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Abstract
In this article we combine the projective Landweber method,

®

CrossMark

recently pro-

posed by the present authors, with Kaczmarz’s method for solving systems of
nonlinear ill-posed equations. The underlying assumption used in this work is
the tangential cone condition. We show that the proposed iteration is a con-
vergent regularization method. Numerical tests are presented for a nonlinear

inverse problem related to the Dirichlet-to-Neumann map,

indicating a

superior performance of the proposed method when compared with other well
established iterations. Our preliminary investigation indicates that the resulting
iteration is a promising alternative for computing stable solutions of large

scale systems of nonlinear ill-posed equations.

Keywords: Ill-posed problems, nonlinear equations, Landweber method,

Kaczmarz method, projective method

(Some figures may appear in colour only in the online journal)

1. Introduction

The classical Kaczmarz iteration consisting of cyclic orthogonal projections was devised in
1937 by the Polish mathematician Stefan Kaczmarz for solving (large scale) systems of linear
equations [18]. Since then, this method has been successfully used for solving ill-posed linear
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systems related to several relevant applications, e.g. x-ray tomography” [16, 17, 27-30] and
signal processing [7, 32, 38].

In this article we couple the projective Landweber (PLW) method [24] with the Kacz-
marz method. The resulting iteration, designated here as the projective Landweber—Kaczmarz
(PLWK) method, is a new cyclic type method for obtaining stable approximate solutions for
systems of nonlinear ill-posed equations. The idea of projecting on a separating half-space,
which depends on the noise level, has already been used for the case of linear operators
in [28, 34].

The inverse problem we are interested in consists of determining an unknown quantity
x € X from the set of data (y,...,yy_) € YV, where X, Y are Hilbert spaces and N > 1 (the
case y; € Y; with possibly different spaces ¥, ..., Yy_ can be treated analogously). In practical
situations, the exact data are not known. Instead, only approximate measured data yf € Y are
available such that

) =yl <& i=0,..N—1, (1)

with 6; > 0 (noise level). We use the notation § := (9 ,..., Oy_1)-

The finite set of data above is obtained by indirect measurements of the parameter x, this
process being described by the model F; (x) =y, fori =0,...,N — 1. Here F: D, C X — Y
are ill-posed operators [11] and D; are the corresponding domains of definition. Summarizing,
the abstract functional analytical formulation of the inverse problems under consideration
consists in finding x € X such that

Fx) =y, i=0,..N—1. )

Standard methods for the solution of system (2) are based in the use of iterative type
regularization [1, 10, 15, 19, 20] or Tikhonov type regularization [10, 26, 33, 35-37] after
rewriting (2) as a single equation:

F(x)=y% with F:=(F,.,Fy_):NY,'D;, — YV,
Yo = (0 e - 3)

A classical and general condition commonly used in the convergence analysis of these
methods is the tangent cone condition (TCC) [15]. If one resorts to the functional analytical
formulation (3), one has to face the numerical challenges of solving a large scale system of ill-
posed equations [8]. When applied to (3), the above mentioned solution methods become
inefficient if N is large or the evaluations of Fi(x) and F; (x)* are expensive.

An alternative technique for solving system (2) in a stable way is to use Kaczmarz
(cyclic) type regularization methods. This technique was introduced in [3, 9, 12—14, 25] and
[6] for the Landweber iteration, the steepest-descent iteration, the expectation-maximization
iteration, the Levenberg—Marquardt iteration, the REGINN-Landweber iteration, and the
iteratively regularized Gauss—Newton iteration respectively.

Our aim is to combine the newly proposed projective Landweber method [24] with the
Kaczmarz method. The projective Landweber method (PLW) is an iterative type method for
solving (2) when N = 1 and F, satisfies the TCC. In each iteration k, a half-space separating
x; from the solution set is defined and x;,; is a relaxed projection of x; onto this set. The
resulting iterative method for solving Fy(x) = y(f can be written in the form

4 In the tomography community, the Kaczmarz method is called the ‘algebraic reconstruction technique’ (ART).
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o — 40 /o 5k 5 6
X1 = X =0 Ak Foy ()" (Fo () — 3)s 4)

where 60, € (0, 2) is a relaxation parameter and \; > 0 gives the exact projection of x,f onto
Hy s (see [24] equation (8)). Observe that this iteration is a Landweber iteration with a
stepsize control. In the next section we present a combination of the PLW method with the
Kaczmarz method, for solving (2) when N > 1.

The projective Landweber-Kaczmarz (PLWK) method

The PLWK method for the solution of (2) proposed in this article consists in coupling the
PLW method (4) with the Kaczmarz (cyclic) strategy and incorporating a bang—bang para-
meter, namely

X = 6 = O A wi g O (Fra () — ygy)- )

Here the parameters 6;, \; have the same meaning as in (4) (see (12) for the precise definition
of \;), while

U | Fg () = yill > 76

where 7 > 1 is an appropriately chosen positive constant (12) and [k] := (k modN) €
{0,...N — 1}. We also consider PLKWr a ‘randomized’ version of the method (in the spirit
of [4]), where [k] is randomly chosen in {O,...,N — 1}.

As usual in Kaczmarz type algorithms, a group of N subsequent steps (starting at some
integer multiple of N) is called a cycle. In the case of noisy data, the iteration terminates if all
wi become zero within a cycle, i.e. if ||E(x,f+i) — yf|| < 76, i € {0,...,N — 1}, for some
integer multiple k of N.

The PLWK iteration scheme in (5), (6) exhibits the following characteristics.

— For noise free data, w; = 1 for all k and each cycle consist of exactly N steps of type (4).
Thus, the numerical effort required for the computation of one cycle of PLWK rivals the
effort needed to compute one step of PLW (or LW) for (3).

— In the realistic noisy data case, the bang—bang relaxation parameter wy will vanish for
some k (especially in the last iterations). Consequently, the computational evaluation of
F[ﬁc] (x0)* might be avoided, making the PLWK method a fast alternative to conventional
regularization techniques for the single equation approach (3).

— The convergence of the residuals in the maximum norm better exploits the estimates for
the noisy data (1) than the standard regularization methods for (3), where only
N*IZZV:_OI B () — yP|P (the squared average of the residuals) falls below a certain
threshold. Moreover, the parameter wy; in (6) means that the iterates x,f in (5) become
stationary in such a way that each residual ||F(x}) — yf|| in (2) falls below some
threshold. This makes (5) a convergent regularization method in the sense of [10].

Outline of the article

In section 2 we state the main assumptions and derive some preliminary results and estimates.
In section 3 we define the convex sets H, , related to the operator equations in (2) and prove a
special separation property of these sets. The PLWK iteration is described in detail and a
stopping criterion is defined (in the noisy data case), which is proved to be finite. Moreover,
the first convergence analysis results are obtained, namely: monotonicity of the iteration error
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(proposition 3.4) and square summability of iteration steps (18). In section 4 weak conv-
ergence of the PLWK method for exact data is proven. Moreover, stability and semi-conv-
ergence results are presented. Section 5 is devoted to the investigation of a randomized
version of the PLWK method, here denoted as the PLWKr method. In section 6 we present
numerical experiments for a nonlinear parameter identification problem related to the
Dirichlet-to-Neumann map [3, 5, 12, 22-24], while section 7 is devoted to final remarks and
conclusions. In the appendix a strongly convergent version of the PLWK method for exact
data is analyzed.

2. Main assumptions and auxiliary results

In this section we state our main assumptions and discuss some of their consequences, which
are relevant for the forthcoming analysis. In what follows, we adopt the simplified notation

Fs(x)=Fx) —)  and Fo() = F(x) — . @)

Throughout this work we make the following assumptions, which are standard in the
recent analysis of iterative regularization methods (cf, e.g., [10, 19, 33]):

1) each F; is a continuous operator defined on D(F) C X, and the domain D := N; D(F)
has nonempty interior. Moreover, the initial iterate x, € D and there exist constants C,
p > 0 such that F/, the Gateaux derivative of F}, is defined on B, (x9) C D and satisfies

|FF )| < C, x€B,(xp), i=0,.,N—1; 8)

2) the local tangential cone condition (TCC) [10, 15, 19]
[FE) — FE@x) — F0E -0y < nl|FEE — E®|y. ¥ x, £ € B,(x) )

holds for some n < 1 andi =0,...N — 1;

3) there exists an element x* € B,/>(xo) such that F;(x*) = y,, fori = 0,...,N — 1, where
¥, € Rg(F) are the exact data satisfying (1);
4) all operators F; are continuously Fréchet differentiable on B, (xo)

(in assumptions 2—4 the point xy € X and the constant p > 0 are as in assumption 1).

Observe that in the TCC we require 7 < 1 (see [24]), whereas in classical convergence
analysis for the nonlinear Landweber under this condition n < 1/2 is required instead
(see [10, 19)).

The next proposition contains a collection of auxiliary results and estimates that follow
directly from assumptions 1-3. For a complete proof we refer the reader to [24 section 2].

Proposition 2.1.  If assumptions 1-3 hold, then for any x, ¥ € B,(xo), and i = 0,..,N — 1
we have the following.

LA=nEx - E®| < IF®x-3] < Ad+nlFx - E®|
2. (F )*Fotx), x — %) < (1 +n)([Eo@IP + [|Eo@|[Fo@)]D.
3 (F ¥ Fo@), x = %) > (1= [[Eo@[? = (1 + n|Eo@|l[|Fo®)]-

4
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4. If, additionally, F(x) = 0 then

(I =Fo@| — A+ D|Eo®| < ||F @*ax — 3
<+ D Eo@] + [|Fo@))-

5. Fo(x) = 0 if and only if F/ (x)*F(x) = 0.

6. For any (x;) € B,(xo) converging to X, the following statements are equivalent: (a)
limy oo || o Fo (0| = 03 (b) limy oo || Fo ()| = 05 (c) Fo(®) = 0.

70f  x*€B,(o) NFg () then |y, — 3 — Fs) — K@@ =0l < nly -
¥ = Es@)|

We conclude this section proving that, under the TCC, the graph of each operator F; is
weak X strong sequentially closed.

Proposition 2.2. Let assumptions 1 and 2 be satisfied and i € {0,....N — 1}. If (x3) in
B, (xo) converges weakly to some X in B,(xo) and (F(x;)) converges strongly to z € Y,
then F,(x) = z.

Proof. It follows from assumption 2 that
" |FEG) — FE®PF > [|Fw) — FE® — F @ — )|
=||F) — F®> + |F @0 — D> — 2 (F) — EE), F @)@ — X))
> |F) — E®P — 2(F() — K&, F &0 — ).
Consequently,
(1 =) |EG) — E®|F <2 (F(y) — F®, F @0 — )
=2(F() — 2, K (D0 — 0) + 2(z — K&, F (D) — %))
<2 [|BE0) — 2||Cllxe — x| + (Ff ®*[z — FE®], x — X) (10)

where the second inequality follows from the Cauchy—Schwarz inequality and assumption 1.
Since F(x) —z — 0, xz — X — 0 as k — oo (and (x;) bounded), both terms on the right-
hand side of the last inequality converge to zero. By assumption 2, 0 < 1 < 1; therefore,
E (x;) — F (X) also converges to zero. O

3. The PLWK method

In this section we describe in detail the PLWK method and its relaxed variants. A stopping
index is defined (in the noisy data case). Additionally, preliminary convergence results are
proven, namely: monotonicity of the iteration error, square summability of the iterative steps
norm (in the exact data case) and finiteness of the above mentioned stopping index (in the
noisy data case).

Define, for each x € D andi = 0,...,N — 1, the sets

H = {z€X|(z—x FQ"Fs0))<—[Fs@[1 = @l — (1 +né)}.
(1)

Notice that H;, is either an empty set, a closed half-space, or X. The next lemma contains a
separation result.
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Lemma 3.1 (Separation). Suppose that assumptions 1 and 2 hold. If x € B,(xy), then for
H;y asin (10)

{z€ Bp(xO) | F@) = )’,} C I_Ii,x~
Moreover, if |Fs(x)|| > (1 + n( — n)~'é; then x € H; .
Proof. The first assertion follows from [24 lemma 4.1] and (11). The second assertion
follows directly from (11). (I
Remark 3.2. Two facts related to lemma 3.1 deserve special attention.

— Since ||Fs(x)| > (1 + n)(1 — n)~1§; is sufficient for separation of x from Fi_l(yi) in
B, (xp) via H;,, this condition also guarantees that F/ (xX)*F.s(x) = 0.

— In the exact data case (i.e., max{dg,...,Oy_1} = 0) the definition (10) reduces to
H, = {zeX ‘ <Z - x, F/(x)*E,o(x)> < —(1 = n) [[Fo@)|*}. Therefore, in this
case, we have strict separation, x ¢ H;, whenever F (x) = y.

Let
>0+l —nl (12a)

pi(0) = t((1 =t — (1 + by, (120)

Py (1Fisg.s @GO

M= (| Rl G By s GO
0, otherwise

if By () Fag.s (60 = 0 (12¢)

fori € {0,..,N — 1}and k > 0.° The iteration formula of the PLWK method and its relaxed
variants is given by (5), (6) with 7 and \; as in (12).

The (exact) PLWK method is obtained by taking 6; = 1in (5), which amounts to defining
x,f 1 as the orthogonal projection of )c,ﬁs onto H; ,¢. A relaxed variant of the PLWK method uses

0, € (0, 2) so that )c,ﬁs 1 is defined as a relaxed projection of x,f onto H; ,¢. The computation of
the sequence (x{) should be stopped at the index k € N defined by

kf = min {IN € N| x5} = Xy = =Xjy1n)- (13)

In what follows |k| denotes the largest integer less or equal to k (notice that
k=1k/N] - N + [k] for all k € N).

Remark 3.3. Concerning the above definition of the stopping index k., have the following.

1 Equivalently, one can define k. as the smallest multiple of N such that

wk: = Wi 1= =WES4N-1 = 0. (14)

2 The element x/f* satisfies ||E(xlfg) — yf|| < 76,1 = 0,...,N.
* *

3 For j < k2, there exists at least one index [ € {|j|,...[j] + N — 1} with w; = 0. In
other words, in the |j| th cycle, for (at least) one of the N equations in (2) it holds
that HFEIJ(X;S) — y[(ls]” > 76

3 Notice that F[Q] (x,f)*FlkJ,,g(xf) = 0 iff Flkj_h(x,f) = 0; see proposition 2.1, item 5.

6
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Notice that, if ||Fxy.s (5)|| > 76 then ||Fy (oY Fiay.s (¢0)|| 0. This fact follows from
proposition 2.1 item 3 (choose ¥ = x* and x = x{), since all F; s also satisfy assumptions 1
and 2. Consequently, the sequence (x,f) defined by iteration (5), (6) is well defined
fork =0,... k.

The next result estimates the gain in the square of the iteration error ||x* — x| for the
PLWK method.

Proposition 3.4. Let assumptions 1-3 hold true and 6 € (0,2). If x{ € B, (xo) and
(| Fs 0| > 6y, then

N 2
‘ ; Py Ui, s 6D
et = P2l = P+ 62 - 0@( = - .19

1 Fly ) * Fiey.s 6D |

Sor all x* € B,(xo) N F[;]l (y) and, in particular, for all x* satisfying A3.

Proof. If x{ € B, (xo) and HF[k],(g(x,f )| > 76, then wy, = 1 and x,fH is a relaxed orthogonal
projection of x{ onto Hyy,xp with a relaxation factor 6. The conclusion follows from this fact,
the iteration formula (5), and the separation lemma 3.1 (compare with [24 proposition
4.2]). O

Proposition 3.4 is an essential tool for proving that (x,f ) does not leave the ball B, (x) for
=0 ,..1,k>,‘f . The next theorem guarantees this fact, as well as the finiteness of the stopping
index k;f in the noisy data case (i.e. whenever min {4y ,..., Oy} > 0).

Theorem 3.5. If assumptions 1-3 hold true and 0 € (0, 2), then the sequence (x,f) in (5),
(6) (with 7, o, A\ as in (12)) is well defined and

x{ € B,h(x*) C B,(xp), k=0,..,k, (16)

where kﬁ is the stopping index defined in (13). Moreover, if 0, € [a, b] C (0, 2) for all
k < k;f, then k;f = O(égﬂzn), where Oy = min{dg,..., Oy_1}.

Additionally, in the particular case of exact data, the sequence (x;) defined by the PLWK
method is well defined, x; € B,/>(x*) C B,(xo) for all k € N,

p

o0
7 A [Fikg0 ()| <oo an
k=0

and
oo
Z X1 — Xk||2<oo. (18)
k=0

Proof. The proof of the first statement follows using an inductive argument. Indeed,
x{ = xo obviously satisfies (16). Moreover, if ||F[k],§(x,f)H < 70y then wy =0 and
x,f’+1 :x,f. Otherwise, inequality (15), assumption 0 < 6 < 2, and assumption 3
imply x| € B,/»(x*) C B,(xo).

To prove the second statement, first observe that since 6; € [a, b], we have
6 (2 — 6;) > a(2 — b) > 0. Thus, it follows from proposition 3.4 that for any k < k.

7
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k (4 2
* P[‘](HF[j],é(x')H)
e xolzae - py 3 | LD
I Fjn O Fijp.e ()|

J=0
F[/]Ji(xf(\')io

1\2
S a2 —b) Ek: W p[j](HF[j],é()?f)H)
c? J=0 N IFsGDl
Fjs()=0

(19)

Observe that, if ¢ > 76;, then

P,'(t) 1+ n

=0 =—mt— A+ > [T - 1—](1 — 08 > C bin,
=

where C := [(1 —n)T — (1 + n)]. On the other hand, as already observed in remark 3.3,
item (iii), each cycle lp with 0 < [y < k[k*f /N | contains at least one index / = [y. N + /; (with
L € {0,...,N — 1}) such that ||F; s ()| = [|F.s )| > 76, = 76y, i-e., w; = 1. Therefore,
for any k < k?

a-—b G2 s2 lk/N],

H)C* - x(;s||2> Cz min
from which we conclude k{ = O(6,2,).

Next we address the statements related to the exact data case. Arguing as in the first part
of the proof, one concludes that the sequence (x;) is well defined and satisfies
X € B,/>(x*) C B,(x), for all kK > 0. In order to prove (17), notice that if the data are exact
then p,(t) = (1 — n)¢? fori = 0,...,N — 1. Thus, it follows from (19) that

k (F . 2
Ix* — xo|P=a —b) > [ P (F Lo GpID )

=0 \UIFp G Fi o)l
I:I/l,ﬁ(x/'ﬁ)io
k k
>aR—-b Y, A=)l =a—bA —n) Y N [1Fe@)|P.
=0 =0
me(;(x/-ﬁ)i()

for all k € N (the identity follows from (6) and (12)), proving (17). Finally, in order to prove
(18) we derive from (4), (6) and (12) the estimate

et — [P = 67 wi AY 1 Fiy (o Fiag.0 o) |12

< 4N 1Bl G)*Fao Gol? = 4 A || Feg,0 00|

Therefore, (18) follows from (17). O

4. Convergence analysis

We start by stating and proving a convergence result for the PLWK method in the case of
exact data. Theorem 4.1 gives a sufficient condition for weak convergence of the relaxed
PLWK iteration to some element ¥ € B,(x,), which is a solution of (2).

In the appendix an alternative strong convergence result for the PLWK method is given
(see theorem A.1). The proof of this result, however, requires a modification in the definition
of the stepsize \; in (12) (for details, please see (23) below).

8
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Theorem 4.1 (Convergence for exact data).

Let assumptions 1-3 hold true, 6y =...= 6y_1 = 0 and (x;) be defined by the PLWK
method in (5), (6) with T, n, A as in (12). If inf 6 > 0 and sup 0y < 2, then (x;) converges
weakly to some X € B,(xg) solving (2).

Proof. The proof is divided in four main steps:
(1) ||F[k](xk) y[k]” — O as k — OQ.
Let QO C N be the set of indices k such that A\, = 0. Then, it follows from (17) that®

00> > M [Firpo o)l

keQ
=1 = > [1F0Goll* | Fg G Fago (o) [ 2
keQ
> =nC 2> Fro@o)P =0 = DC2>" |Fuo)|?-
keo keN

To complete the proof of this first step, we use the above inequalities and recall
that Fo(x) = F@) — 3,
(ii) Every x weak limit of a subsequence of (x;) satisfies the equations F; (¥) = y;.
Suppose that x;, — x. Takei € {0,...,N — 1}. In view of the definition of [k], for each j

there exists a kJ’ such that

[kjl =i, Kk <kj<k+N-—1

Since
k+N—2
e, —xell < D0 I — xlls
k=k;
it follows from (18) that Xy — X It follows from step (i) and the definition of k' that that
O(xk/) — 0. Since F; satlsﬁes the TCC, it follows from proposition 2.2 that F; (¥) — y. = 0.

(111) The sequence (x;) has a unique weak adherent point X and such a point belongs to
the set B, (x).

Since the data are exact, theorem 3.5 guarantees that (x;) is in B,/ (x¢). Hence, there
exists a subsequence (x;) converging weakly to some X € B,(xp). Suppose that (x,,)
converges to X. By step (ii), £ (¥) =y, = F(X) fori = {0,...,N — 1}. It follows from this
result and proposition 3.4 that

¥ = x| < 18 = xell, 18 = 2enll <& -2, k=12,

If X = %, it follows from the above inequalities and Opial’s lemma [31] that

lim ||£ — x¢|| = lim inf ||¥ — x; || < lim inf ||£ — x; || = lim ||£ — x|
—00 j—oo / j—oo / k— 00

and

lim ||£ — x|| = lim inf £ — x,, | < lim inf [|§ — x,, || = lim || — x|,

k— o0 j—o0 g j—o0 / k—o00

which is absurd.
(iv) The sequence (x;) converges weakly to x.

© Notice that, for exact data, A, = 0 iff Fi.o(x) = 0.
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Since the (x;) € B,(x¢) is a bounded sequence, this assertion follows from step (iii). [

In the next theorem we discuss a stability result, which is an essential tool to prove the
last result of this section, namely theorem 4.3 (the semi-convergence of the PLW method).
Notice that this is the first time that the strong assumption 4 is needed in this manuscript.

Theorem 4.2. Let assumptions 1-4 hold true. For each fixed k € N, the element x,f,
computed after X iterations of the PLWK method (5), depends continuously on the data yl.é.

Proof. From (12), assumptions 1 and 4 and theorem 3.5, it follows that the mappings
¢ 1 D(p) — X with

D(g) = {(x, ¥, &) | x € D; & > 0; ||ly* — w|l < 6 F/ " (Fx) — y)) = 0},
 pUE® =D
[F/ )*(F (x) — y)|P

o, ¥, 6) =x F (0 (Fx) — 3"

are continuous on the corresponding domains of definition. Therefore, whenever the iterate
x) = (‘p[kl("y[i]’ 1)) oo (@, ("yoé’ 80))(xo) is well defined’, it depends continuously on

OF, 69" O

Theorem 4.2 together with theorem 4.1 are the key ingredients in the proof of the next
result, which guarantees that the stopping rule (13) renders the PLWK iteration a regular-
ization method. The proof of theorem 4.3 uses classical techniques from the analysis of
Landweber-type iterative regularization techniques (see, e.g., [10 Theorem. 11.5] or [19
Theorem 2.6]) and thus is omitted.

Theorem 4.3 (semi-convergence). Let assumptions 1-4 hold true, (66,...,5{;,71» — 0 as
j— oo, and (¥ ...y ) € YN be given with |ly/ — y|| < &/ for i € {0,..,N — 1} and
j € N. If the PLWK iteration (5) is stopped with kj according to (13), then (x If*,) converges
weakly to a solution X € B,(xo) of (2) as j — oo.

5. The randomized PLWK method

In the spirit of [4], we consider a ‘randomized’ version of the PLWK method where in the gth
cyclek=(q — 1)N,(g— DN + 1l.,gN—1,

[(g — DN], [(¢g — DN + 1],...,[gN — 1]

is a random permutation of 0,..., N — 1. In our numerical tests, the randomized version of the
PLW method performed slightly better than the deterministic version.

All convergence results stated for the ‘deterministic’ PLWK method extend trivially for
the ‘randomized version’ (here called PLWKTr), provided that the same sequence of random
permutations is considered in theorems 4.2 and 4.3.

7 This composition is to be understood in a cyclic way.

10
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6. Numerical experiments

In this section the PLWK method is implemented for solving an exponentially ill-posed
inverse problem related to the Dirichlet-to-Neumann map and its performance is compared
against the benchmark methods LWK (Landweber—Kaczmarz [12, 14]) and LWKIs (Land-
weber—Kaczmarz with line search [9]).

6.1. The inverse doping problem

We briefly describe the inverse doping problem considered in [22—-24] with the same setup as
used in [24 Section 5.3]. This problem consists in determining the doping profile function
from measurements of the linearized voltage—current map.

After several simplifications, the problem becomes to identify the parameter function ~y in
the PDE model

—div (yVi) =01in Q it = U(x) on 0N (20)
from measurements of the Dirichlet-to-Neumann map

A, HV209) — H12(09),
U — (v'4,)|on

where «* is the exact coefficient to be determined. Only a finite number N of measurements is
available, i.e., one knows

{(U, A (UD€ [HYV2(09) x H'2(00) V.

Moreover, v* is assumed to be known at O, the boundary of the domain 2 C R?
representing the semiconductor device [5].

In [24 section 5.3] this inverse problem was addressed for N = 1 (i.e. parameter iden-
tification from a single experiment). Here the more general setting N > 1 is considered, which
can be written within the abstract framework of (2) with

EM =AU, 3 =AyU), i=0..N-1, @1)

where U; € H'/2(9)) are fixed Dirichlet boundary conditions (representing the voltage
profiles for the experiments), Y := H'/2(0Q) and X :=L2*(Q) D D;:= {y € L¥(Q);
0 <, <vx) <y ae in Q)

The operators F; : H'(Q) > v — A, (U) € H™'/2(9) in (21) are continuous maps [5].
Up to now, it is not known whether the F; satisfy the TCC (9). However, in [21] it was
established that the discretization of each F; in (21), using the finite-element method, does
satisfy the TCC. Furthermore, for each fixed U=U; in (20), the map
H' () > v+~ i € H'(Q) satisfies the TCC with respect to the H! (€2) norm [19]. Due to these
considerations, the analytical convergence results of sections 3 and 4 do apply to finite-
element discretizations of (21) in this particular setting. Moreover, H! () is a natural choice
of parameter space for the PLW and PLWK methods.

6.2. Setup of the numerical experiments

The setup of the numerical experiments presented in this section is as follows.

* The domain 2 C R? for the elliptic PDE model (20) is the unit square (0, 1) x (0, 1)
and the parameter space for the above described inverse problem is H'(£2).

* The ‘exact solution’ v* € D; C H'(Q) of system (21) is shown in figure 1 (Top).

11
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Exoct Coetticient

-200e+01
A91e+01
J182e+01
173e+01
164e+01
154e+01
45e+01
136e+01
A27e+01
118e+01
.109e+01
999e+00

. 4

Solution of direct problem: Tipicol source

mputed Initial
Computed Initiol Guess a0 2000401

1912401

181e+01
172e+01
1636401

154e+01
45e+01
136e+01
127e+01

118¢+01
.109e+01
999¢+00

Figure 1. Setup of the inverse doping problem. Top: parameter function v* to be
identified. Center: functions U; and Ug (the Dirichlet boundary conditions at 0f2 for

(21)) and the solutions i,, ile of the corresponding PDEs. Bottom: initial guess ~y, for
the iterative methods PLWK, LWK and LWKIs.

* The number of available experiments is N = 12 and the Dirichlet boundary conditions
used in (21) are the continuous functions U;: 902 — R, i = 0,...,N — 1, defined by

Uy = sin(s(0)(i + 1)7/2),  Upiy1 = cos(s()(i + D7/2) 22)

where () is the length of the counterclockwise oriented arc along 952, connecting (0, 0) to ¢,
that is
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X, tr=(x,0), 0<x<1
q ALy 1=y o<y <l
B 3_-x7 t:(x’1)50<x<1

4 —y, t=(0,y), 0<y<I1.

In figure 1 (center) two distinct voltage profiles Ugx) are plotted, together with the
corresponding solutions of (20).

* The TCC constant 7 in (9) is not known for this particular setup. In our computations
we used the value n = 0.45, which is in agreement with assumption 2 as well as with [15
equation (1.5)].

* The ‘exact data’ y; in (21) are obtained by solving the direct problem (20) (with y = ~*
and U = U)) using a finite-element type method and adaptive mesh refinement (mesh with
approximately 131 000 elements). In order to avoid inverse crimes, a coarser uniform mesh
(with about 33 000 elements) was used in the implementation of the finite-element method,
employed for solving the PDEs related to the iterative methods tested.

* The choice of the initial guess -, is a critical issue. According to assumptions 1-3, -y,
has to be sufficiently close to v*, otherwise the convergence analysis developed previously
does not apply. As explained in [24 remark 5.1] we choose -y, as the solution the Dirichlet
boundary value problem A~r, = 0 in €2, 7, = 7* at 9.

* In the numerical experiment with noisy data, artificially generated (random) noise of
2% was added to the exact data y; in order to generate the noisy data yf. For the verification of
the stopping rule (13) we assumed exact knowledge of the noise level and chose 7 = 3 in
(12), which is in agreement with the above choice for 7.

* The computation of the adjoints F;{& (y)*, fori = 0,..,N — 1, is done using the H'-
inner product, as developed in [24 remark 5.2].

6.3. Experiments for exact data and noisy data

In our numerical experiments, we implement four different Landweber—Kaczmarz-type
methods for solving the ill-posed system (21), namely,

LWK Landweber—Kaczmarz method [12, 14];

LWKIs Landweber—Kaczmarz method with line-search [9];

PLWK projective Landweber—Kaczmarz method, as developed in section 3;

PLWKTr randomized Projective Landweber—Kaczmarz method, as developed in section 5.

In order to compare the performance of these methods, the iteration error as well as the
residual are computed at the end of each cycle, i.e., our plots describe the quantities

N-1

Iy — 7l and Y NE(w) = yllzeg, k=0,1,2,.
i=0

(here k is an index for cycles).

For solving the elliptic PDEs, needed for the implementation of the iterative methods, we
used the package PLTMG [2] compiled with GFORTRAN-4.8 in a INTEL(R) Xeon(R) CPU
E5-1650 v3.

Evolution of iteration error and evolution of residual in the exact data case are shown in
figure 2. The PLWK method () is compared with the LWK method, with the LWK method
using line-search (LWKIs) and with the randomized PLWK method (PLWKr).

13
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Projective Landweber Kaczmarz Method - Exact Data - N =12
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Figure 2. Experiment with exact data. The PLW method is compared with the LW

method and with the LWIs method. Top: evolution of the iteration error
1My — ¥l @) - Bottom: evolution of the residual Zf’:’O'HE(ykN) — oo

Evolution of iteration error and evolution of residual in the noisy data case are shown in
figure 3. The PLWK method is compared with the LWK method, with the LWK method
using line-search (LWKIs) and with the randomized PLWK method (PLWKr). The stop
criterion (13) is reached after 29 steps for the PLWK iteration, 42 steps for the LWKIs
iteration, 22 steps for the PLWKTr iteration, and 74 steps for the LWK iteration.

Altogether, the PLWK and PLWKTr outperformed the other methods in our preliminary
numerical experiments. It is worth mentioning that the LWKIs, due to the line search,
demands in each iteration the solution of three PDEs, while the other methods require the
solution of two PDEs per iteration. In the noisy data case, very soon many residuals drop
below the threshold in each cycle, and in the corresponding iterations only one PDE has to be

solved (see figure 3).
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Projective Landweber Kaczmarz Method — Inexact Data — Noise Level 2% — N =12
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Figure 3. Experiment with noisy data. The PLW method is compared with the LW
method, the LWIs method and the PLW-random method. Top: evolution of the
iteration error. Center: evolution of the residual. Bottom: number of computed iterative
steps per cycle.
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7. Final remarks and conclusions

In this article we combine the projective Landweber method [24] with Kaczmarz’s method
[18] for solving systems of nonlinear ill-posed equations.

The underlying assumption used in convergence analysis presented in this manuscript is
the tangential cone condition (9). Notice that the convergence analysis of the PLWK method
requires 1 < 1 while the LWK method requires the TCC with < 0.5 [14].

The numerical experiments depicted in figure 3 indicate that, in the noisy data case, the
bang-bang relaxation parameter wy; in (6) vanishes for several k (already after the first
iterations; see figure 3 bottom). Consequently, the computational evaluation of the adjoint
F[Z] (x)* is avoided, making the PLWK and PLWKr methods a fast alternative to conven-
tional regularization techniques for solving (3) (single equation approach).

The truncation technique used in the appendix is analogous to the one proposed in [9] to
prove a similar result for a steepest-descent-type method. The role played by this truncation is
merely to provide a sufficient condition for proving strong convergence of the PLWK
method. In the realistic noisy data case, this truncation does not modify the original PLWK
method introduced in section 3, whenever the constant A, is chosen large enough.

The PLWK and PLWKr methods have proven to be efficient alternatives to the LWK and
LWKIs methods for solving ill-posed systems. Comparison with Newton-type methods will
be the subject of future work.
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Appendix A. Strong convergence for exact data

In what follows we consider the PLWK iteration in (5) with wy defined as in (6), and 7, ,;
defined as in (12). However, in contrast to (12), A, is now defined by

5
A, 1= A( P U Fiky.s G D

[Fey G2 Y* Fia.6 6O ] it Fy 00 Fiey.s () = 0, Ay = 0, otherwise.
(23)

Here A : R™ — R is a truncation function satisfying A(f) = min{¢, Apa} for # > 0, where
Amax > (1 — n)C~2 is some positive constant.

In the exact data case we have
1 Fpgo0x) =0

. , ke N.
0  otherwise

p@) = (1 —-mn 2, ie{0,.,N—-1} and wy = {
Moreover, we have either Ay = 0 (whenever Fj o (x;) = 0) or

A¢ = min A = n) [|Fu.ool? A\ >(1 - o 24
- P max = Amin-
(| Fiy G Fiay,0 (o) |12 C?
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The inequality in (25) follows from the fact that x; € B,(xp) for k > 0, together with
assumption 1 (notice that both proposition 3.4 and theorem 3.5 remain valid for PLWK with
the new definition of \; in (23)).

In the next theorem we use this setup to prove a strong convergence result for the PLWK
iteration in the case of exact data. The truncation function A is essential for obtaining the
estimate (28).

Theorem A.1 (strong convergence for exact data).

Let assumptions 1-3 hold true, 6y =...= 6y_ = 0 and (x;) be defined by the PLWK
method in (5), (6) with )\, defined as in (24). If inf 6, > 0 and sup 0, < 2, then (x;)
converges strongly to some X € B,(xo) solving (2).

Proof. We define ¢, := x* — x;. Since we have exact data, it follows from proposition 3.4
that ||e; || is monotone nonincreasing. Thus, ||e; || converges to some € > 0. In the following
we show that the sequence (¢;) is a Cauchy sequence. In order to prove this fact, it suffices to
show that

(e, — e, )] — 0  and |{e — €. e)| — 0O (25)

as k, j — oo, where k < j and [ € {k,...,j} (see, e.g., [15 theorem 2.3] for the Landweber
method or [14 theorem 2.3] for the LWK method).

Let k <j be arbitrary. Define ko:= |k/N], j =|j/N| and k=[], j, = [j].
Consequently, k = koN + ki, j = jyN + j;. Now, choose [y € {ko,...,jy} such that

N—-1 N—-1
S o Gron e 12 11 B0 gyl (26)
n=0 n=0

for all iy € {ko,...,jo}, and set [ :== [N + N — 1. Therefore,
Jj—1
et — e @) | = [ (it — ), (& — x)|
i=l
j—1
= 1526 A (3 — R, Fy ) = x))|
i=l

i1
<00 N [|Fao @)l |1Fy G — x) + Fiy ()@ — x|
il

j—1
<2 > N Fio@)l (1 + pIFaG®) — FaGll + [[FaG) — FaGoll]

i=l

j—1
=21+ YN [[Fao Gl U Fao Gl + 1Fa () — vy + Yy — FaGll]
i=l

j—1
<23+ YN Fao @2 Fago )l + 1FnG) — vyl

i—1
-1 -1

=414+ Y N [[Fno@IP + 2A +m D N [[Fao@d)]| [|Fio Gl 27
i=l i=l

(in the second inequality we used proposition 2.1, item 1). Next we estimate the term
||Fii1.0 (x7)|] on the right-hand side of (28) (to simplify the notation we write i = ioN + i, with
i;€{0,..,N—1}).
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[FnoGoll = [1FaG) — yull = [1F Grgnven—1 — v, |l
N—2
I i XigN+i) — Vi i XgN+n+1) — L3\ X[gN+n
< |[Fi( ) =yl + Do NFC ) — F;( Ol
n=i
PN
< |FoGugni)ll + T Y NF Gionn) Gty nt1 — Xignn)l
n=i
=
< |FpoGagn+i)ll + S X tgnn + 1 — Xignnl|
(1 - 77) n=i
c N2 ,
< |FoGuonei)ll + a—m > Ointn MgNn [|Fy Gty ) Fro Gign -0
n=i
202 N2
< |FoGuonei)ll + a—m > Nnax [[Foo Grgnn) ||
n=i
N2 L N-1
< C D |FoGnenll < C D IE oGyl

n=i n=0

(28)

(the second inequality follows from proposition 2.1, item 1). Here C =
[2(1 — 1) + 4C?Amax] (1 — m)~ L. Using (28) we estimate the second sum on the right-hand
side of (27) (once again we adopt the notation i = igN + ij).

Jj—1 Jo N—1
DN Fno @I [ FioGnll < D YN Fo @l [|FioGa)ll
i=l io=ly =0
Jo | N—1 L N-1
< Z ZAl |F,‘1,0(X,')(C Z ||E1,O(xloN+n)]
iv=Ilo | 4=0 n=0

Jo (N1 N-1
<C Amax Y [ZHEl,o(xioNHI)H](Z |EL,O(xloN+n)||)
n=0

io=lp \ii=0

(29)
N Jjo (N-1 2
< C )\max Z Z ||Fil,()(xi0N+i1)||

io=1Io \/;=0
N b N-1
<C Amax YN D |FyoGignei)|?
iv—ly =0
JoN+N—1

=CNmax > [FioGl?,

i=l,
where the third inequality follows from (26). Substituting (29) in (27) we obtain

j—1 ~ JopNAN—1
|<el - ¢, €z>| < A0+ D) Amax Y _IFinoG)|? +2(1 + ) CNAmax Y [|[Finno &)|?

i=l i=ly

a

< Ai |1 Figo )|

i=ly

~ -1

where C = 2\ (1 + ) [2 + CN ] Amin (in the last inequality we used (24)).

18



Inverse Problems 32 (2016) 025004 A Leitdo and B F Svaiter

From (17) and the definition of the index [ € {k,...,j} it follows that, given ¢ > 0, there

exists some N, € N such that ’ <e, - ¢, e,>‘ <e€ / 2 for k, j > N.. Analogously, one shows
that |{e; — ¢, ¢)| < € for k, j > N.. This is sufficient to guarantee (25).

Consequently, x; = x* — ¢; converges to some X € B,(xq). Since, due to (17), the

residuals ||Fjp.0(x)|| converge to zero as k — oo, we conclude that x is a solution of (2),
completing the proof. (I
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