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ABSTRACT

We propose and analyze a family of successive projection
methods whose step direction is the same as the Landweber
method for solving nonlinear ill-posed problems that satisfy
the Tangential Cone Condition (TCC). This family encompasses
the Landweber method, the minimal error method, and the
steepest descent method; thus, providing an unified frame-
work for the analysis of these methods. Moreover, we define
new methods in this family, which are convergent for the con-
stant of the TCC in a range twice as large as the one required
for the Landweber and other gradient type methods. The TCC
is widely used in the analysis of iterative methods for solving
nonlinear ill-posed problems. The key idea in this work is to
use the TCC in order to construct special convex sets possess-
ing a separation property, and to successively project onto
these sets. Numerical experiments are presented for a nonlin-
ear two-dimensional elliptic parameter identification problem,
validating the efficiency of our method.
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1. Introduction

In this article, we propose a family of successive orthogonal projection

methods for obtaining stable approximate solutions to nonlinear ill-posed

operator equations.

The inverse problems, we are interested in, consist of determining an

unknown quantity x 2 X from the data set y 2 Y, where X, Y are Hilbert

spaces. The problem data y are obtained by indirect measurements of the

parameter x, this process being described by the model F(x)¼ y, where F :

D � X ! Y is a non-linear ill-posed operator with domain D ¼ DðFÞ.
In practical situations, the exact data y is not known. Instead, what is

available is only approximately measured data yd 2 Y satisfying
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jjyd�yjj � d; (1)

where, d> 0 is the noise level. Thus, the abstract formulation of the

inverse problems under consideration is to find x 2 D such that

FðxÞ ¼ yd: (2)

The standard methods for obtaining stable solutions of the operator

equation in (2) can be divided into two major groups, namely, Iterative

type regularization methods [1–5] and Tikhonov type regularization meth-

ods [2, 6–10]. A classical and general condition commonly used in the con-

vergence analysis of these methods is the Tangent Cone Condition

(TCC) [3].

In this work, we use the TCC to define convex sets containing the local

solutions of Equation (2) and devise a family of successive projection meth-

ods. The use of projection methods for solving linear ill-posed problems

dates back to the 1970’s (with the seminal works of Frank Natterer and

Gabor Herman) [11–14]. The combination of Landweber iterations with

projections onto a feasible set, for solving (2) with yd in a convex set was

analyzed in [15] (see also [2] and the references therein).

The distinctive features of the family of methods proposed in this work

are as follows:

� The basic method in this family outperformed, in our preliminary

numerical experiments, the classical Landweber iteration [3] as well as

the steepest descent iteration [16] (with respect to both the computa-

tional cost and the number of iterations);

� The family is generated by introducing relaxation in the stepsize of the

basic method and such a family encompasses, as particular cases, the

Landweber method, the steepest descent method, as well as the minimal

error method [16]; thus, providing an unified framework for their con-

vergence analysis;

� The basic method within the family converges for the constant in the

TCC twice as large as required for the convergence of the Landweber

and other gradient type methods.

In view of these features, the basic method within the proposed family is

called the Projected Landweber (PLW) method. Although in the linear case

the PLW method coincides with the minimal error method, in the nonlin-

ear case these two methods are distinct.

The Landweber iteration was originally proposed for solving linear equa-

tions by using the method of successive approximations applied to the nor-

mal equations [5]. Its extension to non-linear equations was obtained by

substituting the adjoint of the linear map by the Jacobian’s adjoint of the
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operator under consideration [3]. Such a method is named (nonlinear)

Landweber, in the setting of ill-posed problems. Convergence of this

method in the nonlinear case under the TCC was proven by Hanke et al.

[3]. Convergence analysis for the steepest descent method and minimal

error method (in the nonlinear case) can be found in [16].

Although Levenberg–Marquardt type methods are faster than gradient

type methods, with respect to the number of iterations, gradient type meth-

ods have simpler and faster iteration formulas. Moreover, they fit nicely in

Cimino and Kaczmarz type schemes. For these reasons, acceleration of gra-

dient type methods is a relevant topic in the field of ill-posed problems.

The article is outlined as follows. In Section 2, we state the main assump-

tions and derive some auxiliary estimates required for the analysis of the

proposed family of methods. In Section 3, we define the convex sets Hx (6),

prove a special separation property (Lemma 3.1) and introduce our family

of methods (8). Moreover, the first convergence analysis results are

obtained, namely: monotonicity (Proposition 3.2) and strong convergence

(Theorems 3.3 and 3.4) for the exact data case. In Section 4, we consider

the noisy data case (d>0). The convex sets Hd
x are defined and another sep-

aration property is derived (Lemma 4.1). The discrepancy principle is used

to define a stopping criteria (20), which is proved to be finite (Theorem

4.3). Monotonicity is proven (Proposition 4.2) as well as a stability result

(Theorem 4.4) and a norm convergence result (Theorem 4.5). Section 5 is

devoted to numerical experiments. In Section 6, we present final remarks

and conclusions.

2. Main assumptions and preliminary results

In this section, we state our main assumptions and discuss some of their

consequences, which are relevant for the forthcoming analysis. To simplify

the notation, from now on we write

FdðxÞ :¼ FðxÞ�yd and F0ðxÞ :¼ FðxÞ�y: (3)

Throughout this work we make the following assumptions, which are fre-

quently used in the analysis of iterative regularization methods [2, 4, 7]:

A1 F is a continuous operator defined on DðFÞ � X, which has non-

empty interior. Moreover, there exist constants C, q>0 and x0 2
DðFÞ such that F0, the Gateaux derivative of F, is defined on Bqðx0Þ
and satisfies

jjF0ðxÞjj � C; x 2 Bqðx0Þ � DðFÞ (4)

(the point x0 is be used as initial guess for our family of methods).
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A2 The local tangential cone condition (TCC) [2, 4]

jjFð�xÞ�FðxÞ�F0ðxÞð�x�xÞjjY � gjjFð�xÞ�FðxÞjjY ; 8x; �x 2 Bqðx0Þ
(5)

holds for some g<1; x0 2 X, and q>0.

A3 There exists an element x? 2 Bq=2ðx0Þ such that Fðx?Þ ¼ y, where y 2
RgðFÞ are the exact data satisfying (1).

A4 The operator F is continuously Fr�echet differentiable on Bqðx0Þ.
Observe that in the TCC we require g<1, instead of g<1=2 as in classical

convergence analysis for the nonlinear Landweber under this condition [2].

The TCC (5) represents a uniform assumption (on a ball of radius q) on

the non-linearity of the operator F, and has interesting consequences (See

[2, pp. 278–280] or [4, pp. 6 and Sec. 2.4 (pp. 26–29)]). Here, we discuss

some of them.

Proposition 2.1. If A1 and A2 hold, then for any x, �x 2 Bqðx0Þ
1: ð1�gÞjjFðxÞ�Fð�xÞjj � jjF0ðxÞðx��xÞjj � ð1þ gÞjjFðxÞ�Fð�xÞjj;
2: hF0ðxÞ�F0ðxÞ; x��xi � ð1þ gÞðjjF0ðxÞjj2 þ jjF0ðxÞjjjjF0ð�xÞjjjjÞ;
3: hF0ðxÞ�F0ðxÞ; x��xi � ð1�gÞjjF0ðxÞjj2�ð1þ gÞjjF0ðxÞjjjjF0ð�xÞjj:

If, additionally, F0ðxÞ 6¼ 0 then

ð1�gÞjjF0ðxÞjj�ð1þ gÞjjF0ð�xÞjj
� jjF0ðxÞ�ðx��xÞjj � ð1þ gÞðjjF0ðxÞjj þ jjF0ð�xÞjjÞ:

Proof. Item 1 follows immediately from the TCC and the triangle inequal-

ity, as proved in [2, Eq.(11.7)].

Direct algebraic manipulations yield

hF0ðxÞ�FðxÞ; x��xi ¼ hFðxÞ; F0ðxÞðx��xÞi
� ð1þ gÞjjFðxÞjjjjFðxÞ�Fð�xÞjj;

where, the inequality follows from Cauchy–Schwarz inequality and item 1.

Likewise,

hF0ðxÞ�F0ðxÞ; x��xi ¼ hF0ðxÞ; F0ðxÞðx��xÞi
¼ hF0ðxÞ; F0ðxÞ�F0ð�xÞi þ hF0ðxÞ; F0ð�xÞ�F0ðxÞ�F0ðxÞð�x�xÞi
� jjF0ðxÞjj2�jjF0ðxÞjjjjF0ð�xÞjj�gjjF0ðxÞjjjjF0ðxÞ�F0ð�xÞjj;

where, the inequality follows from Cauchy–Schwarz inequality and the first

inequality in this proof. Items 2 and 3 follow from the above inequalities

and the inequality jjF0ðxÞ�F0ð�xÞjj � jjF0ðxÞjj þ jjF0ð�xÞjj: w

The next result relates to the solvability of operator equation F(x)¼ y

with exact data.
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Proposition 2.2. Let A1 – A3 be satisfied. For any x 2 Bqðx0Þ, F0ðxÞ ¼ 0 if

and only if F0ðxÞ�F0ðxÞ ¼ 0. Moreover, for any ðxkÞ 2 Bqðx0Þ converging to

some �x 2 Bqðx0Þ, the following statements are equivalent:

aÞ lim
k!1

jjF0ðxkÞ�F0ðxkÞjj ¼ 0;

bÞ lim
k!1

jjF0ðxkÞjj ¼ 0;

cÞ Fð�xÞ ¼ y:

Proof. See [4, pp. 279] for a proof of the first statement. For proving the

second statement: the implication ðbÞ ) ðaÞ follows from A1 and the

hypothesis ðxkÞ 2 Bqðx0Þ; on the other hand, ðaÞ ) ðbÞ follows from

Proposition 2.1, item 3 with x¼ xk and �x ¼ x?; moreover, ðbÞ ) ðcÞ and

ðbÞ ( ðcÞ follow from the hypothesis limk!1 jjxk��xjj ¼ 0 and A1. w

Notice that the equivalence between (a) and (b) in Proposition 2.2 does

not depend on the convergence of sequence ðxkÞ. The next result provides a

convenient way of rewriting the TCC (5) for �x ¼ x? 2 F�1ðyÞ using nota-

tion (3).

Proposition 2.3. Let A2 be satisfied. If x? 2 Bqðx0Þ \ F�1ðyÞ then
jjy�yd�FdðxÞ�F0ðxÞðx?�xÞjj � gjjy�yd�FdðxÞjj; 8x 2 Bqðx0Þ:

3. A family of relaxed projection Landweber methods

In this section, we assume that exact data yd ¼ y 2 Rg(F) are available,

introduce a family of relaxed projection Landweber methods for the exact

data case, and prove their convergence.

Define, for each x 2 DðFÞ, the set

Hx :¼ fz 2 Xjhz�x; F0ðxÞ�F0ðxÞi � �ð1�gÞjjF0ðxÞjj2g: (6)

Note that Hx is either 1, a closed half-space, or X. As we prove next,

Hx has an interesting geometric feature: it contains all exact solutions

of (2) in Bqðx0Þ and, whenever x is not a solution of (2), it does not

contain x.

Lemma 3.1. (Separation): Let A1 and A2 be satisfied. If x 2 Bqðx0Þ then
0 � ð1�gÞjjF0ðxÞjj2 þ hF0ðxÞ�F0ðxÞ; x?�xi; 8x? 2 Bqðx0Þ \ F�1ðyÞ: (7)

Consequently,

(1) Bqðx0Þ \ F�1ðyÞ � Hx; (2) x 2 Hx () FðxÞ ¼ y.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 5



Proof. The first 2.1 item 3 with �x ¼ x? 2 Bqðx0Þ \ F�1ðyÞ. Items 1 and 2

are immediate consequences of the first statement and Definition (6). w

We are now ready to introduce our family of relaxed projection

Landweber methods. Choose x0 2 X according to A2 and A3 and define,

for k � 0, the sequence

xkþ1 :¼ xk�hkkkF
0ðxkÞ�F0ðxkÞ; (8a)

where hk 2 ð0; 2Þ; kk :¼
0; if F0ðxkÞ�F0ðxkÞ ¼ 0

ð1�gÞjjF0ðxkÞjj2

jjF0ðxkÞ�F0ðxkÞjj2
; otherwise:

8

>

<

>

:

(8b)

In view of definition (6), the orthogonal projection of xk onto Hxk is x̂ ¼
xk�kkF

0ðxkÞ�F0ðxkÞ so that

xkþ1 ¼ xk þ hkðx̂�xkÞ ¼ ð1�hkÞxk þ hkx̂:

We define the PLW method as (8) with hk ¼ 1 for all k. This choice

amounts to taking xkþ1 as the orthogonal projection of xk onto Hxk . The

family of relaxed projection Landweber methods is obtained by choosing

hk 2 ð0; 2Þ, which is equivalent to taking xkþ1 as a relaxed orthogonal pro-

jection of xk onto Hxk .

Iteration (8) is well defined for all xk 2 DðFÞ; due to Proposition 2.2, this

iteration becomes stationary at x~k 2 Bqðx0Þ, i.e. xk ¼ x~k for k � ~k, if and

only if Fðx~kÞ ¼ y.

In the next proposition an inequality is established, that guarantees the

monotonicity of the iteration error for the family of relaxed projection

Landweber methods in the case of exact data, i.e. jjx?�xkþ1jj � jjx?�xkjj,
whenever hk 2 ð0; 2Þ.
Proposition 3.2. Let A1 – A3 hold true. If xk 2 Bqðx0Þ; F0ðxkÞ�FðxkÞ 6¼ 0,

and hk and xkþ1 are as in (8), then

jjx?�xkjj2 � jjx?�xkþ1jj2 þ hkð2�hkÞ ð1� gÞ jjF0ðxkÞjj2
jjF0ðxkÞ�F0ðxkÞjj

 !2

;

for all

x? 2 Bqðx0Þ \ F�1ðy:Þ

Proof. If xk 2 Bqðx0Þ and F0ðxkÞ�FðxkÞ 6¼ 0 then xkþ1 is a relaxed orthogonal

projection of xk onto the Hxk with a relaxation factor hk. The conclusion

follows from this fact, Lemma 3.1, iteration formula (8) and the properties

of relaxed metric projections onto arbitrary sets (see, e.g., [17, Lemma 3.13,

pp. 21–22].) w

6 A. LEIT~AO AND B. F. SVAITER



Direct inspection of the inequality in Proposition 3.2 shows that the

choice hk 2 ð0; 2Þ, as prescribed in (8), guarantees decrease of the iteration

error jjx?�xkjj, while hk ¼ 1 yields the greatest estimated decrease on the

iteration error.

We are now ready to state and prove the main results of this section:

Theorem 3.3 gives a sufficient condition for strong convergence of the fam-

ily of relaxed projection Landweber methods (for exact data) to some point
�x 2 Bqðx0Þ. Theorem 3.4 gives a sufficient condition for strong convergence

of this family of methods to a solution of F(x)¼ y, shows that steepest des-

cent, minimal error, as well as Landweber method are particular instances

of methods belonging to this family, and proves convergence of these three

methods within this framework.

Recall that the steepest descent method (SD) is given by

xxþ1 ¼ xk�
jjF0ðxkÞ�F0ðxkÞjj2

jjF0ðxkÞF0ðxkÞ�F0ðxkÞjj2
F0ðxkÞ�F0ðxkÞ;

while the minimal error method (ME) is given by

xxþ1 ¼ xk�
jjF0ðxkÞjj2

jjF0ðxkÞ�F0ðxkÞjj2
F0ðxkÞ�F0ðxkÞ:

Theorem 3.3. If A1–A3 hold true, then the sequences ðxkÞ; ðhkÞ as specified

in (8) are well defined and

xk 2 Bq=2ðx?Þ � Bqðx0Þ; 8k 2 N: (9)

If, additionally, sup hk<2, then

ð1�gÞ2
X

1

k¼0

hk
jjF0ðxkÞjj4

jjF0ðxkÞ�F0ðxkÞjj2
<1 (10)

and ðxkÞ converges strongly to some �x 2 Bqðx0Þ:

Theorem 3.4. Let A1–A3 hold true, and the sequences ðxkÞ; ðhkÞ be defined

as in (8). The following statements hold:

a. If inf hk>0 and sup hk<2, then ðxkÞ converges to some �x 2 Bqðx0Þ solv-

ing Fð�xÞ ¼ y.

b. If A2 holds with g<1=2 and

hk :¼ ð1�gÞ�1 jjF0ðxkÞ�F0ðxkÞjj2

jjF0ðxkÞjj2
� jjF0ðxkÞ�F0ðxkÞjj2

jjF0ðxkÞF0ðxkÞ�F0ðxkÞjj2
;

then 0<hk � ð1�gÞ�1<2, iteration (8) reduces to the steepest descent

method and ðxkÞ converges to some �x 2 Bqðx0Þ solving Fð�xÞ ¼ y.
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a. If A1 and A2 hold with C � 1 and g<1=2, respectively, and

hk :¼ ð1�gÞ�1 jjF0ðxkÞ�F0ðxkÞjj2

jjF0ðxkÞjj2
;

then 0<hk � ð1�gÞ�1<2, iteration (8) reduces to the nonlinear Landweber

iteration and ðxkÞ converges to some �x 2 Bqðx0Þ solving Fð�xÞ ¼ y.

a. If A1 and A2 hold with C � 1 and g<1=2, respectively, and

hk :¼ ð1�gÞ�1, then iteration (8) reduces to the nonlinear minimal error

method and ðxkÞ converges to some �x 2 Bqðx0Þ solving Fð�xÞ ¼ y.

Proof. (Theorem 3.3) Assumption A3 guarantees the existence of

x? 2 Bq=2ðx0Þ, a solution of F(x)¼ y. It follows from A3 that (9) holds for

k¼ 0. Suppose that the sequence ðxkÞ, is well defined up to k0 and that (9)

holds for k¼ k0. It follows from A1 that xk0 2 DðFÞ, so that xk0þ1 is well

defined while it follows from (8) and Proposition 3.2 that (9) also holds

for k ¼ k0 þ 1.

To prove the second part of the theorem, suppose that b :¼ suphk<2. At

this point, we have to consider two separate cases:

Case I: Fðx~kÞ ¼ y for some ~k 2 N.

It follows from (9), Proposition 2.2 and (8), that xj ¼ x~k for j � ~k, and

we have trivially strong convergence of ðxkÞ to �x ¼ x~k (which, in this case,

is a solution of F(x)¼ y).

Case II: FðxkÞ 6¼ y, for all k.

It follows from (9) and Proposition 2.2 that F0ðxkÞ�F0ðxkÞ 6¼ 0 for all k.

According to (8b)

kk :¼ ð1�gÞjjF0ðxkÞjj2jjF0ðxkÞ�F0ðxkÞjj�2: (11)

Since 0<hk � b<2 for all k, ð2�hkÞhk � ð2�bÞhk>0, for all k. Therefore,

it follows from Proposition 3.2 that

jjx?�xkjj2 þ ð2�bÞhkð1�gÞ2
X

k�1

j¼0

jjF0ðxjÞjj2

jjF0ðxjÞ�F0ðxjÞjj

 !2

� jjx?�x0jj2;

for all x? 2 Bqðx0Þ \ F�1ðyÞ and all k � 1. Consequently, using the defin-

ition of kk, we obtain

ð1�gÞ2
X

1

k¼0

hk
jjF0ðxkÞjj4

jjF0ðxkÞ�F0ðxkÞjj2
¼ ð1�gÞ

X

1

k¼0

hkkkjjF0ðxkÞjj2<1; (12)

which, in particular, proves (10).
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If
P

hkkk<1 then
P

jjxk�xkþ1jj<1 (due to (8a) and A1)) and ðxkÞ is a
Cauchy sequence.

Suppose that
P

hkkk ¼ 1. It follows from (12) that liminf jjF0ðxkÞjj ¼ 0.

Since we are in Case II, the sequence ðjjF0ðxkÞjjÞ is strictly positive and

there exists a subsequence ðx‘iÞ satisfying
0 � k � ‘i ) jjF0ðxkÞjj � jjF0ðx‘iÞjj: (13)

For all k 2 N and z 2 Bqðx0Þ,

jjxk�zjj2 ¼ jjxkþ1�zjj2�jjxk�xkþ1jj2�2hxk�xkþ1; xk�zi
� jjxkþ1�zjj2�2hxk�xkþ1; i
¼ jjxkþ1�zjj2 þ 2hkkkhF0ðxkÞ�F0ðxkÞ; xk�zi
� jjxkþ1�zjj2 þ 8kkðjjF0ðxkÞjj2 þ jjF0ðxkÞjjjjF0ðzÞjjÞ;

(14)

where the second equality follows from (8a) and the last inequality follows

from Proposition 2.1, item 2, and the assumption g<1. Thus, taking z ¼ x‘i
in (14), we obtain

jjxk�x‘i jj2 � jjxkþ1�x‘i jj2 þ 16kkjjF0ðxkÞ2jj; for 0 � k<‘i:

Define sm ¼Pk�m hkkkjjF0ðxkÞjj2. It follows from (12) that

limm!1 sm ¼ 0. If 0 � k<‘i, by adding the above inequality for j¼ k, kþ 1,

:::; ‘i�1, we get

jjxk�x‘i jj2 � 16
X

‘i�1

j¼k

kjjjF0ðxjÞjj2 � 16sk:

Now, take k< j. There exists ‘i>j. Since sk> sj,

jjxk�xjjj � jjxk�x‘i jj þ jjxj�x‘i jj � 4
ffiffiffiffi

sk
p þ 4

ffiffiffi

sj
p � 8

ffiffiffiffi

sk
p

:

Therefore, ðxkÞ is a Cauchy sequence and converges to some element
�x 2 Bqðx0Þ. w

Proof. (Theorem 3.4) It follows from the assumptions of statement (a), from

Theorem 3.3, and from A1 that ðxkÞ converges to some �x 2 Bqðx0Þ and that

0 ¼ lim
k!1

jjF0ðxkÞjj4

jjF0ðxkÞ�F0ðxkÞjj2
� lim sup

k!1

jjF0ðxkÞjj2
C2

:

Assertion (a) follows now from Proposition 2.2.

To prove item (b), first use Cauchy–Schwarz inequality to obtain

0<
jjF0ðxkÞ�F0ðxkÞjj4

jjF0ðxkÞjj2jjF0ðxkÞF0ðxkÞ�F0ðxkÞjj2
� jjF0ðxkÞ�F0ðxkÞjj4

hF0ðxkÞ; F0ðxkÞF0ðxkÞ�F0ðxkÞi2
¼ 1
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Therefore, 0<hk � ð1�gÞ�1<2 for all k and it follows from Theorem 3.3,

the definition of hk and from A1 that ðxkÞ converges to some �x 2 Bqðx0Þ
and that

0 ¼ lim
k!1

jjF0ðxkÞjj2jjF0ðxkÞ�F0ðxkÞjj2

jjF0ðxkÞF0ðxkÞ�F0ðxkÞjj2
� lim sup

k!1

jjF0ðxkÞjj2
C2

:

Assertion (b) follows now from Proposition 2.2.

It follows from the assumptions of statement (c) that 0<hk<ð1�gÞ�1<2.

From this point on, the proof of statement (c) is analogous to the proof of

statement (b).

It follows from the assumptions of statement (d) that 0<hk<2. As before,

the proof of statement (d) is analogous to the proof of statement (b). w

Remark 3.5. The argument used to establish strong convergence of sequence

ðxkÞ in the proof of Theorem 3.3 is inspired by the technique used in [3,

Theorem 2.3] to prove an analog result for the nonlinear Landweber iter-

ation. Both proofs rely on a Cauchy sequence argument (it is necessary to

prove that ðxkÞ is a Cauchy sequence). In [3], given j � k arbitrarily large,

an element j � l � k is chosen with a minimal property (namely,

jjF0ðxlÞjj � jjF0ðxiÞjj, for k � i � j). In the proof of Theorem 3.3, the auxil-

iary indexes ‘i defined in (13) play a similar role. These indexes are also

chosen according to a minimizing property, namely, the subsequence

ðjjF0ðx‘jÞjjÞ is monotone non-increasing.

4. Convergence analysis: Noisy data

In this section, we analyze the family of relaxed projected Landweber meth-

ods in the noisy data case and investigate convergence properties. We

assume that only noisy data yd 2 Y satisfying (1) are available, where the

noise level d>0 is known. Recall that to simplify the presentation we are

using notation (3), i.e. FdðxÞ ¼ FðxÞ�yd.

Since F0ð�Þ ¼ Fð�Þ�y is not available, one cannot compute the projection

onto Hx (defined in Section 3). Define, instead, for each x 2 Bqðx0Þ, the set

Hd
x :¼ fz 2 Xjhz�x; F0ðxÞ�FdðxÞi �

� �jjFdðxÞjjðð1�gÞkFdðxÞk�ð1þ gÞdÞg: (15)

Next we prove a “noisy” version of the separation Lemma 3.1: Hd
x con-

tains all exact solutions of F(x)¼ y (within Bqðx0Þ) and, if the residual

jjFdðxÞjj is above the threshold ð1þ gÞð1�gÞ�1
d, then Hd

x does not con-

tain x.
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Lemma 4.1 (Separation): Suppose that A1 and A2 hold. If x 2 Bqðx0Þ, then
0 � jjFdðxÞjj ð1�gÞjjFdðxÞjj�ð1þ gÞd½ 	 þ hx?�x; F0ðxÞ�FdðxÞi; (16)

for all x? 2 Bqðx0Þ \ F�1ðyÞ. Consequently, Bqðx0Þ \ F�1ðyÞ � Hd
x .

Proof. Indeed, for x? 2 Bqðx0Þ \ F�1ðyÞ we have

hF0ðxÞ�FdðxÞ; x?�xi ¼ hFdðxÞ; F0ðxÞðx?�xÞi
¼ hFdðxÞ; FdðxÞ þ F0ðxÞðx?�xÞi�jjFdðxÞjj2
¼ hFdðxÞ; F0ðxÞ þ F0ðxÞðx?�xÞi þ hFdðxÞ; y�ydijjFdðxÞjj2
� jjFdðxÞjjgjjF0ðxÞjj þ jjFdðxÞjjd�jjFdðxÞjj2

where, the first inequality follows from Cauchy–Schwarz inequality and (5).

Since jjF0ðxÞjj � jjFdðxÞjj þ d,

hF0ðxÞ�FdðxÞ; x?�xi � gjjFdðxÞjjðjjFdðxÞjj þ dÞ þ jjFdðxÞjjd�jjFdðxÞjj2

which is equivalent to (16). w

Since jjFdðxÞjj>ð1þ gÞð1�gÞ�1
d is sufficient for separation of x from

F�1ðyÞ in Bqðx0Þ via Hd
x , this condition also guarantees F0ðxÞ�FdðxÞ 6¼ 0.

The iteration formula for the family of relaxed projection Landweber

methods in the noisy data case is given by

xdkþ1 :¼ xdk�hk
pdðjjFdðxdkÞjjÞ

jjF0ðxdkÞ
�FdðxdkÞjj

2 F
0ðxdkÞ

�FdðxdkÞ; hk 2 ð0; 2Þ; (17)

where

pdðtÞ :¼ tðð1�gÞt�ð1þ gÞdÞ (18)

and the initial guess xd0 2 X is chosen according to A1. Again, the PLW

method (for inexact data) is obtained by taking hk ¼ 1, which amounts to

define xdkþ1 as the orthogonal projection of xdk onto Hd
xd
k

. On the other hand,

the relaxed variants, which use hk 2 ð0; 2Þ, correspond to setting xdkþ1 as a

relaxed projection of xdk onto Hd
xd
k

.

Let

s>
1þ g

1� g
: (19)

The computation of the sequence ðxdkÞ should be stopped at the index

kd� 2 N defined by the discrepancy principle

kd� :¼ maxfk 2 N; jjFdðxdj Þjj>sd; j ¼ 0; 1; :::; k�1g: (20)

Notice that if jjFdðxdkÞjj>sd, then jjF0ðxdkÞ
�FdðxdkÞjj 6¼ 0. This fact is a con-

sequence of Proposition 2.1, item 3, since Fd also satisfies A1 and A2.

Consequently, iteration (17) is well defined for k ¼ 0; :::; kd�.
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The next two results have interesting consequences. From Proposition

4.2, we conclude that (xdkÞ does not leave the ball Bqðx0Þ for k ¼ 0; :::; kd�.
On the other hand, it follows from Theorem 4.3 that the stopping index kd�
is finite, whenever d>0.

Proposition 4.2. Let A1–A3 hold true and hk be chosen as in (17). If xdk 2
Bqðx0Þ and jjFdðxdkÞjj>sd, then

jjx?�xdkjj
2 � jjx?�xdkþ1jj

2 þ hkð2�hkÞ
pdðjjFdðxdkÞjjÞ

jjF0ðxdkÞ
�FdðxdkÞjj

 !2

;

for all x? 2 Bqðx0Þ \ F�1ðyÞ:

Proof. If xdk 2 Bqðx0Þ and jjFdðxdkÞjj>sd, then xdkþ1 is a relaxed orthogonal

projection of xdk onto Hd
xd
k

with a relaxation factor hk. The conclusion fol-

lows from this fact, Lemma 4.1, the iteration formula (17), and elementary

properties of over/under relaxed orthogonal projections. w

Theorem 4.3. If A1–A3 hold true, then the sequences ðxdkÞ, ðhkÞ as specified

in (17) (together with the stopping criterion (20)) are well defined and

xk 2 Bq=2ðx?Þ � Bqðx0Þ; 8k � kd�:

Moreover, if hk 2 ½a; b	 � ð0; 2Þ for all k � kd�, then this stopping index kd�
defined in (20) is finite.

Proof. The proof of the first statement is similar to the one in Theorem 3.3.

To prove the second statement, first observe that since hk 2 ½a; b	,
hkð2�hkÞ � að2�bÞ>0. Thus, it follows from Proposition 4.2 that for any

k<kd�

jjx?�xd0jj
2 � að2�bÞ

X

k

j¼0

pdðjjFdðxdkÞjjÞ
jjF0ðxdkÞ

�FdðxdkÞjj

 !2

� að2�bÞ
C2

X

k

j¼0

pdðjjFdðxdkÞjjÞ
jjFdðxdkÞjj

 !2

:

Observe that, if t>sd, then

pdðtÞ
t

¼ ð1�gÞt�ð1þ gÞd> s� 1þ g

1� g

� �

ð1�gÞd ¼: h>0:

Therefore, for any k<kd�
jjx?�xd0jj

2 � að2�bÞ
C2

ðkþ 1Þh2;

so that kd� is finite. w
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It is worth noticing that the Landweber method for noisy data [2, Chap.

11] (which requires g<1=2;C � 1 in A1–A2) using the discrepancy prin-

ciple (20) with

s>2
1þ g

1� 2g
>
1þ g

1� g
;

corresponds to the PLW method, analyzed in Theorem 4.3, with

0<
pdðsdÞ
q2

� hk ¼
jjF0ðxdkÞ

�FdðxdkÞjj
2

pdðjjFdðxdkÞjjÞ
� s

ð1� gÞs� ð1þ gÞ<2

(Here the second inequality follows from A3 and the third inequality fol-

lows from Lemma 4.1). Consequently, in the noisy data case, the conver-

gence analysis for the PLW method encompasses the Landweber iteration

(under the TCC condition) as a particular case.

In the next theorem we discuss a stability result, which is an essential

tool to prove the last result of this section, namely Theorem 4.5 (semi-con-

vergence of the PLW method). Notice that this is the first time where the

strong Assumption A4 is needed in the text.

Theorem 4.4. Let A1–A4 hold true. For each fixed k 2 N, the element xdk,

computed after kth-iterations of any method within the family of methods in

(17), depends continuously on the data yd.

Proof. From (19), A1, A4 and Theorem 4.3, it follows that the mapping u :

DðuÞ ! X with

DðuÞ :¼ fðx; yd; dÞjx 2 DðFÞ; d>0; jjyd�yjj � d; F0ðxÞ�ðFðxÞ�ydÞ 6¼ 0g;

uðx; yd; dÞ :¼ x� pdðjjFðxÞ�ydjjÞ
jjF0ðxÞ�ðFðxÞ � ydÞjj2

F0ðxÞ�ðFðxÞ�ydÞ

is continuous on its domain of definition. Therefore, whenever the iterate

xdk ¼ ðuð�; yd; dÞÞkðx0Þ is well defined, it depends continuously on ðyd; d). w

Theorem 4.4 together with Theorems 3.3 and 3.4 are the key ingredients

in the proof of Theorem 4.5, which guarantees that the stopping rule (20)

renders the PLW iteration a regularization method. The proof of Theorem

4.5 uses classical techniques from the analysis of Landweber-type iterative

regularization techniques (see, e.g., [2, Theorem 11.5] or [4, Theorem 2.6])

and thus is omitted.

Theorem 4.5. Let A1 – A4 hold true, dj ! 0 as j ! 1, and yj :¼ ydj 2 Y

be given with jjyj�yjj � dj. If the PLW iteration (17) is stopped with k
j
� :¼

k
dj
� according to the discrepancy (20), then ðxd

k
j
�
Þ converges strongly to a solu-

tion �x 2 Bqðx0Þ of F(x)¼ y as j ! 1.
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It is immediate to verify that the results in Theorem 4.5 extend to any

method within the family of relaxed projection Landweber methods (17).

5. Numerical experiments

In this section, we present numerical experiments for the iterative methods

derived in previous sections. The PLW method is implemented for solving

an exponentially ill-posed inverse problem related to the Dirichlet to

Neumann operator and its performance is compared against the benchmark

methods LW and SD.

5.1. Description of the mathematical model

We briefly introduce a model which plays a key role in inverse doping

problems with current flow measurements, namely the two-dimensional lin-

earized stationary bipolar model close to equilibrium.

This mathematical model is derived from the drift diffusion equations by

linearizing the Voltage–Current (VC) map at U 
 0 [18, 19], where the

function U ¼ UðxÞ denotes the applied potential to the semiconductor

device.1 Additionally, we assume that the electron mobility lnðxÞ ¼ ln>0

as well as the hole mobility lpðxÞ ¼ lp>0 are constant and that no recom-

bination-generation rate is present [20, 21]. Under the above assumptions,

the Gateaux derivative of the VC-map RC at the point U¼ 0 in the direc-

tion h 2 H3=2ð@XDÞ is given by

R0
Cð0Þh ¼ lne

Vbi û��lpe
�Vbi v̂� 2 H1=2ðC1Þ; (21)

where the concentrations of electrons and holes ðû; v̂Þ solve2
divðlneV

0rûÞ ¼ 0 in X (22a)

divðlpe�V0rv̂Þ ¼ 0 in X (22b)

û ¼ �v̂ ¼ �h on @XD (22c)

rû � � ¼ rv̂ � � ¼ 0 on @XN (22d)

and the potential V0 is the solution of the thermal equilibrium problem

k2DV0 ¼ eV
0�e�V0�CðxÞ in X (23a)

V0 ¼ VbiðxÞ on @XD (23b)

rV0 � � ¼ 0 on @XN : (23c)

Here, X � R
2 is a domain representing the semiconductor device; the

boundary of X is divided into two nonempty disjoint parts:

@X ¼ @XN [ @XD . The Dirichlet boundary part @XD models the Ohmic

1This simplification is motivated by the fact that, due to hysteresis effects for large applied voltage, the VC-map
can only be defined as a single-valued function in a neighborhood of U¼ 0.
2These concentrations are written in terms of the Slotboom variables [15].
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contacts, where the potential V as well as the concentrations û and v̂ are pre-

scribed; the Neumann boundary part @XN corresponds to insulating surfaces,

thus zero current flow and zero electric field in the normal direction are pre-

scribed; the Dirichlet boundary part splits into @XD ¼ C0 [ C1, where the dis-

joint curves Ci, i¼ 0, 1, correspond to distinct device contacts (differences in

U(x) between segments C0 and C1 correspond to the applied bias between

these two contacts). Moreover, Vbi is a given logarithmic function [18].

The piecewise constant function C(x) is the doping profile and models a

preconcentration of ions in the crystal, so CðxÞ ¼ CþðxÞ�C�ðxÞ holds,

where Cþ and C� are (constant) concentrations of negative and positive

ions, respectively.

In those subregions of X in which the preconcentration of negative ions

predominate (P-regions), we have C(x)< 0. Analogously, we define the N-

regions, where C(x)> 0 holds. The boundaries between the P-regions and

N-regions (where C changes sign) are called pn-junctions; it’s determination

is a strategic non-destructive test [20, 21].

5.2. The inverse doping problem

The inverse problem we are concerned with consists of determining the

doping profile function C in (23) from measurements of the linearized VC-

map R0
Cð0Þ in (21), under the assumption lp ¼ 0 (the so-called linearized

stationary unipolar model close to equilibrium). Notice that we can split the

inverse problem into two parts:

1. Define the function aðxÞ :¼ eV
0ðxÞ; x 2 X, and solve the parameter identi-

fication problem

divðlnaðxÞrûÞ ¼ 0 in X û ¼ �UðxÞ on @XD rû � � ¼ 0 on @XN:

(24)

for a(x), from measurements of

R0
Cð0Þ

� �

ðUÞ ¼ ðlnaðxÞû�ÞjC1
:

2. Evaluate the doping profile
CðxÞ ¼ aðxÞ�a�1ðxÞ�k2Dð ln aðxÞÞ; x 2 X:

Since the evaluation of C from a(x) can be explicitly performed in a stable

way, we shall focus on the problem of identifying the function parameter a(x)

in (24). Summarizing, the inverse doping profile problem in the linearized sta-

tionary unipolar model (close to equilibrium) reduces to the identification of

the parameter function a(x) in (24) from measurements of the Dirichlet-to-

Neumann map Ka : H
1=2ð@XDÞ�U 7!ð lnaðxÞû�ÞjC1

2 H�1=2ðC1Þ.
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Figure 1. First experiment: setup of the problem. Top: The parameter a?ðxÞ to be identified;
Center: Voltage source U(x) (Dirichlet boundary condition at oX for the DtN map) and the cor-
responding solution û of (24); Bottom: Initial guess a0ðxÞ for the iterative methods PLW, LW,
and SD.
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In the formulation of the inverse problem we shall take into account

some constraints imposed by the practical experiments, namely: (i) The

voltage profile U 2 H1=2ð@XDÞ must satisfy UjC1
¼ 0 (in practice, U is

chosen to be piecewise constant on C1 and to vanish on C0); (ii) The iden-

tification of a(x) has to be performed from a finite number of measure-

ments, i.e. from the data fðUi;KaðUiÞÞgNi¼1 2 ½H1=2ðC0Þ �H�1=2ðC1Þ	N .
In what follows we take N¼ 1, i.e. identification of a(x) from a single

experiment. Thus, we can write this particular inverse doping problem

within the abstract framework of (2)

FðaÞ ¼ KaðUÞ ¼: y; (25)

where U is a fixed voltage profile satisfying the above assumptions,

X :¼ L2ðXÞ � DðFÞ :¼ fa 2 L1ðXÞ; 0<am � aðxÞ � aM, a.e. in Xg and

Y :¼ H1=2ðC1Þ. The operator F above is known to be continuous [18].

5.3. First experiment: the Calderon setup

In this subsection, we consider the special setup C1 ¼ @XD ¼ @X (i.e.,

C0 ¼ @XN ¼ 1). Up to now, it is not known whether the map F satisfies

the TCC. However,

1. the map a 7!u (solution of (24)) satisfies the TCC with respect to the

H1ðXÞ norm [4];

2. it was proven in [22] that the discretization of the operator F in (25)

using the finite element method (and basis functions constructed by a

Delaunay triangulation) satisfies the TCC (5).

Therefore, the analytical convergence results of the previous sections do

apply to finite-element discretizations of (25) in this special setup.

Moreover, item 1 suggests that H1ðXÞ is a good choice of parameter space

for TCC-based reconstruction methods. Motivated by this fact, the setup of

the numerical experiments presented in this subsection is chosen as follows:

� The domain X � R
2 is the unit square ð0; 1Þ � ð0; 1Þ and the above

mentioned boundary parts are C1 ¼ oXD :¼ oX, C0 ¼ oXN :¼ 1.

� The parameter space is H1ðXÞ and the function a?ðxÞðxÞ to be identified

is shown in Figure 1.

� The fixed Dirichlet input for the DtN map (24) is the continuous func-

tion U : oX ! R defined by

Uðx; 0Þ ¼ Uðx; 1Þ :¼ sin ðpxÞ; Uð0; yÞ ¼ Uð1; yÞ :¼ � sin ðpyÞ

(in Figure 1, U(x) and the corresponding solution û of (24) are plotted).
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� The TCC constant g in (5) is not known for this particular setup. In

our computations, we used the value g ¼ 0:45 which is in agreement

with A2. (Note that the convergence analysis of the PLW method

requires g<1 while the nonlinear LW method requires the TCC with

g<0:5 [4, Assumption (2.4)]. The above choice allows the comparison

of both methods.)

� The “exact data” y in (25) is obtained by solving the direct problem (24)

using a finite element type method and adaptive mesh refinement

(approximately 131.000 elements). In order to avoid inverse crimes, a

coarser grid (with approximately 33.000 elements) was used in the finite

element method implementation of the iterative methods.

� In the numerical experiment with noisy data, artificially generated (ran-

dom) noise of 2% was added to the exact data y in order to generate the

noisy data yd. For the verification of the stopping rule (20) we assumed

exact knowledge of the noise level and chose s¼ 3 in (19), which is in

agreement with the above choice for g.

Remark 5.1. (Choosing the initial guess): The initial guess a0ðxÞ used for

all iterative methods is presented in Figure 1. According to A1–A3, a0ðxÞ
has to be sufficiently close to a?ðxÞ (otherwise the PLW method may not

converge). With this in mind, we choose a0ðxÞ as the solution of the

Dirichlet boundary value problem

Da0 ¼ 0; in X; a0ðxÞ ¼ UðxÞ; at @X:

This choice is an educated guess that incorporate the available a priori

knowledge about the exact solution a?ðxÞ, namely: a0 2 H1ðXÞ and a0ðxÞ ¼
a?ðxÞ at @XD. Moreover, a0 ¼ argminfjjrajj2L2ðXÞ j a 2 H1ðXÞ, aX@ ðxÞ ¼
a?@X ðxÞg.
Remark 5.2 (Computing the iterative step): The computation of the kth-

step of the PLW method (see (8)) requires the evaluation of F0ðakÞ�F0ðakÞ.
According to [18], for all test functions v 2 H1

0ðXÞ it holds
hF0ðakÞ�F0ðakÞ; viL2ðXÞ ¼ hF0ðakÞ; F0ðakÞviL2ð@XÞ ¼ hF0ðakÞ;ViL2ð@XÞ;

where F0ðakÞ� stands for the adjoint of F0ðakÞ in L2ðXÞ, and V 2 H1ðXÞ sol-
ves

�r � ðakðxÞrVÞ ¼ r � ðvrFðakÞÞ; in X; V ¼ 0; at @X:

Furthermore, in [18] it is shown that for all w 2 L2ð@XÞ and v 2 H1
0ðXÞ

hF0ðakÞ�w; viL2ðXÞ ¼ hw;ViL2ð@XÞ ¼ hrW � ruk; viL2ðXÞ; (26)

where W, uk 2 H1ðXÞ solve
�r � ðakðxÞrWÞ ¼ 0; in X; W ¼ w; at @X (27a)
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Figure 2. First experiment: example with exact data. The PLW method (GREEN) is compared
with the LW method (BLUE) and with the SD method (RED); Top: Iteration error jjak�a?jjH1ðXÞ;
Middle: Residual jjFðakÞ�yjjL2ðoXÞ; Bottom: Residual, detail of the first 50 iterations.
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�r � ðakðxÞrukÞ ¼ 0; in X; uk ¼ UðxÞ; at @X: (27b)

respectively. A direct consequence of (26), (27) is the variational identity

hF0ðakÞ�F0ðakÞ; viL2ðXÞ ¼ hrW � ruk; viL2ð@XÞ;8v 2 H1
0ðXÞ;

where W solves (27a) withw ¼ F0ðakÞ:

Figure 3. First experiment: example with noisy data. The PLW method (GREEN) is compared
with the LW method (BLUE) and with the SD method (RED); Top: Iteration error jjadk�a?jjH1ðXÞ;
Bottom: Residual jjFðadkÞ�ydjjL2ðoXÞ.
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Notice that rW � ruk is the adjoint, in L2ðXÞ, of F0ðakÞ applied to

F0ðakÞ. We need to apply to F0ðakÞ, instead, the adjoint of F0ðakÞ in H1ðXÞ.
That is, we need to compute

F0ðakÞ�F0ðakÞ ¼ Wk 2 H1
0ðXÞ;

Where, Wk is the Riesz vector satisfying hWk; viH1ðXÞ ¼ hrW � ruk; viL2ðXÞ,
for all v 2 H1ðXÞ. A direct calculation yields

ðI�DÞWk ¼ rW � ruk; in X; Wk ¼ 0; at @X:

Within this setting, the PLW iteration (8) becomes

akþ1 :¼ ak�ð1�gÞ
jjF0ðakÞjj2L2ðXÞ
jjWkjj2H1ðXÞ

Wk:

The iterative steps of the benchmark iterations LW and SD (implemented

here for the sake of comparison) are computed also using the adjoint of

F0ð�Þ in H1. Notice that a similar argumentation can be derived in the noisy

data case (see (17)).

For solving the elliptic PDE’s described above, needed for the implementa-

tion of the iterative methods, we used the package PLTMG [23] compiled with

GFORTRAN-4.8 in a INTEL(R) Xeon(R) CPU E5-1650 v3 (Santa Clara, CA).

First example: Problem with exact data.

Evolution of both iteration error and residual is shown in Figure 2. The

PLW method (GREEN) is compared with the LW method (BLUE) and

with the SD method (RED). For comparison purposes, if one decides to

stop iterating when jjF0ðakÞjj<0:025 is satisfied, the PLW method needs

only 43 iterations, while the SD method requires 167 iterative steps and the

LW method required more than 500 steps.

Second example: Problem with noisy data.

Evolution of both iteration error and residual is shown in Figure 3. The PLW

method (GREEN) is compared with the LW method (BLUE) and with the SD

method (RED). The stop criteria (20) is reached after 14 steps of the PLW iter-

ation, 32 steps for the SD iteration, and 56 steps for the LW iteration.

5.4. Second experiment: The semiconductor setup

In this paragraph, we consider the more realistic setup (in agreement with

the semiconductor models in Subsection 5.1) with @XD 6� @X,
and C0 6¼ 1; @XN 6¼ 1.

In this experiment, we have: (i) The voltage profile U 2 H1=2ð@XDÞ satis-
fies UjC1

¼ 0; (ii) As in the previous experiment, the identification of a(x)

is performed from a single measurement. To the best of our knowledge,
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within this setting, Assumptions A1–A3 were not yet established for the

operator F in (25) and its discretizations. Therefore, although the operator

F is continuous [23], it is still unclear whether the analytical convergence

results of the previous sections hold here.

Figure 4. Second experiment: setup of the problem. Top: Voltage source U(x) (Dirichlet bound-
ary condition at oXD for the DtN map) and the corresponding solution û of (24); Bottom: Initial
guess a0 2 H1ðXÞ satisfying a0ðxÞ ¼ UðxÞ at oXD and ra0ðxÞ � mðxÞ ¼ 0 at oXN.
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Figure 5. Second experiment: example with exact data. The PLW method (GREEN) is compared
with the LW method (BLUE) and with the SD method (RED); Top: Iteration error jjak�a?jjH1ðXÞ;
Bottom: Residual jjFðakÞ�yjjL2ðC1Þ.
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Figure 6. Second experiment: example with noisy data. The PLW method (GREEN) is compared
with the LW method (BLUE) and with the SD method (RED); Top: Iteration error jjadk�a?jjH1ðXÞ;
Bottom: Residual jjFðadkÞ�ydjjL2ðoXÞ.
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The setup of the numerical experiments presented in this section is

the following:

� The elements listed below are the same as in the previous experiment:

� The domain X � R
2;

� The parameter space H1ðXÞ and the function a?ðxÞ to be identified;

� The computation of the “exact data” y in (25);

� The choice for the TCC constant g in (5) and for s in (19);

� The level d of artificially introduced noise;

� The procedure to generate the noisy data yd;

� The boundary parts mentioned in Subsection 5.1 are defined by

oXD :¼ C0 [ C1, C1 :¼ fðx; 1Þ; x 2 ð0; 1Þg, C0 :¼ fðx; 0Þ; x 2 ð0; 1Þg,
oXN :¼ fð0; yÞ; y 2 ð0; 1Þg [ fð1; yÞ; y 2 ð0; 1Þg (in Figure 4(a and b),

the boundary part C1 corresponds to the lower left edge, while C0 is the

top right edge; the origin is on the upper right corner).

� The fixed Dirichlet input for the DtN map (24) is the piecewise constant

function U : oXD ! R is defined by Uðx; 0Þ :¼ 1, and Uðx; 1Þ ¼ 0. In

Figure 4(a), U(x) and the corresponding solution û of (24) are plotted.

� The initial condition a0ðxÞ used for all iterative methods is shown in

Figure 4(b) and is given by the solution of the mixed boundary value

problem

Da0ðxÞ ¼ 0; in X; a0ðxÞ ¼ UðxÞ; at @XD; ra0 � � ¼ 0; at @XN;

analogously as in Remark 5.1.

� The computation of the iterative-step of the PLW method is performed

analogously as in Remark 5.2, namely

akþ1 :¼ ak�ð1�gÞ
jjF0ðakÞjj2L2ðXÞ
jjWkjj2H1ðXÞ

Wk:

where the Riesz vector Wk 2 H1ðXÞ solves
ðI�DÞWk ¼ rW � ruk; in X; Wk ¼ 0; at @XD; rWk � � ¼ 0; at @XN;

and W, uk solve

�r � ðakðxÞrWÞ ¼ 0; in X; W ¼ F0ðakÞ; at @XC1
; rW � � ¼ 0; at @XN ;

W ¼ 0; at @XC0
;

�r � ðakðxÞrukÞ ¼ 0; in X; uk ¼ UðxÞ; at @XD; ruk � � ¼ 0; at @XN :

Example: Problem with exact data.

Evolution of both iteration error and residual is shown in Figure 5. The

PLW method (GREEN) is compared with the LW method (BLUE) and

with the SD method (RED).
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Second example: Problem with noisy data.

Evolution of both iteration error and residual is shown in Figure 6. The

PLW method (GREEN) is compared with the LW method (BLUE) and

with the SD method (RED). The stop criteria (20) is reached after nine

steps of the PLW iteration, 22 steps for the SD iteration, and 153 steps for

the LW iteration.

6. Conclusions

In this work, we use the TCC to devise a family of relaxed projection

Landweber methods for solving operator Equation (2). The distinctive fea-

tures of this family of methods are:

� the basic method in this family (the PLW method) outperformed, in our

preliminary numerical experiments, the classical Landweber method as

well as the steepest descent method (with respect to both the computa-

tional cost and the number of iterations);

� the PLW method is convergent for the constant of the TCC in a range

twice as large as the one required for the convergence of Landweber and

other gradient type methods;

� for noisy data, the iteration of the PLW method progresses towards the

solution set for residuals twice as small as the ones prescribed by the

discrepancy principle for Landweber [2, Equation (11.10)] and steepest

descent [24, Equation (2.4)] methods. This follows from the fact that the

constant prescribed by the discrepancy principle for our method and for

Landweber/steepest-descent are, respectively

s ¼ 1þ g

1� g
and s ¼ 2

1þ g

1� 2g
;

� the proposed family of projection-type methods encompasses, as par-

ticular cases, the Landweber method, the steepest descent method as

well as the minimal error method; thus, providing an unified framework

for their convergence analysis.

In our numerical experiments, the residue in the PLW method has very

strong oscillations for noisy data (Figure 3) and for exact data (Figure 2).

Since this method iterations’ aims to reduce the iteration error, a non-

monotone behavior of the residual is to be expected. In ill-posed problem

error and residual are poor correlated, which may explain the large varia-

tions on the second one observed in our experiments with the PLW. Up to

now it is not clear to us why this non-monotonicity happened to be oscilla-

tory in our experiments.
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Although projection type methods for solving systems of linear equations

dates back to [25, 26], the use of these methods for ill-posed equations is

more recent, see, e.g. [14].

A family of relaxed projection gradient-type methods for solving linear

ill-posed operator equations was proposed in [27]. In this work, we

extended to the non-linear case, under the TCC, the analysis of [27].
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