I + A∗NBA)−jA∗NB(y − yδ) ,

from which (40) immediately follows. Now, defining gk(λ) :=
∑k−1
j=0 (1 + λ)−j , we

obtain the estimate (compare with the Landweber iteration, e.g., [10] Chap. 6)

‖xδk − xk‖2 =
(
gk(A∗NBA)A∗NB(y − yδ), gk(A∗NBA)A∗NB(y − yδ)

)(
N−1
B NBAA∗gk(NBAA∗)NB(y − yδ), gk(NBAA∗)NB(y − yδ)

)
≤ ‖N−1

B ‖ ‖I + NBAA∗ − (I + NBAA∗)−k+1‖
k−1∑
j=0

‖(I + NBAA∗)−k‖‖NB‖2δ2
M .

Using (41) in the last inequality we obtain (42).
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Next we investigate the approximation error. Notice that

xk − x† = (I + A∗NBA)−k(x0 − x†) ,
Hence, if a source condition with the operator (A∗NBA) holds, we have to estimate
the operator (I + A∗NBA)−k(A∗NBA)α.

Lemma 3.10. Assume the existence of an h > 0 such that the numerical range of
A∗NBA is contained in the sector

(43) W (A∗NBA) ⊂ {λ ∈ C | |arg(λ)| ≤ tan−1(h) < π
2 } .

Then (A∗NBA)α is well defined for all α ≥ 0 and there exists a constant C de-
pending on α, h such that for all k

‖(I + A∗NBA)−k(A∗NBA)α‖ ≤ C 1

kα
.

Proof. Due to (43), the numerical range of A∗NBA is contained in a sector analog
to the one in the proof of Lemma 3.5. Using [6], we once again obtain

‖(I + A∗NBA)−k(A∗NBA)α‖ ≤ Cc sup
|arg(λ)|<ψ=tan−1(h)<π

2

|λ|α

|1 + λ|k
.

Furthermore, |1+λ| ≥ (1+ |λ| cos(ψ)), ψ = tan−1(h). Thus, there exists a constant
C ′ such that

|λ|α

|1 + λ|k
≤ 1

cos(ψ)α
|λ cos(ψ)|α

|1 + λ cos(ψ)|k
≤ C ′

1

cos(ψ)α
1

kα
, ∀k ≥ 1

(the last inequality follows from the convergence rate analysis of the standard iter-
ated Tikhonov regularization), concluding the proof.

Remark 3.11. As before, an equivalent condition to (43) is the existence of an
h > 0 such that∣∣∣([A∗NBA−A∗NT

BA]x, y
)∣∣∣ ≤ h

[
(A∗NBAx, x) + (A∗NBAy, y)

]
,

∀ x, y ∈ X, ‖x‖2 + ‖y‖2 = 1 .
(44)

In the next lemma we discuss a sufficient condition for (41), and (43) in Lemma 3.9,
and Lemma 3.10 respectively.

Lemma 3.12. If

(45) ‖L‖ < 1 ,

then (41) and (43) hold true.

Proof. The proof of (43) follows the lines of the proof of Lemma 3.7. To prove (41),
we use Theorem 4 with T = (I + NBAA∗)−1. Thus, for λ ∈ C with |λ| > 1, we
estimate

‖(T − λI)−1‖ ≤ ‖(I + NBAA∗)‖ ‖((1− λ)I− λNBAA∗)−1‖

≤ ‖(I + NBAA∗)‖ ‖NB‖ |λ|−1‖((1− 1

λ
)N−1

B + AA∗)−1‖

≤ ‖(I + NBAA∗)‖ ‖NB‖ |λ|−1‖(AA∗ + (1− 1

λ
)(I− L∗)‖ .

Thus, setting s := (1− 1
λ ), it is enough to prove that

‖(AA∗ + sI− sL∗)−1‖ ≤ C
1

|s|
, ∀ |s− 1| < 1 .
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Notice that

‖(AA∗ + sI− sL∗)−1‖ ≤ ‖(AA∗ + sI)−1‖ ‖(I − (AA∗ + sI)−1sL∗)−1‖

≤ 1

|s|
1

1− ‖(AA∗ + sI)−1sL∗‖
,

provided that ‖(AA∗ + sI)−1sL∗‖ < 1. However, due to the straightforward in-
equality

‖(AA∗ + sI)−1s‖ ≤ 1 , ∀ |s− 1| < 1 ,

it follows that

1

1− ‖(AA∗ + sI)−1sL∗‖
≤ 1

1− ‖L∗‖
=

1

1− ‖L‖
,

establishing the desired bound. Consequently, inequality (41) follows from Theo-
rem 4.

Collecting the results, it follows from Lemma 3.12, Lemma 3.10 and Lemma 3.9
that we find the following convergence rates for the iterated Tikhonov–Kaczmarz
method.

Theorem 6. Let L satisfy (45). Moreover, assume the source condition

x0 − x† = (A∗NBA)νw , for some 0 < ν <∞ .

Then, the sequence generated by the iterated Tikhonov–Kaczmarz method (13) sat-
isfies the estimate

‖xk − x†‖ ≤ C1
1

kν
+ C2

√
kδM ,

with some constants C1, C2. In particular, the a-priori parameter choice rule

k ∼ δ
−2

2ν+1

M

yields the convergence rate

‖xk − x†‖ ∼ δ
2ν

2ν+1

M ≤ C‖M 1
2 ‖δ

2ν
2ν+1 .

Remark 3.13. In Theorems 5 and 6 convergence rates are established under the
source conditions x0−x† ∈ R(A∗MBA)ν , and x0−x† ∈ R(A∗NBA)ν respectively.
It would be interesting to replace these by the usual source conditions with ranges
R(A∗A)ν . It is not clear to us if this can be done under the same assumptions as
in the above mentioned theorems. An equivalence between the source conditions
can probably be shown if a norm equivalence

d1‖A∗Ax‖ ≤ ‖A∗MBAx‖ ≤ d2‖A∗Ax‖ ,

holds with some uniform constants d1, d2 (analogously for A∗NBA). For this
purpose, a generalization of the Kato-Heinz inequality to accretive operators [20]
might be used.

Remark 3.14. The results of Theorems 5 and 6 use classical a-priori parameter

choice rules α ∼ δ
−2

2ν+1

M . However, using the results of Plato and Hämarik [32], it
is possible to establish convergence rates for a-posterior parameter choice rules as
well, e.g., using the discrepancy principle.
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The main conditions for deriving convergence rates results are (39) and (45). We
now present some simpler sufficient conditions for these by estimating the norm of
L.

Define the matrix |L| ∈ Rp×p as the lower triangular matrix with zero diagonal

(46) |L|i,j =

{
0 j ≥ i
‖Li,j‖ else

, i, j = 0, . . . p− 1 .

Note that the matrix entries in |L| start from 0. In what follows, |L| can be replaced
by any other lower triangular matrix with zero diagonal and satisfying

(47) ‖Li,j‖ ≤ |L|i,j , i < j , i, j = 0, . . . p− 1 .

Then we obtain

Lemma 3.15. With |L| as in (46) or (47), we have

‖L‖ ≤ σmax(|L|) ,

where σmax denotes the largest singular value of its matrix argument.

Proof. For z ∈ Y, the i-th component of Lz can be bounded by

‖(Lz)i‖Yi ≤
p−1∑
j=0

|L|i,j‖zj‖ .

Taking the sum of squares and noting that σmax is the operator norm, yield the
desired result.

Consequently, we have

Corollary 1. Let |L| be as in (46) or (47). The convergence rates result of Theo-
rem 5 hold true if

(48) σmax(|L|) +
1

2

p−1∑
i=0

‖A∗iMiAi‖ < 1 .

The convergence rates result of Theorem 6 hold true if

(49) σmax(|L|) < 1 .

Remark 3.16. Considering the simplest preconditioner of the form Mi = τI, with
τ > 0 the stepsize parameter, we see that the Landweber-Kaczmarz-type iteration
yields convergence rates for all τ sufficiently small. Indeed, for

(50) τ <
1

σmax(|L|) + 1
2

∑p−1
i=0 ‖A∗iAi‖

,

where |L| is the lower triangular, zero diagonal matrix with |L|i,j = ‖AiA∗j‖, Corol-
lary 1 applies. The same holds using preconditioners Mi. Replacing them by τMi,
we always find an interval of possible stepsizes such that the hypothesis of Corol-
lary 1 are satisfied.
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3.3. Convergence rates for the symmetric iterations sLK, siTK. For com-
pleteness as well as for comparison reasons, we state the convergence rates results
for the symmetric iterations. If we assume (9), then we can define

B := (2I− diag(M
1
2
i AiA

∗
iM

1
2
i ))

1
2MB ,

which yields

(51) MSB = B∗B .

Hence, the iterates of the sLK method are equivalent to the Landweber iteration
applied to the system

(52) BA = By ,

where we also use the noise level δS = ‖B(yδ − y)‖. The classical theory for
Landweber iteration immediately yields [10]:

Theorem 7. Let (9) hold. Moreover, assume that a source condition x† − x0 =
(A∗MSBA)νω hold. Then, for the iterations of the symmetric Landweber–Kaczmarz

and the a-priori parameter choice k ∼ δ
− 2

(2ν+1)

S , we find the optimal order conver-
gence rate

‖xk − x†‖ ≤ Cδ
2ν

(2ν+1)
s .

A similar result can be established for the siTK method. Define

BT := (2I + diag(M
1
2
i AiA

∗
iM

1
2
i ))

1
2N∗B .

Moreover, consider the equation

(53) BTAx = BTy ,

and use the noise level δS = ‖BT(yδ − y)‖. Then, the following result follows.

Theorem 8. Let x† − x0 satisfy the source condition x† − x0 = (A∗NSBA)νω.
Then, for the iterations of iterations of the symmetric iterated Tikhonov method and

the a-priori parameter choice k ∼ δ
− 2

(2ν+1)

S , we find the optimal order convergence
rate

‖xk − x†‖ ≤ Cδ
2ν

(2ν+1)
s .

Using estimates as above and Heinz’ inequality (see [10]), we can even use more
standard source conditions.

Proposition 3.1. Let (9) hold, then there are constants m1, m2 such that

m1‖y‖Y ≤ ‖By‖ ≤ m2‖y‖Y ∀y ∈ Y .

Moreover, there are constants n1, n2 such that

n1‖y‖Y ≤ ‖BTy‖ ≤ n2‖y‖Y ∀y ∈ Y .

In particular, for 0 ≤ ν ≤ 1
2 , in each of these cases the source conditions x† −

x0 = (A∗MSBA)νω and x† − x0 = (A∗A)νω, and x† − x0 = (A∗NSBA)νω and
x† − x0 = (A∗A)νω are equivalent.
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Thus, the results of Theorems 7 and 8 hold with the usual source condition
x† − x0 = (A∗A)νω for 0 ≤ ν ≤ 1

2 and, of course, with δS replaced by δ. Hence we
find the exact same convergence rates under the same source condition as for the
ordinary block Landweber iteration (or block iterated Tikhonov method).

Comparing the sLK iteration with the usual block Landweber iteration we notice
one difference: If we set the simple preconditioners Mi = τI, then for the symmetric
Landweber–Kaczmarz iteration τ = τsLK can be chosen as

τsLK <
2

maxi ‖A∗iAi‖
.

This should be contrasted with the corresponding choice for the block-Landweber
iteration, where τ has to be chosen such that τ‖A‖2 < 2, i.e.,

τL <
2∑p−1

i=0 ‖A∗iAi‖
<

2

maxi ‖A∗iAi‖
.

A similar situation holds for the Landweber–Kaczmarz iteration. Although for
convergence rates we required (50), for pure convergence the condition τLK <

2
maxi ‖A∗

iAi‖
suffices [9] (at least in the finite dimensional case). Thus, besides the fact

that the Kaczmarz-type iterations are easier to implement than the block Landwe-
ber ones, we may also choose a large stepsize.

4. Conclusion. We have established convergence rates for the Landweber–Kaczm-
arz method and the iterated Tikhonov–Kaczmarz method; both the symmetric and
the nonsymmetric versions of each method are considered. Since the only conditions
for the convergence theorems are bounds on A∗iMiAi, it follows that for sufficiently
small stepsizes (or appropriately scaled operators), standard convergence rates can
always be established. In particular, we aimed to use bounds in our theorems (see,
e.g., (39), (45), (48), (49)), which are computable and can be used in numerical
implementations.

As one would expect, if more information on the operators Ai is available, the
weaker conditions (43), (41) (see also (38), (33)) can maybe be proven directly.

Although, asymptotically (as δ → 0), the Kaczmarz variants perform similarly to
the corresponding block iterations, the former have some advantages, e.g., a simpler
implementation and possibly a larger stepsize τ can be chosen. However, even if all
iteration methods in this paper have similar convergence rates in δ, the Kaczmarz-
type iterations can be quite different to the block variants in practice. For instance,
in the first iterations, when the error is dominated by the approximation error,
the Kaczmarz-type iterations may show a faster decay of the error when a larger
stepsize can be used compared to the block iterations.

If detailed information on the structure of the exact solution is available, the
results in Section 3 can be used in order to estimate the decay rates of the approxi-
mation error in appropriate subspaces. One may use Riesz projections of the exact
solution onto parts of the spectrum of A∗MBA (respectively A∗NBA) to analyze
the convergence rates in more detail: The components of the exact solution in the
subspace of the projections corresponding to points in the spectrum that are close
to zero and/or away from the real axis will contribute to a slow convergence of the
approximation error.

The symmetric iterations have the advantage that they can be used even in cases
where the conditions for the nonsymmetric iterations are not satisfied. However, as
a drawback, one must pay the price of doubling the numerical computations.

Inverse Problems and Imaging Volume 8, No. 1 (2014), 149–172



168 Stefan Kindermann and Antonio Leitão

We conclude by mentioning that the convergence analysis results in Section 3
can be extended to general nonsymmetric preconditioned Landweber (and iterated
Tikhonov) iterations, which are highly relevant in practical large scale applications.

Appendix A. Proof of Lemma 3.3. Proof of Lemma 3.3. Denote by Eλ,i the
spectral family associated to A∗iMiAi, i = 0, . . . , p − 1. Moreover, for each ξ > 0
define the orthogonal projectors

Pξ,i =

∫
λ≤ξ

dEλ,i Qξ,i = I − Pξ,i =

∫
λ>ξ

dEλ,i .

Note that these orthogonal projectors have norm one and satisfy ‖Pξ,ix‖2+‖Qξ,ix‖2
= ‖x‖2.

Let 0 < ξ < 1 be such that (1− ξ)2 ≥ (1− ‖A∗iMiAi‖)2, for all i = 0, . . . , p− 1.

From our assumption maxi ‖A∗iM
1
2
i ‖ <

√
2, such a ξ can be chosen out of an interval

(0, ξ0).
Next we define θ := 1− (1− ξ)2 = 2ξ − ξ2 > ξ > 0. Using spectral calculus, we

obtain for our ξ

‖(I −A∗iMiAi)x‖2 =

∫
λ≤ξ

(1− λ)2d‖Eλ,ix‖2 +

∫
λ>ξ

(1− λ)2d‖Eλ,ix‖2

≤ ‖Pξ,ix‖2 + max{(1− ξ)2, (1− ‖A∗iMiAi‖)2}‖Qξ,ix‖2

= ‖Pξ,ix‖2 + (1− ξ)2(‖x‖2 − ‖Pξ,ix‖2) = (1− (1− ξ)2)‖Pξ,ix‖2 + (1− ξ)2‖x‖2

= θ‖Pξ,ix‖2 + (1− θ)‖x‖2,

(54)

and

‖A∗iMiAix‖2

=

∫
λ≤ξ

λ2d‖Eλ,ix‖2 +

∫
λ>ξ

λ2d‖Eλ,ix‖2 ≤ ξ2‖Pξ,ix‖2 + ‖M
1
2
i Ai‖

4‖Qξ,ix‖2

≤ξ2‖Pξ,ix‖2 + 4
(
‖x‖2 − ‖Pξ,ix‖2

)
.(55)

Now define for each k ≤ p− 1 the operators

Hk = Πk
i=0(I −A∗iMiAi) ⇔ Hk = Hk−1 −A∗kMkAkHk−1,

H0 = (I −A∗0M0A0) .

We know that ‖Hk‖ ≤ 1. Moreover, from the recursion formula

Hk − I =Hk−1 − I −A∗kMkAk(Hk−1 − I)−A∗kMkAk

=(I −A∗kMkAk)(Hn−1 − I)−A∗kMkAk ,

we conclude (using induction) that, for any given x, it holds

‖(Hk − I)x‖ ≤ ‖(Hk−1 − I)x‖+ ‖A∗kMkAkx‖ ≤
k∑
i=0

‖A∗iMiAix‖ .

Since G = G− I + I = I −Hp−1, we have

(56) ‖Gx‖ ≤
p−1∑
i=0

‖A∗iMiAix‖ .
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Thus, applying (54), we obtain the estimate

‖Hkx‖2 = ‖(I −A∗kMkAk)Hk−1x‖2 ≤ θ‖Pξ,kHk−1x‖2 + (1− θ)‖Hk−1x‖2

≤ (1− θ)‖Hk−1x‖2 + θ (‖Pξ,kx‖+ ‖Pξ,k(I −Hk−1)x‖)2

≤ (1− θ)‖Hk−1x‖2 + θ

(
‖Pξ,kx‖+

k−1∑
i=0

‖A∗iMiAix‖

)2

≤ (1− θ)‖x‖2 + θ

(
‖Pξ,kx‖+

k−1∑
i=0

‖A∗iMiAix‖

)2

.

(57)

Next, define the sequence of numbers

D0 = 5 , Dk = (9 + 8

k−1∑
i=0

√
Di) , k = 1, . . . p− 1 .

We prove Lemma 3.3 by contradiction. Let us assume that the assertion does not
hold true. Then we would be able to find some η > 0 such that, for any ε > 0, there
would exist an x with

(58) |((I −G)x, x)XC |2 ≥ (1− ε), Re(Gx, x)XC ≥ η ‖x‖XC = 1 .

We now take 0 < ε < 1 small enough such that

ε ≤

(
1

1 +
∑p−1
i=0

√
Di

)2p

(59)

(1−
√
ε)2 ≥ max

i=0,...,p−1
(1− ‖A∗iMiAi‖)2(60)

ε <

(
η∑p−1

i=0

√
Di

)2p+1

.(61)

Since |((I −G)x, x)XC | ≤ ‖(I −G)x‖ and

‖(I −G)x‖ = ‖Hp−1x‖ ≤ ‖Hp−2x‖ ≤ · · · ≤ ‖H0x‖ ,
it follows that for such ε we can find an x as in (58) with

‖Hkx‖2 ≥ 1− ε ∀k = 0, . . . p− 1 .

By (60), the choice ξ =
√
ε can be used in (54) and (57). Therefore, we obtain with

θ = 2
√
ε− ε >

√
ε the inequality

1− ε ≤ (1− θ) + θ

(
‖P√ε,kx‖+

k−1∑
i=0

‖A∗iMiAix‖

)2

, ∀k = 0, . . . p− 1 ,

yielding the estimate

(62) ‖P√ε,kx‖+

k−1∑
i=0

‖A∗iAix‖ ≥
√

1− ε

θ
≥ 1− ε

θ
≥ 1−

√
ε , ∀k = 0, . . . p− 1 .

Using (55), we get

‖A∗kMkAkx‖2 ≤ ε‖P√ε,kx‖2 + 4(1− ‖P√ε,kx‖2) ≤ ε+ 4(1− ‖P√ε,kx‖2) .(63)

For k = 0, we obtain from (62) and (63)

‖P√ε,0x‖2 ≥ 1−
√
ε , ‖A∗0M0A0x‖2 ≤ ε+ 4

√
ε ≤ D0

√
ε .
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We proceed by induction to show that

(64) ‖A∗kMkAkx‖2 ≤ Dkε
1

2k+1 ∀k = 0, . . . , p− 1 .

Using (62) and the induction hypothesis for k − 1, k ≥ 1, we find

‖P√ε,kx‖ ≥ 1−
√
ε−

k−1∑
i=0

ε
1

2i+2

√
Di ≥ 1− ε

1

2k+1

(
1 +

k−1∑
i=0

√
Di

)
.

Notice that, due to (59), the right hand side in this inequality is positive. Hence,
by (63) we obtain

‖A∗kMkAkx‖2 ≤ ε+ 4

1−

(
1− ε

1

2k+1

(
1 +

k−1∑
i=0

√
Di

))2


≤ ε
1

2k+1 + 4

2ε
1

2k+1

(
1 +

k−1∑
i=0

√
Di

)
−

(
ε

1

2k+1

(
1 +

k−1∑
i=0

√
Di

))2


≤ ε
1

2k+1

(
9 + 8

k−1∑
i=0

√
Di

)
= ε

1

2k+1Dk ,

which verifies (64) for all k = 0, . . . p − 1. Now we derive a contradiction to (58).
Using (56) and (61) we obtain

η ≤ Re(Gx, x)XC ≤ ‖Gx‖ ≤
p−1∑
i=0

‖A∗iMiAix‖ ≤
p−1∑
i=0

ε
1

2i+2

√
Di ≤ ε

1

2p+1

p−1∑
i=0

√
Di < η .

Hence, (58) cannot be true for such an ε and the proof is complete.
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