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ABSTRACT

This article is devoted to the study of nonstationary Iterated Tikhonov
(nIT) type methods (Hanke M, Groetsch CW. Nonstationary iterated
Tikhonov regularization. J Optim Theory Appl. 1998;98(1):37–53;
Engl HW, Hanke M, Neubauer A. Regularization of inverse prob-
lems. Vol. 375, Mathematics and its Applications. Dordrecht: Kluwer
Academic Publishers Group; 1996. MR 1408680) for obtaining sta-
ble approximations to linear ill-posed problems modelled by oper-
ators mapping between Banach spaces. Here we propose and
analyse an a posteriori strategy for choosing the sequence of reg-
ularization parameters for the nIT method, aiming to obtain a pre-
defined decay rate of the residual. Convergence analysis of the
proposed nIT type method is provided (convergence, stability and
semi-convergence results). Moreover, in order to test the method’s
efficiency, numerical experiments for three distinct applications are
conducted: (i) a 1D convolution problem (smooth Tikhonov func-
tional and Banach parameter-space); (ii) a 2D deblurring problem
(nonsmooth Tikhonov functional and Hilbert parameter-space); (iii)
a 2D elliptic inverse potential problem.
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1. Introduction

In this article we investigate nonstationary Iterated Tikhonov (nIT) type methods [1,2]

for obtaining stable approximations of linear ill-posed problems modelled by operators

mapping between Banach spaces. The novelty of our approach consists in the introduc-

tion of an a posteriori strategy for choosing the sequence of regularization parameters (or,

equivalently, the Lagrange multipliers) for the nIT iteration, which play a key role in the

convergence speed of the nIT iteration.

This new a posteriori strategy aims to enforce a pre-defined decay of the residual in each

iteration; it differs from the classical choice for the Lagrange multipliers (see, e.g. [2,3]),

which is based on an a priori strategy (typically geometrical) and leads to an unknown

decay rate of the residual.

The inverse problem we are interested in consists of determining an unknown quan-

tity x ∈ X from given data y ∈ Y , where X, Y are Banach spaces. We assume that data are
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obtained by indirect measurements of the parameter, this process being described by the

ill-posed operator equation

Ax = y, (1)

whereA : X → Y is a bounded linear operator, whose inverseA−1 : R(A) → X either does

not exist, or is not continuous. In practical situations, one does not know the data y exactly;

instead, only approximate measured data yδ ∈ Y are available with

‖yδ − y‖Y ≤ δ, (2)

where δ > 0 is the (known) noise level. A comprehensive study of linear ill-posed problems

in Banach spaces can be found in the text book [4] (see, e.g. [1] for a corresponding theory

in Hilbert spaces).

Iterated Tikhonov type methods are typically used for linear inverse problems. In the

Hilbert space setting we refer the reader to [2] for linear operator equations, and also to

[5] for the nonlinear case. In the Banach space setting the research is still ongoing. Some

preliminary results can be found in [3] for linear operator equations; see [6] for the non-

linear case; see also [7]. In all references above, a priori strategies are used for choosing the

Lagrange multipliers.

1.1. Main results: presentation and interpretation

The approach discussed in this manuscript is devoted to the Banach space setting, and

consists in adopting an a posteriori strategy for the choice of the Lagrange multipliers.

The strategy used here is inspired by the recent work [8], where the authors propose an

endogenous strategy for the choice of the Lagrange multipliers in the nonstationary iter-

ated Tikhonov method for solving (1), (2) when X and Y are Hilbert spaces. The penalty

terms used in our Tikhonov functionals are the same as in [6] and consist of Bregman dis-

tances induced by (uniformly) convex functionals, e.g. the sum of the L2-norm with the

TV -seminorm. In our previous work [9], we implemented the method proposed in this

paper and investigated its numerical performance (two different ill-posed problems were

solved). Here, we extend our previous results by presenting a whole convergence analysis.

Additionally, the corresponding algorithm is implemented for solving three benchmark

problems andmore details concerning the computation of theminimizers of the Tikhonov

functional are provided; our numerical results are compared with the ones obtained using

the nIT method using the classical geometrical choice of Lagrange multipliers [6].

Inwhat follows, we briefly interpret themain results: The proposedmethod defines each

Lagrangemultiplier such that the residual of the corresponding next iterate lies in an inter-

val which depends on both the noise level and the residual of the current iterate (see (23)).

This fact has the following consequences: (1) it forces a geometrical decay of the residual

(Proposition 4.1); (2) it guarantees the possibility of computing multipliers in agreement

with the theoretical convergence results (Theorems 4.6, 4.8 and 4.9); (3) the computation

of the multipliers demands less numerical effort than the classical strategy of computing

the multipliers by solving an equation in each iteration; (4) the next iterate is not uniquely

determined by the current one; instead, it is chosen within a set of successors of the current

iterate (Definition 4.7).We also address the actual computation of the Lagrangemultipliers.
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Since each multiplier is implicitly defined by an inequality, we discuss a numerically effi-

cient strategy for computing them, which is based on the decrease rate of the past residuals

(Section 5.1).

1.2. Outline of the article

Thismanuscript is outlined as follows: In Section 2 a revision of relevant backgroundmate-

rial is presented. In Section 3 the new nIT method is introduced. Section 4 is devoted

to the convergence analysis of the nIT method. In Section 5 possible implementations of

our method are discussed; the evaluation of the Lagrange multipliers is addressed, as well

as the issue of minimizing the Tikhonov functionals. Section 6 is devoted to numerical

experiments, while Section 7 is dedicated to final remarks and conclusions.

2. Backgroundmaterial

For details on the material discussed in this section, we refer the reader to the textbooks

[4,10].

Unless the contrary is explicitly stated, we always consider X a real Banach space. The

effective domain of the convex functional f : X → R := (−∞,∞] is defined as

Dom
(
f
)
:=
{
x ∈ X : f (x) < ∞

}
.

The set Dom(f ) is always convex and we call f proper provided it is non-empty. We call f

uniformly convex if there exists a continuous and strictly increasing functionϕ : R
+
0 → R

+
0

with the property ϕ(t) = 0 implies t = 0, such that

f
(
λx + (1 − λ) y

)
+ λ (1 − λ) ϕ

(∥∥x − y
∥∥) ≤ λf (x) + (1 − λ) f

(
y
)
, (3)

for allλ ∈ (0, 1) and x, y ∈ X. Of course f uniformly convex implies f strictly convex, which

in turn implies f convex. The functional f is lower semi-continuous (in short l.s.c.) if for any

sequence (xk)k∈N ⊂ X satisfying xk → x, it holds

f (x) ≤ lim inf
k→∞

f (xk) .

It is calledweakly lower semi-continuous (w.l.s.c.) if above property holds true with xk → x

replaced by xk ⇀ x. Obviously, every w.l.s.c functional is l.s.c. Further, any Banach space

norm is w.l.s.c.

The sub-differential of a functional f : X → R is the point-to-set mapping ∂f : X → 2X
∗

defined by

∂f (x) :=
{
x∗ ∈ X∗ : f (x) +

〈
x∗, y − x

〉
≤ f

(
y
)
for all y ∈ X

}
.

Any element in the set ∂f (x) is called a sub-gradient of f at x. The effective domain of ∂f

is the set

Dom
(
∂f
)
:=
{
x ∈ X : ∂f (x) 	= ∅

}
.

It is clear that the inclusion Dom(∂f ) ⊂ Dom(f ) holds whenever f is proper.
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Sub-differentiable functionals and l.s.c. convex functionals are very close related con-

cepts. In fact, a sub-differentiable functional f is convex and l.s.c. in any open con-

vex set of Dom(f ). On the other hand, a proper, convex and l.s.c. functional is always

sub-differentiable on its effective domain.

The definition of sub-differential readily yields

0 ∈ ∂f (x) ⇐⇒ f (x) ≤ f
(
y
)

for all y ∈ X.

If f , g : X → R are convex functionals and there is a point x ∈ Dom(f ) ∩ Dom(g) where f

is continuous, then

∂
(
f + g

)
(x) = ∂f (x) + ∂g (x) for all x ∈ X. (4)

Moreover, if Y is a real Banach space, h : Y → R is a convex functional, b ∈ Y , A : X → Y

is a bounded linear operator and h is continuous at some point of the range of A, then

∂ (h (· − b))
(
y
)

= (∂h)
(
y − b

)
and ∂ (h ◦ A) (x) = A∗ (∂h (Ax)) ,

for all x ∈ X and y ∈ Y , where A∗ : Y∗ → X∗ is the Banach-adjoint of A. Consequently,

∂ (h (A · −b)) (x) = A∗ (∂h) (Ax − b) for all x ∈ X. (5)

If a convex functional f : X → R is Gâteaux-differentiable at x ∈ X, then f has a unique

sub-gradient at x, namely, the Gâteaux-derivative itself: ∂f (x) = {∇f (x)}.

The sub-differential of the convex functional

f (x) =
1

p
‖x‖p , p > 1, (6)

is called the duality mapping and is denoted by Jp. It can be shown that for all x ∈ X,

Jp (x) =
{
x∗ ∈ X∗ :

〈
x∗, x

〉
=
∥∥x∗
∥∥ ‖x‖ and

∥∥x∗
∥∥ = ‖x‖p−1

}
.

Thus, the duality mapping has the inner-product-like properties:

〈
x∗, y

〉
≤ ‖x‖p−1

∥∥y
∥∥ and

〈
x∗, x

〉
= ‖x‖p ,

for all x∗ ∈ Jp(x). By using the Riesz Representation Theorem, one can prove that J2(x) = x

for all x ∈ X whenever X is a Hilbert space.

Banach spaces are classified according with their geometrical characteristics.Many con-

cepts concerning these characteristics are usually defined using the so called modulus of

convexity and modulus of smoothness, but most of these definitions can be equivalently

stated observing the properties of the functional f defined in (6).1 This functional is con-

vex and sub-differentiable in any Banach space X. If (6) is Gâteaux-differentiable in the

whole space X, this Banach space is called smooth. In this case, Jp(x) = ∂f (x) = {∇f (x)}

and therefore, the duality mapping Jp : X → X∗ is single-valued. If the functional f in (6)
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is Fré chet-differentiable in X, this space is called locally uniformly smooth and it is called

uniformly smooth provided f is uniformly Fréchet-differentiable in bounded sets. As a

result, the duality mapping is continuous (resp. uniformly continuous in bounded sets)

in locally uniformly smooth (resp. uniformly smooth) spaces. It is immediate that uniform

smoothness of a Banach space implies local uniform smoothness, which in turn implies

smoothness of this space. Moreover, none reciprocal is true. Similarly, a Banach space X

is called strictly convex whenever (6) is a strictly convex functional. Moreover, X is called

uniformly convex if the functional f in (6) is uniformly convex. It is clear that uniform con-

vexity implies strict convexity. It is well-known that both uniformly smooth and uniformly

convex Banach spaces are reflexive.

Assume f is proper. Then, choosing elements x, y ∈ X with y ∈ Dom(∂f ), we define the

Bregman distance between x and y in the direction of ξ ∈ ∂f (y) as

Dξ f
(
x, y
)
:= f (x) − f

(
y
)
−
〈
ξ , x − y

〉
.

Obviously, Dξ f (y, y) = 0 and, since ξ ∈ ∂f (y), it additionally holds that Dξ f (x, y) ≥ 0.

Moreover, it is straightforward proving the Three Points Identity:

Dξ1 f (x2, x1) − Dξ1 f (x3, x1) = Dξ3 f (x2, x3) + 〈ξ3 − ξ1, x2 − x3〉 ,

for all x2 ∈ X, x1, x3 ∈ Dom(∂f ), ξ1 ∈ ∂f (x1) and ξ3 ∈ ∂f (x3). Further, the functional

Dξ f (·, y) is strictly convex whenever f is strictly convex, and in this case, Dξ f (x, y) = 0

iff x = y.

When f is the functional defined in (6) and X is a smooth Banach space, the Bregman

distance has the special notation �p(x, y), i.e.

�p

(
x, y
)
:=

1

p
‖x‖p −

1

p

∥∥y
∥∥p −

〈
Jp
(
y
)
, x − y

〉
.

Since J2 is the identity operator in Hilbert spaces, a simple application of the polarization

identity shows that �2(x, y) = 1
2‖x − y‖2 in these spaces.

It is not difficult to prove (see e.g. [9]) that if f : X → R is uniformly convex, then

ϕ
(∥∥x − y

∥∥) ≤ Dξ f
(
x, y
)

(7)

for all x ∈ X, y ∈ Dom(∂f ) and ξ ∈ ∂f (y), where ϕ is the function in (3). In particular, in

a smooth and uniformly convex Banach space X, the above inequality reads ϕ(‖x − y‖) ≤

�p(x, y).

We say that a functional f : X → R has theKadec property if for any sequence (xk)k∈N ⊂

X, the weak convergence xk ⇀ x, together with f (xk) → f (x) < ∞, implies xk → x. It is

not difficult to prove (see e.g. [6]) that any proper, w.l.s.c. and uniformly convex functional

has the Kadec property. In particular, the norm in a uniformly convex Banach space has

this property.

Concrete examples of Banach spaces of interest are the Lebesgue space Lp(	), the

Sobolev space Wn,p(	), n ∈ N, and the space of p−summable sequences ℓp(R). All
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these Banach spaces are both uniformly convex and uniformly smooth provided that

1 < p < ∞.

3. The nIT method

In this section, we present the nonstationary iterated Tikhonov (nIT) type method con-

sidered in this article, which aims to find stable approximate solutions to the inverse

problem (1), (2). The method proposed here is in the spirit of the method in [6]. The

distinguishing feature is the use of an a posteriori strategy for the choice of the Lagrange

multipliers, as detailed below.

For a fixed r>1 and a uniformly convex penalty term f, the nIT method defines

sequences (xδ
k)k∈N in X and (ξ δ

k )k∈N in X∗ iteratively by

xδ
k := argmin

x∈X
λδ
kr

−1
∥∥Ax − yδ

∥∥r + Dξ δ
k−1

f
(
x, xδ

k−1

)
,

ξ δ
k := ξ δ

k−1 − λδ
kA

∗Jr(Ax
δ
k − yδ),

where the Lagrange multiplier λδ
k > 0 is to be determined using only information aboutA,

δ, yδ and xδ
k−1.

Our strategy for choosing the Lagrange multipliers is inspired by the work [8], where

the authors propose an endogenous strategy for the choice of the Lagrange multipliers in

the nonsationary iterated Tikhonov method for solving (1), (2) when X and Y are Hilbert

spaces. This method is based on successive orthogonal projection methods onto a family

of shrinking, separating convex sets. Specifically, the iterative method in [8] obtains the

new iterate projecting the current one onto a levelset of the residual function, whose level

belongs to a range defined by the current residual and by the noise level. Moreover, the

admissible Lagrange multipliers (in each iteration) shall be chosen in a non-degenerate

interval.

Aiming to extend this framework to the Banach space setting, we are forced to intro-

duce Bregman distance and Bregman projections. This is due to the well-known fact that

in Banach spaces themetric projection onto a convex and closed set C, defined as PC(x) =

arg minz∈C‖z − x‖2, loses the decreasing distance property of the orthogonal projection

in Hilbert spaces. In order to recover this property, one should minimize in Banach spaces

the Bregman distance, instead of the norm-induced distance.

For the remaining of this article we adopt the following main assumptions:

(A.1) There exists an element x⋆ ∈ X such thatAx⋆ = y, where y ∈ R(A) is the exact data.

(A.2) f is a w.l.s.c. function.

(A.3) f is a uniformly convex function.

(A.4) X and Y are reflexive Banach spaces and Y is smooth.

Moreover, we denote by 	r
µ ⊂ X the µ-levelset of the residual functional ‖Ax − yδ‖,

i.e.

	r
µ :=

{
x ∈ X : r−1‖Ax − yδ‖r ≤ r−1µr

}
.

Note that, since A is a continuous linear operator, it follows that 	r
µ is closed and convex.

Now, given x̂ ∈ Dom(∂f ) and ξ ∈ ∂f (x̂), we define the Bregman projection of x̂ onto 	r
µ,
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as a solution of the minimization problem
{
min Dξ f (x, x̂)

s.t. r−1‖Ax − yδ‖r ≤ r−1µr.
(8)

It is worth noticing that a solution of the problem (8) depends on the sub-gradient ξ .

Furthermore, since Dξ f (·, x̂) is strictly convex (which follows from the uniformly con-

vexity of f ), problem (8) has at most one solution. The fact that the Bregman projection

is well defined when µ > δ (in this case we set P
f
	r

µ
(x̂) := argminx∈	r

µ
Dξ f (x, x̂)) is a

consequence of the following lemma.

Lemma 3.1: If µ > δ, then problem (8) has a solution.

Proof: Assumption (A.1), together with equation (2) and the assumption that µ > δ,

implies that the feasible set of problem (8), i.e. the set 	r
µ, is nonempty.

From Assumptions (A.2) and (A.3) it follows that Dξ f (·, x̂) is proper, convex and l.s.c.

Furthermore, relation (7) implies that Dξ f (·, x̂) is a coercive function. Hence, the lemma

follows using the reflexivity of X together with [11, Corollary 3.23].2 �

Note that if 0 ≤ µ′ ≤ µ, then	r
µ′ ⊆ 	r

µ andA−1(y) ⊂ 	r
µ for allµ ≥ δ. Furthermore,

with the available information of the solution set of (1),	r
δ is the set of best possible approx-

imate solution for this inverse problem. However, since problem (8)may be ill-posed when

µ = δ, our best choice is to generate xδ
k from xδ

k−1 /∈ 	r
δ as a solution of problem (8),

with x̂ = xδ
k−1 and µ = µk such that we guarantee a reduction of the residual norm while

preventing ill-posedness of (8).

For this purpose, we analyse in the sequel the minimization problem (8) by means of

Lagrange multipliers. The Lagrangian function associated to problem (8) is

L(x, λ) =
λ

r
(‖Ax − yδ‖r − µr) + Dξ f (x, x̂).

Note that, for each λ > 0, the functionL(·, λ) : X → R is l.s.c. and convex. For any λ > 0

define the functions

π(x̂, λ) := argmin
x∈X

L(x, λ), Gx̂(λ) := ‖Aπ(x̂, λ) − yδ‖r. (9)

The next lemma provides a classical Lagrange multiplier result for problem (8), which will

be useful for formulating the nIT method.

Lemma 3.2: If ‖Ax̂ − yδ‖ > µ > δ, then the following assertions are equivalent

1. x is a solution of (8);

2. there exists λ∗ > 0 satisfying x = π(x̂, λ∗) and Gx̂(λ
∗) = µr.

Proof: It follows from (2), Assumption (A.1) and the hypothesisµ > δ that x⋆ ∈ X satisfies

‖Ax⋆ − yδ‖r < µr.

This inequality implies the Slater condition for problem (8). Thus, since A is continuous

and Dξ f (·, x̂) is l.s.c., we conclude that x is a solution of (8) if and only if there exists λ ∈
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R such that the point (x, λ) satisfies the Karush–Kuhn–Tucker (KKT) conditions for this

minimization problem [12], namely

λ ≥ 0, Gx̂(λ) ≤ µr, λ(Gx̂(λ) − µr) = 0, 0 ∈ ∂xL(x, λ).

If we assume λ = 0 in the relations above, then the definition of the Lagrangian function,

together with the strictly convexity of Dξ f (·, x̂), implies that x̂ is the unique minimizer of

L(·, 0).Moreover, since ‖Ax̂ − yδ‖ > µ, we conclude that the pair (x̂, 0)does not satisfy the

KKT conditions. Consequently, we have λ > 0 and Gx̂(λ) − µr = 0. The lemma follows

using the definition of π(x̂, λ). �

We are ready to present the nIT method for solving (1).

[1] choose an initial guess x0 ∈ X and ξ0 ∈ ∂f (x0);

[2] choose η ∈ (0, 1), τ > 1 and set k := 0;

[3] while
(
‖Axδ

k − yδ‖ > τδ
)
do

[3.1] k := k + 1;

[3.2] compute λδ
k and xδ

k such that

xδ
k = argmin

x∈X
λδ
k r

−1 ‖Ax − yδ‖r + Dξ δ
k−1

f (x, xδ
k−1) and

δr < Gxδ
k−1

(λδ
k) ≤

(
ηδ + (1 − η)‖Axδ

k−1 − yδ‖
)r
;

[3.3] set ξ δ
k := ξ δ

k−1 − λδ
kA

∗Jr(Ax
δ
k − yδ).

Algorithm 1: The iterative method.

Properties (4) and (5), together with the definition of the duality mapping Jr, imply that

the point xδ
k ∈ X minimizes the optimization problem in [3.2] if and only if

0 ∈ λδ
kA

∗Jr(Ax
δ
k − yδ) + ∂f (xδ

k) − ξ δ
k−1. (10)

Hence, since Y is a smooth Banach space, the duality mapping Jr is single valued and

ξ δ
k−1 − λδ

kA
∗Jr(Ax

δ
k − yδ) ∈ ∂f (xδ

k).

Consequently, ξ δ
k in step 3.2 of Algorithm 1 is well defined and it is a sub-gradient of f at

xδ
k.

Notice that the stopping criteria in Algorithm 1 corresponds to the discrepancy princi-

ple, i.e. the iteration stops at step k(δ) defined by

k(δ) := min{k ≥ 1; ‖Axδ
j − yδ‖ > τδ, j = 0, . . . , k − 1 and ‖Axδ

k − yδ‖ ≤ τδ}. (11)

Remark 3.3 (Novel properties of the proposed method):

− The strategy used here is inspired by the recent work [8], where the authors propose

an endogenous strategy for the choice of the Lagrangemultipliers in the nonstationary

iterated Tikhonov method for solving (1), (2) when X and Y are Hilbert spaces.
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− The penalty terms used in our Tikhonov functionals are the same as in [6] and consist

of Bregman distances induced by (uniformly) convex functionals, e.g, the sum of the

L2-norm with the TV -seminorm.

− We present a whole convergence analysis for the proposed method, characterizing it

as a regularization metod.

4. Convergence analysis

In this section, we analyse the convergence properties of Algorithm 1.We begin by present-

ing the following result that establishes an estimate for the decay of the residual ‖Axδ
k − yδ‖.

It can be proved inmuch the samemanner as [8, Proposition 4.1], and for the sake of brevity

we omit the proof here.

Proposition 4.1: Let (xδ
k)0≤k≤k(δ) be the (finite) sequence defined by the nIT method

(Algorithm 1), with δ ≥ 0 and yδ ∈ Y as in (2). Then,

[
‖Axδ

k − yδ‖ − δ
]

≤ η
[
‖Axδ

k−1 − yδ‖ − δ
]

≤ ηk
[
‖Ax0 − yδ‖ − δ

]
, k = 1, . . . , k(δ),

where k(δ) ∈ N is defined by (11).

As a direct consequence of Proposition 4.1 we have that in the noisy data case, the

discrepancy principle terminates the iteration after finitely many steps, i.e. k(δ) < ∞.

Furthermore, the corollary below gives an estimate for the stopping index k(δ).

Corollary 4.2: Let (xδ
k)0≤k≤k(δ) be the (finite) sequence defined by the nIT method

(Algorithm 1), with δ > 0 and yδ ∈ Y as in (2). Then, the stopping index k(δ), defined in

(11), satisfies

k(δ) ≤ | ln η|−1 ln

[
‖Ax0 − yδ‖ − δ

(τ − 1)δ

]
+ 1.

In the next propositionweprovemonotonicity of the sequence (Dξ δ
k
f (x⋆, xδ

k))k∈N andwe

also estimate the gain Dξ δ
k−1

f (x⋆, xδ
k−1) − Dξ δ

k
f (x⋆, xδ

k), where x
⋆ ∈ X satisfies Assumption

(A.1).

Proposition 4.3: Let (xδ
k)0≤k≤k(δ) be the (finite) sequence defined by the nIT method

(Algorithm 1), with δ ≥ 0 and yδ ∈ Y as in (2). Then, for every x⋆ satisfying Assumption

(A.1) it holds

Dξ δ
k
f (x⋆, xδ

k) ≤ Dξ δ
k−1

f (x⋆, xδ
k−1) − Dξ δ

k−1
f (xδ

k, x
δ
k−1) − λδ

k

(
1 −

1

τ

)
‖Axδ

k − yδ‖r, (12)

for k = 1, . . . , k(δ) − 1.
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Proof: Using the three points identity we have

Dξ δ
k
f (x⋆, xδ

k) − Dξ δ
k−1

f (x⋆, xδ
k−1) = −Dξ δ

k−1
f (xδ

k, x
δ
k−1) + 〈ξ δ

k − ξ δ
k−1, x

δ
k − x⋆〉

= −Dξ δ
k−1

f (xδ
k, x

δ
k−1) − λδ

k〈A
∗Jr(Ax

δ
k − yδ), xδ

k − x⋆〉,

(13)

where the second equality above follows from the definition of ξ δ
k . Simple manipulations

of the second term on the right hand side above yield

λδ
k〈A

∗Jr(Ax
δ
k − yδ), xδ

k − x⋆〉 = λδ
k〈Jr(Ax

δ
k − yδ),Axδ

k − yδ〉 + λδ
k〈Jr(Ax

δ
k − yδ), yδ − y〉

= λδ
k‖Ax

δ
k − yδ‖r + λδ

k〈Jr(Ax
δ
k − yδ), yδ − y〉.

(14)

Combining these two relations we obtain

Dξ δ
k
f (x⋆, xδ

k) − Dξ δ
k−1

f (x⋆, xδ
k−1) ≤ −Dξ δ

k−1
f (xδ

k, x
δ
k−1) − λδ

k‖Ax
δ
k − yδ‖r

+ λδ
k‖Ax

δ
k − yδ‖r−1‖yδ − y‖

≤ −Dξ δ
k−1

f (xδ
k, x

δ
k−1) − λδ

k‖Ax
δ
k − yδ‖r

+ λδ
k‖Ax

δ
k − yδ‖r−1δ,

where the last inequality follows from (2). Since k ∈ {1, . . . , k(δ) − 1}, we have τδ ≤

‖Axδ
k − yδ‖. Thus,

Dξ δ
k
f (x⋆, xδ

k) − Dξ δ
k−1

f (x⋆, xδ
k−1) ≤ −Dξ δ

k−1
f (xδ

k, x
δ
k−1) − λδ

k‖Ax
δ
k − yδ‖r+

λδ
k

τ
‖Axδ

k − yδ‖r.

We deduce (12) from the above inequality. �

Corollary 4.4: Let (xk)k∈N be the sequence defined by the nIT method (Algorithm 1) with

δ = 0 and (λk)k∈N be the sequence of corresponding Lagrange multipliers. Then, for all k =

1, 2, . . . , and any x⋆ satisfying (A.1), we have

Dξk f (x
⋆, xk) = Dξk−1

f (x⋆, xk−1) − Dξk−1
f (xk, xk−1) − λk‖Axk − y‖r. (15)

Consequently, using a telescopic sum, we obtain

∞∑

k=1

λk‖Axk − y‖r < ∞. (16)

Proof: In the exact data case, i.e. δ = 0 and yδ = y, equality (14) becomes

λk〈A
∗Jr(Axk − y), xk − x⋆〉 = λk‖Axk − y‖r.

Combining the formula above with (13), when δ = 0, we deduce (15). The result in (16)

follows directly from (15). �
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We now fix a x0 ∈ Dom (∂f ) and ξ0 ∈ ∂f (x0), and study the existence and uniqueness

of a vector x† ∈ X with the property

Dξ0 f
(
x†, x0

)
= inf

{
Dξ0 f (x, x0) : x ∈ Dom(f ) and Ax = y

}
. (17)

Such an element x† is called a x0−minimal-distance solution and it is the equivalent of the

x0−minimal-norm solution of (1) in the Hilbert space setting [1].

Lemma 4.5: There exists a unique element x† ∈ X satisfying (17).

Proof: Let (xk)k∈N ⊂ Dom(f ) be a sequence satisfying Axk = y and

Dξ0 f (xk, x0) → a := inf
{
Dξ0 f (x, x0) : x ∈ Dom(f ) and Ax = y

}
,

then the sequence (Dξ0 f (xk, x0))k∈N is bounded, and because f is uniformly convex we

have that (xk)k∈N is bounded as well. Since X is reflexive, there exist a vector x ∈ X and a

subsequence (xkj)j∈N such that

xkj ⇀ x.

It follows that Ax = y and because f is w.l.s.c. we have

Dξ0 f (x, x0) ≤ lim inf
j→∞

Dξ0 f
(
xkj , x0

)
= lim

j→∞
Dξ0 f

(
xkj , x0

)
= a,

which implies that x is a x0−minimal-distance solution.

Suppose now that x 	= z are two x0−minimal-distance solutions. Since f is strictly

convex, so is Dξ0 f (·, x0), and for any α ∈ (0, 1) we obtain

Dξ0 f (αx + (1 − α) z, x0) < αDξ0 f (x, x0) + (1 − α)Dξ0 f (z, x0) = Dξ0 f (x, x0) ,

which contradicts the minimality of x. �

In the next theorem we prove strong convergence of the sequence generated by the nIT

algorithm in the noise-free case to the solution x†.

Theorem 4.6: Let (xk)k∈N be the sequence defined by the nIT method (Algorithm 1) with

δ = 0 and (λk)k∈N the sequence of the corresponding Lagrange multipliers. Then, (xk)k∈N

converges strongly to x†.

Proof: We first prove that (xk)k∈N is a Cauchy sequence in X. Let 0 ≤ l < m and x∗ a

solution of (1), using the three points identity we have

Dξl f (xm, xl) − Dξl f (x
∗, xl) = −Dξm f (x

∗, xm) + 〈ξm − ξl, xm − x∗〉. (18)
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We observe that

|〈ξm − ξl, xm − x∗〉| =

∣∣∣∣∣∣

m∑

j=l+1

〈ξj − ξj−1, xm − x∗〉

∣∣∣∣∣∣

=

∣∣∣∣∣∣

m∑

j=l+1

−λj〈Jr(Axj − y),A(xm − x∗)〉

∣∣∣∣∣∣

≤

m∑

j=l+1

λj‖Axj − y‖r−1‖Axm − y‖, (19)

where the second equality above follows form the definition of ξj and the inequality is

a consequence of the properties of the duality mapping Jr. Proposition 4.1, with δ = 0,

implies that ‖Axm − y‖ ≤ ‖Axj − y‖ for all j ≤ m. Therefore, we have

|〈ξm − ξl, xm − x∗〉| ≤

m∑

j=l+1

λj‖Axj − y‖r.

Combining the inequality above with (18) we deduce that

Dξl f (xm, xl) ≤ Dξl f (x
∗, xl) − Dξm f (x

∗, xm) +

m∑

j=l+1

λj‖Axj − y‖r.

From (15) it follows that the sequence (Dξk f (x
∗, xk))k∈N ismonotonically decreasing. Thus,

by inequality above and (16) we haveDξl f (xm, xl) → 0 as l,m → ∞, and from the uniform

convexity of f we obtain that (xk)k∈N is a Cauchy sequence in X. Therefore, there is x ∈ X

such that xk → x as k → ∞, and since Proposition 4.1 implies that ‖Axk − y‖ → 0 as

k → ∞ and A is a continuous map, we conclude that Ax = y.

Now, we prove that x = x†. We first observe that ξk − ξ0 ∈ ∂(Dξ0 f (·, x0))(xk), which

yields
〈
ξk − ξ0, x

† − xk

〉
≤ Dξ0 f

(
x†, x0

)
− Dξ0 f (xk, x0) .

Thus,

Dξ0 f (x, x0) ≤ lim inf
k→∞

Dξ0 f (xk, x0) ≤ Dξ0 f
(
x†, x0

)
+ lim inf

k→∞

〈
ξk − ξ0, xk − x†

〉
. (20)

Next, we prove that

lim
k→∞

〈
ξk − ξ0, xk − x†

〉
= 0, (21)

which in view of (20) will ensure that Dξ0 f (x, x0) ≤ Dξ0 f (x
†, x0), proving that x = x†.

Indeed, using equation (19) with x∗ = x†, form> l, we have

∣∣∣
〈
ξm − ξl, xm − x†

〉∣∣∣ =

∣∣∣∣∣∣

m∑

k=l+1

−λk
〈
Jr
(
Axk − y

)
,Axm − y

〉
∣∣∣∣∣∣
≤

m∑

k=l+1

λk
∥∥Axk − y

∥∥r → 0
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as l → ∞. Then, given ǫ > 0 there exists k0 ∈ N such that

k > k0 =⇒
∣∣∣
〈
ξk − ξk0 , xk − x†

〉∣∣∣ < ǫ

2
.

Now,

∣∣∣
〈
ξk0 − ξ0, xk − x†

〉∣∣∣ =

∣∣∣∣∣∣

k0∑

n=1

−λn
〈
Jr
(
Axn − y

)
,Axk − y

〉
∣∣∣∣∣∣

≤
∥∥Axk − y

∥∥
k0∑

n=1

λn
∥∥Axn − y

∥∥r−1
.

Since ‖Axk − y‖ → 0 as k → ∞, we conclude that there exists a number k1 ≥ k0 such that

k > k1 =⇒
∣∣∣
〈
ξk0 − ξ0, xk − x†

〉∣∣∣ <
ǫ

2
.

Therefore, k > k1 implies 〈ξk − ξ0, xk − x†〉 < ǫ, which proves (21) as we wanted. �

Our intention in the remainder of this section is to study the convergence properties

of the family (xδ
k(δ))δ>0 as the noise level δ approaches zero. To achieve this goal we first

establish a stability result connecting xδ
k to xk. Observe that in general, x

δ
k+1 is not uniquely

defined from xδ
k, which motivates the following definition.

Definition 4.7: Let 0 < η0 ≤ η1 < 1 be pre-fixed constants. x̃ ∈ X is called a successor of

xδ
k if

(1) k < k(δ);

(2) There exists 0 ≤ λ̃ < ∞ such that x̃ := argminx∈X Tδ
λ̃
(x), where Tδ

λ̃
is the Tikhonov

functional

Tδ
λ̃
(x) := λ̃r−1‖Ax − yδ‖r + Dξ δ

k
f (x, xδ

k); (22)

(3) The residual ‖Ãx − yδ‖ belongs to the interval

[
(1 − η0)δ + η0‖Ax

δ
k − yδ‖, (1 − η1)δ + η1‖Ax

δ
k − yδ‖

]
. (23)

In other words, there must exist a nonnegative Lagrange multiplier λ̃, s.t. the minimizer

x̃ of the corresponding Tikhonov functional in (22) attains a residual ‖Ãx − yδ‖ in the

interval (23) (which is defined by convex combinations of the noise level δ with the residual

at the current iterate xδ
k).
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In the noisy-data case, as long as the discrepancy principle is not satisfied, the interval

in (23) is a subset of
(
δ, (1 − η1) δ + η1

∥∥Axδ
k − yδ

∥∥] (24)

because

(1 − η0) δ + η0
∥∥Axδ

k − yδ
∥∥ ≥ δ + η0 (τ − 1) δ > δ.

Therefore, if we consider a sequence generated by Algorithm 1 with the inequalities in

[3.2] replaced by a more restrictive condition, as in item 3 of Definition 4.7, all the pre-

vious results still hold. Further, since ‖Axδ
k − yδ‖ > τδ > δ and η0 ≤ η1, it is clear that

interval (23) is non-empty.

We note that interval (23) becomes close to the interval (24) as η0 → 0, and there-

fore, the former interval is only a bit larger than the last one for η0 ≈ 0. In the noise-free

case, (23) reduces to the non-empty interval

[
η0
∥∥Axk − y

∥∥ , η1
∥∥Axk − y

∥∥] , (25)

and according to Theorem 4.6, the sequence (xk)k∈N converges to x† whenever xk+1 is a

successor of xk for all k ∈ N. In this situation, we call (xk)k∈N a noiseless sequence.

Now, we study the behaviour of xδ
k, for fixed k, as the noise level δ approaches zero. For

the sake of the notation, we define

Tλk (x) :=
λk

r

∥∥Ax − y
∥∥r + Dξk f (x, xk) ,

for δ = 0 (compare it with (22)).

Theorem 4.8 (Stability): Let (δj)j∈N be a positive-zero sequence and fix τ > 1. Assume

that the sequences (x
δj

k )0≤k≤k(δj), j ∈ N, are fixed, where x
δj

k+1 is a successor of x
δj

k for k =

0, . . . , k(δj) − 1. Further, assume that Y is a locally uniformly smooth Banach space. If x0 is

not a solution of (1), then there exists a noiseless sequence (xk)k∈N such that, for every fixed

number k ∈ N, there exists a subsequence (δjm)m∈N (depending on k) satisfying

x
δjm
n → xn, ξ

δjm
n → ξn and f

(
x
δjm
n

)
→ f (xn) asm → ∞, for n = 0, . . . , k.

Proof: Assume that x0 is not a solution of Ax = y. We use an induction argument: since

xδ
0 = x0 and ξ δ

0 = ξ0 for every δ ≥ 0, the result is clear for k = 0. The argument consists in

successively choosing a subsequence of the current subsequence, and to avoid a notational

overload, we denote a subsequence of (δj) still by (δj). Suppose the result holds true for

some k ∈ N. Then, there exists a subsequence (δj)j∈N satisfying

x
δj
n → xn, ξ

δj
n → ξn and f

(
x
δj
n

)
→ f (xn) as j → ∞, for n = 0, . . . , k, (26)

where xn is a successor of xn−1 for n = 1, . . . , k. Because x
δj

k+1 is a successor of x
δj

k , it is true

that k < k(δj) for all j. Due to the same reason, there exists a non-negative number λ
δj

k such
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that

x
δj

k+1 = argmin
x∈X

T
δj

λ
δj
k

(x)

with the resulting residual ‖Axδ
k+1 − yδ‖ lying in the interval (23). Our task now is proving

that there exists a successor xk+1 of xk and a subsequence (δj) of the current subsequence

such that x
δj

k+1 → xk+1, ξ
δj

k+1 → ξk+1 and f (x
δj

k+1) → f (xk+1) as j → ∞. Since the proof

is relatively large, we divide it in 4 main steps: 1. we find a vector x ∈ X such that

x
δj

k+1 ⇀ x (27)

for a specific subsequence (δj)j∈N. 2. using the third item in Definition 4.7 we show that

the sequence (λ
δj

k )j∈N is bounded. Then, we choose a convergent subsequence and define

λk := lim
j→∞

λ
δj

k < ∞, (28)

as well as

xk+1 := argmin
x∈X

Tλk (x) . (29)

3. we prove that xk+1 = x which guarantees that x
δj

k+1 ⇀ xk+1. 4. Finally, we prove that

f
(
x
δj

k+1

)
→ f

(
xk+1

)
as j → ∞, (30)

which in view of (27) will guarantee that x
δj

k+1 → xk+1 as j → ∞, since f has the Kadec

property, see last paragraph in Section 2. The last result in turn, will prove that ξ
δj

k+1 →

ξk+1. Finally, we validate that xk+1 is a successor of xk, completing the induction argument.

Step 1: From (12) and the uniform convexity of f follows that the sequence (x
δj

k+1)j∈N

is bounded. Thus, there exists a subsequence (δj) of the current subsequence, and a vector

x ∈ X such that (27) holds true.

Step 2: We claim that, for each k ∈ N fixed, there exists a constant λmax,k > 0 such that

λ
δj

k ≤ λmax,k for all j ∈ N. (31)

Indeed, assume the contrary. Then, there is a subsequence satisfying λ
δj

k → ∞ as j → ∞.

But in this case,

lim inf
j→∞

1

r

∥∥∥Axδj

k+1 − yδj

∥∥∥
r
≤ lim inf

j→∞

T
δj

λ
δj
k

(
x
δj

k+1

)

λ
δj

k

≤ lim inf
j→∞

T
δj

λ
δj
k

(
x†
)

λ
δj

k

= lim
j→∞



1

r

∥∥∥Ax† − yδj

∥∥∥
r
+

D
ξ

δj
k

f
(
x†, x

δj

k

)

λ
δj

k




≤ lim
j→∞

(
1

r
δrj +

Dξ0 f
(
x†, x0

)

λ
δj

k

)
= 0.



16 M. P. MACHADO ET AL.

This, together with the lower bound of interval (23) implies that x0 is a solution of Ax= y

because

0 ≤ ηk+1
0

∥∥Ax0 − y
∥∥ = ηk+1

0 lim
j→∞

(∥∥∥Axδj
0 − yδj

∥∥∥− δj

)

≤ lim inf
j→∞

(∥∥∥Axδj

k+1 − yδj

∥∥∥− δj

)
= 0, (32)

and we have a contradiction. Thus (31) is true.We fix a convergent subsequence and define

λk as in (28) and xk+1 as in (29).

Step 3: Observe that

∣∣∣〈ξk, x − xk〉 −
〈
ξ

δj

k , x
δj

k+1 − x
δj

k

〉∣∣∣ ≤
∣∣∣
〈
ξk, x − x

δj

k+1

〉∣∣∣+ ‖ξk‖
∥∥∥xδj

k − xk

∥∥∥

+
∥∥∥ξk − ξ

δj

k

∥∥∥
∥∥∥xδj

k+1 − x
δj

k

∥∥∥ .

Thus, from (27) and the induction hypothesis it follows that

lim
j→∞

〈
ξ

δj

k , x
δj

k+1 − x
δj

k

〉
= 〈ξk, x − xk〉 .

Now, the weak lower semi-continuity of f, together with (27) and the induction hypothesis,

implies that

Dξk f (x, xk) = f (x) − f (xk) − 〈ξk, x − xk〉

≤ lim inf
j→∞

f
(
x
δj

k+1

)
− lim

j→∞
f
(
x
δj

k

)
− lim

j→∞

〈
ξ

δj

k , x
δj

k+1 − x
δj

k

〉

= lim inf
j→∞

D
ξ

δj
k

f
(
x
δj

k+1, x
δj

k

)
. (33)

From (27) we have

Ax
δj

k+1 − yδj ⇀ Ax − y as j → ∞, (34)

which together with (28) and the lower semi-continuity of Banach space norms yields

Tλk (x) =
λk

r

∥∥Ax − y
∥∥r + Dξk f (x, xk)

≤ lim inf
j→∞

(
λ

δj

k

r

∥∥∥Axδj

k+1 − yδj

∥∥∥
r
+ D

ξ
δj
k

f
(
x
δj

k+1, x
δj

k

))

= lim inf
j→∞

T
δj

λ
δj
k

(
x
δj

k+1

)
≤ lim inf

j→∞
T

δj

λ
δj
k

(
xk+1

)
= lim

j→∞
T

δj

λ
δj
k

(
xk+1

)
= Tλk

(
xk+1

)
.

This proves that x = xk+1 because xk+1 is the uniqueminimizer ofTλk . Thus, x
δj

k+1 ⇀ xk+1

as j → ∞. The above inequalities also ensure that lim inf j→∞ T
δj

λ
δj
k

(x
δj

k+1) = Tλk(xk+1).
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Taking a subsequence if necessary, we can assume that the following sequences converge:

aj := D
ξ

δj
k

f
(
x
δj

k+1, x
δj

k

)
, a := lim

j→∞
aj, (35)

and

rej :=
∥∥∥Axδj

k+1 − yδj

∥∥∥
r
, re := lim

j→∞
rej. (36)

We can also assume for this subsequence that

lim
j→∞

T
δj

λ
δj
k

(
x
δj

k+1

)
= Tλk

(
xk+1

)
. (37)

Step 4: Define

c := Dξk f
(
xk+1, xk

)

and obseve that from (33), the inequality c ≤ a holds. Thus, it suffices to prove that a ≤ c

to ensure that

lim
j→∞

D
ξ

δj
k

f
(
x
δj

k+1, x
δj

k

)
= Dξk f

(
xk+1, xk

)
,

which will prove (30). We assume that a> c and derive a contradiction. From

(28), (35), (36), (37), together with the definition of limit, it follows the existence of a

number N ∈ N such that j ≥ N implies

T
δj

λ
δj
k

(
x
δj

k+1

)
< Tλk

(
xk+1

)
+

a − c

2
, re ≤ rej +

a − c

6λmax,k
,

λk ≤ λ
δj

k +
a − c

6re
and a ≤ aj +

a − c

6
.

Therefore, for any j ≥ N it holds

Tλk

(
xk+1

)
≤ λkre + c =

(
λk − λ

δj

k

)
re + λ

δj

k re + a − (a − c)

≤
a − c

6re
re + λ

δj

k

(
rej +

a − c

6λmax,k

)
+

(
aj +

a − c

6

)
− (a − c)

≤ λ
δj

k rej + aj −
a − c

2
= T

δj

λ
δj
k

(
x
δj

k+1

)
−

a − c

2
< Tλk

(
xk+1

)
,

which leads to an obvious contradiction, proving that a ≤ c as we wanted. Hence (30)

holds, and since f has the Kadec property, it follows, in view of (27), that x
δj

k+1 → xk+1.

This last result, together with the continuity of the duality mapping in locally uniformly

smooth Banach spaces, implies that ξ
δj

k+1 → ξk+1.

It only remains to prove that ‖Axk+1 − y‖ belongs to interval (25), which will guarantee

that xk+1 is a successor of xk. But this result follows from applying the limit j → ∞ to the

sequence ‖Ax
δj

k+1 − yδj‖, which belongs to interval (23). �
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Theorem 4.9 (Regularization): Let (δj)j∈N be a positive-zero sequence and fix τ > 1.

Assume that the sequences (x
δj

k )0≤k≤k(δj), j ∈ N, are fixed, where x
δj

k+1 is a successor of x
δj

k
for k = 0, . . . , k(δj) − 1. Further, assume that Y is a locally uniformly smooth Banach space.

Then,

lim
j→∞

x
δj

k(δj)
= x†. (38)

Proof: The result is clear if x0 is a solution of Ax = y. Assume this is not the case. We

first validate that the sequence (k(δj))j∈N has no convergent subsequences. Indeed, if for

a subsequence (δjm)m∈N it is true that k(δjm) → n as m → ∞, then since k(δjm) ∈ N for

allm ∈ N, we must have k(δjm) = n ∈ N form large enough. From Theorem 4.8, the sub-

sequence (x
δjm
n )m∈N has itself a subsequence (which we still denote by (x

δjm
n )m∈N) which

converges to xn, this is,

lim
m→∞

x
δjm

k(δjm)
= lim

m→∞
x
δjm
n = xn.

But xn is a solution of Ax= y since

∥∥y − Axn
∥∥ = lim

m→∞

∥∥∥y − Ax
δjm

k(δjm)

∥∥∥

≤ lim
m→∞

(∥∥y − yδjm
∥∥+

∥∥∥yδjm − Ax
δjm

k(δjm)

∥∥∥
)

≤ lim
m→∞

(τ + 1) δjm = 0.

As in the proof of Theorem 4.8 (see (32)) we conclude that x0 is a solution of Ax = y,

contradicting our assumption. Therefore k(δj) → ∞ as j → ∞.

We now prove that each subsequence of (x
δj

k(δj)
)j∈N has itself a subsequence which con-

verges to x†. This will prove (38). We observe that since any subsequence of (δj)j∈N is

itself a positive-zero sequence, it suffices to prove that (x
δj

k(δj)
)j∈N has a subsequence which

converges to x†.

Our first step is proving that, for every ǫ > 0 fixed, there exists a subsequence (which

we still denote by (δj)j∈N) depending on ǫ, and a number J = J(ǫ), such that

j ≥ J =⇒ D
ξ

δj

k(δj)

f
(
x†, x

δj

k(δj)

)
< ǫ. (39)

In fact, fix ǫ > 0 and let (xk)k∈N be the noiseless sequence constructed in Theorem 4.8.

Since xk+1 is a successor of xk for all k ∈ N, the sequence (xk)k∈N converges to x† (see

Theorem 4.6). Then, there exists a natural number N = N(ǫ) such that

∥∥∥xN − x†
∥∥∥ <

1

2

√
ǫ

2
and DξN f

(
x†, xN

)
<

ǫ

2
.

From Theorem 4.8 there exists a subsequence (still denoted by (δj)j∈N) depending on N,

and a number J1 ∈ N, depending on ǫ, such that

j ≥ J1 =⇒

[∥∥∥ξ δj
N − ξN

∥∥∥ <

√
ǫ

2
and

∥∥∥xδj
N − xN

∥∥∥ <
1

2

√
ǫ

2

]
.
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Since k(δj) → ∞, there is a number J2 ∈ N such that k(δj) ≥ N for all j ≥ J2. It follows

from (12) and the three points identity that for j ≥ J := max{J1, J2},

D
ξ

δj

k(δj)

f
(
x†, x

δj

k(δj)

)
≤ D

ξ
δj
N

f
(
x†, x

δj
N

)

≤ DξN f
(
x†, xN

)
− DξN f

(
x
δj
N , xN

)
+
∥∥∥ξ δj

N − ξN

∥∥∥
∥∥∥xδj

N − x†
∥∥∥

≤ DξN f
(
x†, xN

)
+
∥∥∥ξ δj

N − ξN

∥∥∥
(∥∥∥xδj

N − xN

∥∥∥+
∥∥∥xN − x†

∥∥∥
)

< ǫ,

which proves (39).

Choosing ǫ = 1, we can find a subsequence (δj)j∈N and select a number j1 ∈ N such

that

D
ξ

δj1
k(δj1)

f
(
x†, x

δj1
k(δj1)

)
< 1.

Since the current subsequence (δj)j∈N is also a positive-zero sequence, the above reasoning

can be applied again in order to extract a subsequence of the current one satisfying (39)

with ǫ = 1/2. We choose a number j2 ≥ j1 such that the inequality

D
ξ

δj2
k(δj2)

f
(
x†, x

δj2
k(δj2)

)
<

1

2

holds true. Using induction, it is therefore possible to construct a subsequence (δjm)m∈N

with the property

D
ξ

δjm

k(δjm)

f
(
x†, x

δjm

k(δjm)

)
<

1

m
for allm ∈ N,

which implies that

lim
m→∞

D
ξ

δjm

k(δjm)

f
(
x†, x

δjm

k(δjm)

)
= 0,

and since f is uniformly convex,

lim
m→∞

∥∥∥xδjm

k(δjm)
− x†

∥∥∥ = 0.

�

5. Algorithms and numerical implementation

5.1. Determining the Lagrangemultipliers

As before, we consider the function Gx̂(λ) = ‖Axλ − yδ‖r, where xλ = π(λ, x̂) represents

the minimizer of the Tikhonov functional

Tδ
λ(x) = 1

r λ‖Ax − yδ‖r + Dξ f (x, x̂).
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In order to choose the Lagrange multiplier in the k-th iteration, our strategy consists in

finding a λk > 0 such that Gxk−1
(λk) ∈ [ak, bk], where

ak :=
(
η0δ + (1 − η0)‖Axk−1 − yδ‖

)r
and bk :=

(
η1δ + (1 − η1)‖Axk−1 − yδ‖

)r
.

Here 0 < η0 ≤ η1 < 1 are pre-defined constants.

We have employed three different methods to compute λk: the well-known secant and

Newton methods and a third strategy, here called adaptive method, which we now explain:

fix σ1, σ2 ∈ (0, 1), c1 > 1 and some initial value λδ
0 > 0. In the k-th iteration, k ≥ 1, we

define λδ
k = ckλ

δ
k−1, where

ck =





ck−1σ1, if Gxk−2
(λδ

k−1) < ak−1

ck−1σ
−1
2 , if Gxk−2

(λδ
k−1) > bk−1

ck−1, otherwise

, for k ≥ 2.

The idea behind the adaptive method is observing the behaviour of the residual in last

iterations and trying to determine how much the Lagrange multiplier should be increased

in the next iteration. For example, the residual Gxk−2
(λδ

k−1) = ‖Axk−1 − yδ‖r lying on the

left of the target interval [ak−1, bk−1], means that λδ
k−1 was too large.We thusmultiply ck−1

by a number σ1 ∈ (0, 1) in order to reduce the rate of growth of the Lagrange multiplier

λδ
k, trying to hit the target in the next iteration.

Although the Newton method is efficient, in the sense that it normally finds a good

approximation for the Lagrange multiplier in very few steps, it has the drawback of

demanding the differentiability of the Tikhonov functional, and therefore it cannot be

applied in all situations.

Because it does not require the evaluation of derivatives, the secant method can be used

even for a nonsmooth Tikhonov functional. A disadvantage of this method is the high

computational effort required to perform it.

Among these three possibilities, the adaptive strategy is the cheapest one, since it only

demands one minimization of the Tikhonov functional per iteration. Further, this simple

strategy does not require the derivative of this functional, whichmakes it fit in a large range

of applications.

Note that this third strategy may generate a λδ
k such that Gxk−1

(λδ
k) 	∈ [ak, bk] in some

iterative steps. This is the reason for correcting the factors ck in each iteration. In our

numerical experiments, the conditionGxk−1
(λδ

k) ∈ [ak, bk] was satisfied in almost all steps.

5.2. Minimization of the Tikhonov functional

In our numerical experiments, we are interested in solving the inverse problem (1), where

A : Lp(	) → L2(	), with 1 < p < ∞, is linear and bounded, noisy data yδ are available,

and the noise level δ > 0 is known.

In order to implement the nIT method (Algorithm 1), a minimizer of the Tikhonov

functional (22) needs to be calculated in each iteration step.Minimizing this functional can

be itself a very challenging task.We have used two algorithms for achieving this goal in our

numerical experiments: 1. The Newton method was used for minimizing this functional

in the case p 	= 2 and with a smooth function f, which induces the Bregman distance in the
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penalization term. 2. The so called ADMM method was employed in order to minimize

the Tikhonov functional for the case p=2 (Hilbert space) and a nonsmooth functional f.

In the following, we explain the details.

First we consider the Newton method. Define the Bregman distance induced by the

norm-functional f (g) := 1
p‖g‖

p
Lp , 1 < p < ∞, which leads to the smooth penalization

term Dξ f (g, h) = �p(g, h), see Section 2. The resulting Tikhonov functional reads

Tλ(g) = 1
2λ‖Ag − yδ‖2 + �p(g, gk−1),

where gk−1 is the current iterate.
3 In this case, the optimality condition (10) reads:

F(g) = λA∗yδ + Jp(gk−1), (40)

where g ∈ Lp(	) is the minimizer of Tλ(g) and F(g) := λA∗Ag + Jp(g).

In order to apply the Newtonmethod to the nonlinear equation (40), one needs to eval-

uate the derivative of F, which (whenever exists) is given by F′(g) = λA∗A + J′p(g). Next

we present an explicit expression for the Gâteaux-derivative J′p(g) (the derivation of this

expression is postponed to Appendix A, where the Gâteaux-differentiability of Jp in L
p(	),

for p ≥ 2, is investigated). Given g ∈ Lp(	), with p ≥ 2, it holds

(
J′p(g)

)
(h) = 〈(p − 1)|g|p−2, h〉, ∀h ∈ Lp(	), (41)

where the linear operator (p − 1)|g|p−2 : h �→ (p − 1)|g(·)|p−2h(·) is to be understood in

pointwise sense. In the discretized setting, J′p(g) is a diagonal matrix whose i−th element

on its diagonal is (p − 1)|g(xi)|
p−2, with xi being the i−th point of the chosen mesh.

In our numerical simulations, we consider the situation where the sought solution is

sparse and, therefore, the case p ≈ 1 is of our interest. We stress the fact that (A2) (see

Appendix A) holds true even for 1<p<2 whenever x 	= 0. Using this fact, one can prove

that (41) holds for these values of p, e.g. if g does not change signal in	 (i.e, either g>0 in

	, or g<0 in	) and the direction h is a bounded function in this set.However, these strong

hypotheses are very difficult to check, and even if they are satisfied, we still expect having

stability problems for inverting the matrix F′(g) if the function g attains a small value in

some point of the mesh, because the function in (A2) satisfies γ ′′(x) → ∞ as x → 0. In

order to avoid this kind of problem in our numerical experiments, we have replaced the

i−th element on the diagonal of the matrix J′p(g) by min{(p − 1)|g(xi)|
p−2, 106}.

The second method that we used in our experiments was the well-known Alternating

Direction Method of Multipliers (ADMM), which has been implemented to minimize the

Tikhonov functional associated with the inverse problem Ax = yδ , where X = Y = Rn,

A : Rn → Rn, and f : Rn → R is a nonsmooth function.

ADMM is an optimization scheme for solving linearly constrained programming prob-

lems with decomposable structure [13], which goes back to the works of Glowinski and

Marrocco [14], and of Gabay andMercier [15]. Specifically, this algorithm solves problems

in the form:

min
(x,z)∈Rn×Rm

{ϕ(x) + φ(z) : Mx + Bz = d}, (42)

where ϕ : Rn → R and φ : Rm → R are convex proper l.s.c. functions,M : Rn → Rl and

B : Rm → Rl are linear operators, and d ∈ Rl.
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ADMM solves the coupled problem (42) performing a sequences of steps that decouple

functions ϕ and φ, making it possible to exploit the individual structure of these functions.

It can be interpreted in terms of alternating minimization, with respect to x and z, of the

augmented Lagrangian function associated with problem (42). Indeed, ADMM consists of

the iterations

xk+1 = arg min
x∈Rn

Lρ(x, zk, uk)

zk+1 = arg min
z∈RM

Lρ(xk+1, z, uk)

uk+1 = uk + ρ(Mxk+1 + Bzk+1 − d),

where ρ > 0 and Lρ is the augmented Lagrangian function

Lρ(x, z, u) := ϕ(x) + φ(z) + 〈u,Mx + Bz − d〉 + 1
2ρ‖Mx + Bz − d‖22.

The convergence results for ADMM guarantee, under suitable assumptions, that the

sequences (xk)k∈N, (zk)k∈N and (uk)k∈N generated by the method are such that Mxk +

Bzk − d → 0, ϕ(xk) + φ(zk) → s⋆ and uk → u⋆, where s⋆ is the optimal value of prob-

lem (42) and u⋆ is a solution of the dual problem associated with (42).

Forminimizing theTikhonov functional usingADMMwe introduce an additional deci-

sion variable z such that problem ofminimizing Tδ

λδ
k

(x) for x ∈ X is rewritten into the form

of (42).

The specific choice of the functions ϕ, φ and the operatorsM and B is problem depen-

dent (for a concrete example see, e.g. Section 6.2). This allows us to exploit the special form

of the functional Tδ

λδ
k

, and also to pose the minimization problem in a more suitable form,

in order to be solved numerically.

In all numerical simulations presented in Section 6, theADMMmethod is stoppedwhen

‖Mxk + Bzk − d‖ becomes smaller than a predefined threshold.

6. Numerical experiments

6.1. Deconvolution

In what follows we consider the application of the nIT method to the deconvolution

problem modelled by the linear integral operator

Ax :=

∫ 1

0
K(s, t)x(t) dt = y(s),

where the kernel K is the continuous function defined by

K(s, t) =

{
49s(1 − t), s ≤ t

49t(1 − s), s > t
.

This benchmark problem is considered in [3]. There, it is observed that A : Lp[0, 1] →

C[0, 1] is continuous and bounded for 1 ≤ p ≤ ∞. Thus, A : Lp[0, 1] → Lr[0, 1] is com-

pact for 1 ≤ r < ∞.
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Figure 1. Deconvolution problem: Numerical experiments.

In our experiment,A is replaced by the discrete operatorAd, where the above integral is

computed using a quadrature formula (trapezoidal rule) over an uniform partition of the

interval [0, 1] with 400 nodes.

The exact solution of the discrete problem is the vector x⋆ ∈ R400 with x⋆(27) = 2,

x⋆(72) = 1.25, x⋆(103) = 1.75, x⋆(255) = 1.25, x⋆(350) = 1.5 and x⋆(i) = 0, elsewhere.4

We compute y = Adx
⋆, the exact data, and add random Gaussian noise to y ∈ R400 to

get the noisy data yδ satisfying ‖y − yδ‖Y ≤ δ.

We follow [3] in the experimental setting and choose δ = 0.0005, τ = 1.001 (discrep-

ancy principle), and Y = L2. For the parameter space, two distinct choices are considered,

namely X = L1.001 and X = L2.

Numerical results for the deconvolution problem are presented in Figure 1 (for sim-

plicity, all legends in this figure refere to the space L1; however, p=1.001 is used in the

computations). The following methods are depicted:

− (BLUE) L2-penalization, Geometric sequence;

− (GREEN) L2-penalization, Secant method;

− (RED) L1.001-penalization, Geometric sequence;

− (PINK) L1.001-penalization, Secant method;

− (BLACK) L1.001-penalization, Newton method.

The six pictures in Figure 1 represent:



24 M. P. MACHADO ET AL.

[TOP] Iteration error in L2-norm (left);5 residual in L2-norm (right);

[CENTER] Number of linear systems/step (left); Lagrange multipliers (right);

[BOTTOM] exact solution and reconstructions with L2-penalization (left); exact

solution and reconstructions with L1.001-penalization (right).

6.2. Image deblurring

In the sequel an application of the nIT method to an image deblurring problem is consid-

ered. This is a finite dimensional problem with spaces X = Rn × Rn and Y = Rn × Rn.

The vector x ∈ X represents the pixel values of the original image to be restored, and y ∈ Y

contains the pixel values of the observed blurred image. In practice, only noisy blurred data

yδ ∈ Y satisfying (2) is available. The linear transformation A represents some blurring

operator.

In the numerical simulations we consider the situation where the blur of the image is

modelled by a space invariant point spread function (PSF). The exact solution is the 512 ×

512 Barbara image (see Figure 2), and yδ is obtained adding artificial noise to the exact

data y=Ax (here A is the covolution operator corresponding to the PSF).

For this problem the nIT method is implemented with two distinct penalization terms,

namely f (x) = ‖x‖22 (L2 penalization) and f (x) = µ
2 ‖x‖22 + TV(x) (L2 + TV penaliza-

tion). Here µ > 0 is a regularization parameter and TV(x) = ‖∇x‖1 is the total variation

norm of x, where ∇ : Rn × Rn → (Rn × Rn) × (Rn × Rn) is the discrete gradient opera-

tor. We minimize the Tikhonov functional associated with the L2 + TV penalization term

using the ADMM described in Section 5.

In our experiments the values µ = 10−4, δ = 0.00001 and τ = 1.5 are used. Moreover,

x0 = yδ and ξ0 = ∇∗(sign(∇x0)) are chosen as initial guesses.

In Figure 2, the exact solution, the convolution kernel, and the noisy data are shown.

The reconstructed images are shown in Figure 3, while the numerical results are presented

in Figure 4. The following methods were implemented:

− (BLUE) L2-penalization, Geometric sequence;

− (RED) L2 + TV-penalization, Geometric sequence;

− (PINK) L2 + TV-penalization, Secant method;

− (GREEN) L2 + TV-penalization, Adaptive method.

The four pictures in Figure 4 represent:

[TOP] Iteration error ‖x⋆ − xδ
k‖;

[CENTER TOP] Residual ‖Axδ
k − yδ‖;

[CENTER BOTTOM] Number of linear systems solved in each step;

[BOTTOM] Lagrange multiplier λk. and τ = 1.5. Moreover, the initial guesses

x0 = yδ

Remark 6.1: The Tikhonov functional associated with the L2 + TV penalization term is

minimized using the ADMM in Section 5. Note that, if f (x) = µ
2 ‖x‖22 + ‖∇x‖1 then one
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Figure 2. Image deblurring problem: (LEFT) Point Spread Function; (CENTER) Exact image; (RIGHT)
Blurred image.

Figure 3. Image deblurring problem: Reconstructions (TOP LEFT) L2–Geometric; (TOP RIGHT) L2 +
TV–Geometric; (BOTTOM LEFT) L2 + TV–Secant; (BOTTOM RIGHT) L2 + TV–Adaptive.

needs to solve

min
x∈X

1
2λk
∥∥Ax − yδ

∥∥2 + µ
2 ‖x − xδ

k−1‖
2 + ‖∇x‖1 − ‖∇xδ

k−1‖1 −
〈
ξ δ
k−1, x − xδ

k−1

〉

in each iteration. In order to use ADMM, we sate this problem into the form of (42)

by defining z = ∇x, ϕ(x) := λk
2 ‖Ax − yδ‖2 + µ

2 ‖x − xδ
k−1‖

2 − 〈ξ δ
k−1, x − xδ

k−1〉, φ(z) =

‖z‖1 − ‖∇xδ
k−1‖1,M = −∇ , B= I and d=0.
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Figure 4. Image deblurring problem: Numerical experiments.

Figure 5. Inverse Potential problem: Numerical experiments.
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6.3. Inverse potential problem

The third application considered in this section, the Inverse Potentinal Problem (IPP), con-

sists of recovering a coefficient function x : 	 → R, from measurements of the Cauchy

data of its corresponding potential on the boundary of the domain 	 = (0, 1) × (0, 1).

The direct problem is modelled by the linear operator A : L2(	) ∋ x �→ wν |∂	 ∈

L2(∂	), where w ∈ H1(	) solves the elliptic boundary value problem

�w = x, in 	; w = 0, at ∂	. (43)

Since x ∈ L2(	), the Dirichlet boundary value problem in (43) admits a unique solution

(known as potential) w ∈ H2(	) ∩ H1
0(	) [16].

The inverse problem we are concerned with, consists in determining the piecewise con-

stant source function x from measurements of the Neumann trace of w at ∂	. Using the

above notation, the IPP can be written in the abbreviated form (1), with data y = wν |∂	.

In our implementations we follow [8] in the experimental setup: we set 	 = (0, 1) ×

(0, 1) and assume that x⋆ ∈ H1(	) is a function with sharp gradients (see Figure 6).

The boundary value problem (43) is solved for w using x = x⋆, and the exact data y =

wν |∂	 for the inverse problem is computed. The noisy data yδ for the inverse problem is

obtained by adding to y a normally distributed noise with zero mean, in order to achieve a

prescribed relative noise level.

Figure 6. Inverse Potential problem: (TOP LEFT) Exact solution x
⋆. Reconstructions (TOP RIGHT)

L
1–Geometric; (BOTTOM LEFT) L1–Newton; (BOTTOM RIGHT) L1–Adaptive.
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In our numerical implementations we set τ = 5 (discrepancy principle constant), δ =

0.5% (relative noise level), and the initial guess x0 ≡ 1.5 (a constant function in	). For the

parameter space we choose X = Lp(	) with p=1.5, while the data space is Y = L2(∂	).

Numerical results for the Inverse potential problem are presented in Figure 5. The

following methods are depicted:

− (RED) Lp-penalization, Geometric sequence;

− (BLACK) Lp-penalization, Newton method;

− (BLUE) Lp-penalization, Adaptive method;

The four pictures in Figure 5 represent: [TOP] Iteration error in Lp-norm;

[CENTER TOP] Residual in L2-norm; [CENTER BOTTOM] Number of linear sys-

tems/step; [BOTTOM] Lagrange multipliers.

The corresponding reconstruction results are shown in Figure 6: [TOP LEFT]

Exact Solution; [TOP RIGHT] geometric method; [BOTTOM LEFT] Newton method;

[BOTTOM LEFT] Adaptive method.

7. Conclusions

In this manuscript we investigate a novel strategy for choosing the regularization parame-

ters in the nonstationary iterated Tikhonov (nIT) method for solving ill-posed operator

equations modelled by linear operators acting between Banach spaces. The novelty of

our approach consists in defining strategies for choosing a sequence of regularization

parameters (i.e. Lagrange multipliers) for the nIT method.

A preliminary (numerical) investigation of this method was conducted in [9]. In the

present manuscript we derive a complete convergence analysis, proving convergence, sta-

bility and semi-convergence results (see Section 4). In Sections 6.1 and 6.2 we revisit two

numerical applications discussed in [9]. Moreover, in Section 6.3 we investigate a classi-

cal benchmark problem in the inverse problems literature, namely the 2D elliptic Inverse

Potential Problem.

The Lagrange multipliers are chosen (a posteriori) in order to enforce a fast decay of the

residual functional (seeAlgorithm1 and Section 4). The computation of thesemultipliers is

performed bymeans of three distinctmethods: (1) a secant typemethod; (2) aNewton type

method; (3) an adaptive method using a geometric sequence with non-constant growth

rate, where the rate is updated after each step.

The computation of the iterative step of the nIT method requires the minimization of

a Tikhonov Functional (see Section 4). This task is solved here using two distinct meth-

ods: (1) in the case of smooth penalization and Banach parameter-spaces the optimality

condition (related to the Tikhonov functional) leads to a nonlinear equation, which is

solved using a Newton typemethod; (2) in the case of nonsmooth penalization andHilbert

parameter-space, the ADMMmethod is used for minimizing the Tikhonov functional.

Notes

1. The differentiability and convexity properties of this functional are independent of the particular
choice of p > 1.
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2. This Lemma guarantees that, given a reflexive Banach space E, and a nonempty closed convex
set A ⊂ E, then any convex l.s.c proper function φ : A → (−∞,∞] achieves its minimum on
A.

3. Here (1) is replaced by Ag = yδ .
4. Notice that we are dealing with a discrete inverse problem, and discretization errors associated

to the continuous model are not being considered.
5. For the purpose of comparison, the iteration error is ploted in the in L2-norm for both choices

of the parameter space X = L2 and X = L1.001.
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Appendix

In this appendix we discuss how to compute the Gâteaux derivative of Jp. Given g ∈ Lp(	), the key
idea for deriving a formula for J′p(g) is to observe the differentiability of the function γ : R ∋ x �→

p−1|x|p ∈ R. This function is differentiable in R whenever p> 1 and, in this case it holds

γ ′(x) = |x|p−1sign(x), where sign(x) =





1, if x > 0

0, if x = 0

−1, if x < 0

. (A1)

Furthermore, γ is twice differentiable in R if p ≥ 2, with derivative given by

γ ′′(x) = (p − 1) |x|p−2. (A2)

This formula still holds true for 1 < p < 2, but only in R\{0}. In this case, γ ′′(0) does not exist and
γ ′′(x) grows to infinity as x approaches to zero.

Since Jp(g) = ( 1p‖g‖
p
Lp)

′ can be identified with

Jp
(
g
)

=
∣∣g
∣∣p−1

sign(g) (A3)

(see [10]), which looks very similar to γ ′ in (A1), the bounded linear operator J′p(g) : L
p(	) →

Lp
∗
(	) should be in some sense similar to γ ′′ in (A2). We then fix g ∈ Lp(	) with p ≥ 2 and try to

prove (41), i.e.

(
J′p(g)

)
(h) =

〈
(p − 1)|g|p−2, h

〉
, ∀ h ∈ Lp(	),

where the linear operator (p − 1)|g|p−2 : h �→ (p − 1)|g(·)|p−2h(·) is to be understood in pointwise
sense. This ensures that Jp is Gâteaux-differentiable in Lp(	) and its derivative J′p can be identified

with (p − 1)| · |p−2.
Note that, given h ∈ Lp(	), equality (41) holds iff lim

t→0
ft = (p − 1)|g(·)|p−2h(·), where ft : 	 →

R is defined by ft(x) := t−1[Jp(g + th) − Jp(g)](x). This is equivalent to prove that

lim
t→0

∥∥ft − (p − 1)|g(·)|p−2h(·)
∥∥p∗

Lp
∗
(	)

= 0.

In view of (A3) and (A2), it follows that for each x ∈ 	 fixed we have

lim
t→0

ft(x) = lim
t→0

t−1
[
|g(x) + th(x)|p−1 sign(g(x) + th(x)) − |g(x)|p−1 sign(g(x))

]

=
d

dt

[
|g(x) + th(x)|p−1 sign(g(x) + th(x))

]
t=0

=
[
(p − 1)|g(x) + th(x)|p−2h(x)

]
t=0

= (p − 1)|g(x)|p−2h(x).
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Thus, making use of Lebesgue’s Dominated Convergence Theorem, we conclude that

lim
t→0

∥∥ft − (p − 1)|g(·)|p−2h(·)
∥∥p∗

Lp
∗
(	)

= lim
t→0

∫

	

∣∣∣ft(x) − (p − 1)|g(x)|p−2h(x)
∣∣∣
p∗

dx

=

∫

	

∣∣∣lim
t→0

ft(x) − (p − 1)|g(x)|p−2h(x)
∣∣∣
p∗

dx = 0.

which proves (41).


