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Abstract
The derivation by Alan Hodgkin and Andrew Huxley of their famous neuronal conductance model relied on experimental
data gathered using the squid giant axon. However, the experimental determination of conductances of neurons is difficult,
in particular under the presence of spatial and temporal heterogeneities, and it is also reasonable to expect variations between
species or even between different types of neurons of the same species.
We tackle the inverse problem of determining, given voltage data, conductances with non-uniform distribution in the simpler
setting of a passive cable equation, both in a single or branched neurons. To do so, we consider the minimal error iteration,
a computational technique used to solve inverse problems. We provide several numerical results showing that the method is
able to provide reasonable approximations for the conductances, given enough information on the voltages, even for noisy
data.
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1 Introduction

The seminal model of Hodgkin and Huxley (Hodgkin and
Huxley 1952) of neuronal voltage conductance describes
how action potential occurs and propagates. It is a landmark
model and presents an outstanding combination of modeling
based on physical arguments and experimental data, needed
to determine the behavior of ion channels. As a part of
their work, they modeled the macroscopic behavior of the
conductances by designing several mathematical functions
(the α’s and β’s) that make the computed voltage to behave
as the data. In this paper, we propose a numerical procedure
to approximate the conductances of the ion channels, using
an iterative method to obtain the unknown parameters.

Finding the conductances is crucial if one wants to emu-
late the neuronal voltage propagation using computational
models, since the conductances are part of the data required
by the Hodgkin and Huxley model. Using simpler mod-
els might be an alternative, but it is always necessary to
find out what are the physiological parameters. What we
would like to offer is a computational way to determine the
conductances based on experimental data, and we consider
our method a step towards that final goal. The method can
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also be extended to accommodate excitatory and inhibitory
synapses, and could be used, in principle, in several nonlin-
ear models, such as the FitzHugh-Nagumo, Morris-Lecar,
Hodgkin-Huxley, etc, with varying degrees of difficulty. We
remark that our protocol differs from the experimental setup
of Hodgkin-Huxley since voltage-clamp techniques are no
longer needed, rendering the method simpler and amenable
for use even considering heterogeneous spatially distributed
channels.

We use a simplified neuronal model, the passive cable
equation (Bell 1990; Ermentrout and Terman 2010; Schutter
2009), given by a parabolic partial differential equation
(PDE). We consider first the case of a tree with no
branches, i.e., possessing only a trunk represented by the
interval [0, L]. The case of a branched tree is described
in Section 2.1. In the cable model the membrane electrical
potential V : [0, T ] × [0, L] → R solves

CMVt = ra

2R
Vxx −I (t, x) for 0 < t < T, 0 < x < L,

(1)

where CM represents membrane specific capacitance in
microfarad per square centimeter (μF/cm2); the potential
V is in millivolt (mV ); the time t is in milliseconds (ms);
ra is the radius of the fiber in millicentimeter (mcm); the

specific resistance R is in ohm centimeter (�cm); the space
x is in centimeter (cm); the specific ionic current I is
in microampere per square centimeter (μA/cm2). For the
passive cable models, the ionic current is given by

I (t, x) = GL(V (t, x)−EL)+
∑

i∈Ion

Gi(t, x)
(
V (t, x)−Ei

)
,

where the constant leak specific conductance GL is
in millisiemens per square centimeter (mS/cm2); EL

represents leak equilibrium potential in millivolt (mV ); Ion
is the set of ions of the model, e.g., Ion = {K, Na}. Also,
the membrane specific conductance Gi for the ion i ∈ Ion
is in millisiemens per square centimeter (mS/cm2), and it
might depend on spatial and temporal variables, as indicated
in the notation. Finally, the Nernst potential Ei for each ion
i ∈ Ion is given in millivolt (mV ).

To Eq. (1) we add boundary and initial conditions given
by

Vx(t, 0) = p(t), Vx(t, L) = q(t), V (0, x) = r(x),

for 0 < t < T, 0 < x < L. (2)

We assume that the constants CM , ra , R, GL, EL, Ei , T and
L, and the functions p, q and r are given data.

We next rewrite Eqs.(1) and (2) in a slightly more
convenient form:

⎧
⎪⎪⎨

⎪⎪⎩

CMVt = ra

2R
Vxx − GL(V −EL) −

∑

i∈Ion

Gi(t, x)[V − Ei], in (0, T ) × (0, L),

V (0, x) = r(x), in x ∈ [0, L],
Vx(t, 0) = p(t), Vx(t, L) = q(t), in t ∈ [0, T ].

(3)

Let Nion be the number of ions of the set Ion. For Ion =
{1, 2, · · · , Nion}, G(t, x) = (G1(t, x), . . . , GNion(t, x)).
The inverse problem of finding the “correct” G given
measurements of the voltage is highly nontrivial, in the
sense that it leads to ill-posed problems (White et al. 1992),
and that it becomes even harder in the presence of spatially
dependent parameters. There are different approaches to
deal with the problem in hand, but certainly no panacea.

Hodgkin and Huxley (Hodgkin and Huxley 1952) tackled
such problem by a highly nontrivial data fitting, in a
wonderful achievement made possible only due to an
ingenious combination of experimental and biophysical
insight. We refer to Bezanilla (2008) for a quite interesting
description of how experimental results evolved through
time. From this same reference we quote:

“The simplicity of the squid axon [. . . ] was rarely
found in other cells such as neurons or cardiac
myocytes”

and it would be interesting to have a way to combine
experimental data and numerical simulation to unveil the

macroscopic conductance behavior even in the absence of
such simplicity. Wilfrid Rall and co-authors considered
several related questions for the cable equation (Rall 1959;
1960; 1962; 1977; Rall et al. 1992; Holmes and Rall
1992). See also Stuart and Spruston (1998), Jack and
Redman (1971), Brown et al. (1981), Durand et al. (1983),
D’Aguanno et al. (1986), Schierwagen (1990), and Kawato
(1984). In Willms et al. (1999) there is an interesting attempt
to introduce heterogeneity into the Hodgkin and Huxley
model.

In terms of biologically inclined references, Zerlaut and
Destexhe (2017) consider the branched cable equation with
the chemical synapses and convert somatic conductances
into dendritic conductances. There are several other articles
(Bédard et al. 2012; Kobayashi et al. 2011; Vich et al.
2017; Vich and Guillamon 2015; Yaşar et al. 2016) dealing
with the issue of determining conductances and pre-synaptic
inputs with different techniques, ranging from deterministic
to statistical and stochastic. However, it is far from clear if
their approach can be mathematically justified and if it is
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possible at all to extend those ideas for spatially distributed
conductances.

We consider next references with a stronger mathemati-
cal flavor. The uniqueness of solutions for finding constant
parameters in the cable equation, and related methods, are
discussed in Cox (1998), Cox and Ji (2000), and Cox and
Raol (2004), and Cox and Griffith (2001) for a nonlinear
model; see also (Avdonin and Bell 2013; Pierce 1979) for
further considerations related to existence and uniqueness.
In Cox and Ji (2001), a related problem was tackled based
on the FitzHugh–Nagumo and Morris–Lecar models, where
nonlinear functions modeling the conductances are sought.
The method is based on fixed point arguments, and despite
its ingenuity, it is not clear how to extend it to more involved
models or to accommodate for spatially distributed ions
channels.

In Bell and Craciun (2005), Tadi et al. (2002), Cox
(2006), Avdonin and Bell (2013), and Avdonin and Bell
(2015), the question of determining spatially distributed
conductances is investigated through different techniques
and algorithms. They differ considerably from our method
and seem harder to generalize for other situations, as, for
instance, when the domain is given by branched trees (with
the obvious exception of (Avdonin and Bell 2013; 2015)),
for time-dependent conductances, and for general nonlinear
equations, our ultimate goal.

We would like to stress that although neuroscience
models based on ordinary differential equations are, and
will always be, of paramount importance, it is our belief
that spatially distributed equations will grow in importance.
And spatially distributed data will become easier to
gather, in particular, due to techniques as voltage-sensitive
dye imaging (VSDI) (Casale et al. 2015; Grinvald and
Hildesheim 2004).

Inverse problems like the present one are ill-posed, and,
under certain conditions, the minimal error method (George
and Sabari 2017; Kaltenbacher et al. 2008; Neubauer 2018)
provides a convergent iterative scheme. The main goal of the
present paper is to develop such method to approximate the
inverse problem of recovering the conductances in the cable
equation. We also test the scheme under different scenarios.

The minimal error method is one of several iterative
regularization methods for obtaining stable solutions for
ill-posed problems. It has the advantage of each iteration
being “cheap” (it avoids inversions present in Newton-like
methods) at the possible price of taking more iterations
to converge. See Nayak (2019) for a nice review and
comparison among the methods.

We next outline the contents of the paper. In Section 2,
we present the method, detailing how it should be applied in
the cases of non-branched and branched cables, where the
geometry is given by a tree. Section 3 presents numerical
results, and in Section 4 we draw some concluding remarks.

Finally, the Appendix provides some technical details
regarding the method and the mathematics behind it.

2Method: theminimal error scheme applied
to the conductance determination

We consider here an application of the minimal error
method to the problem at hand. Knowing the voltage V at
the time-space domain �, we want to determine G assuming
that Eq. (3) holds. We consider two different cases in voltage
measurement. In the first case, we assume that V is known at
all time-space points, i.e., � = [0, T ]×[0, L] (Table 1, Case
I). In the second case, we assume that the voltage is known
only at endpoints and all the time. Thus � = [0, T ]× {0, L}
(Table 1, Case II).

Let V |� be the restriction of V to �, and consider the
nonlinear operator

F : D(F) → R(F) (4)

that associates for a given G ∈ D(F) the resulting
voltage, i.e., F(G) = V |� , where V solves Eq. (3). The
domain D(F) and the image R(F) = L2(�) (the space
of square integrable functions) are properly defined in the
Appendix A. Given a smooth enough function f , we define
its L2 norm ‖ · ‖L2(�) such that

‖f ‖2
L2(�)

=
∫

�

|f (ξ)|2d ξ .

We consider the inverse problem of finding an approxi-
mation for G given the noisy data V δ|� , where

‖V − V δ‖L2(�) ≤ δ, (5)

for some known noise threshold δ > 0. That makes sense
since, in practice, the data V |� are never known exactly. In
Section 3 we detail the type of noise introduced.

Given an initial guess G1,δ , the minimal error approxi-
mation for G is defined by the sequence

Gk+1,δ = Gk,δ + wk,δF ′(Gk,δ)∗(V δ|� − F(Gk,δ)), (6)

Table 1 Summary of the two different cases considered in this paper

CASE I � = [0, T ] × [0, L] = {(t, x); 0 ≤ t ≤ T , 0 ≤ x ≤ L}
CASE II � = [0, T ] × {0, L} = {(t, x); 0 ≤ t ≤ T , x ∈ {0, L}}

We seek the unknowns Gi assuming that Eq.(3) holds and that a
measure of the voltage V is known at the space-time domain � defined
above. In case I, the data is known at all points and at all times; in case
II, the data is known at two end-points and at all times
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for k = 1, 2, . . . , where F ′(·)∗ is adjoint of the Gâteux
derivative, and

wk,δ = ‖V δ − F(Gk,δ)‖2
L2(�)

‖F ′(Gk,δ)∗
(
V δ − F(Gk,δ)

) ‖2
D(F)

. (7)

The minimal error iteration is a gradient method, as is
the steepest descent method. Although the steps of both
methods follow the same direction (the gradient), they differ
on their step size (Kaltenbacher et al. 2008). As a stopping
criteria we use the discrepancy principle with τ > 1, i.e., we
define the stopping iteration step k∗ such that

‖V δ − F(Gk∗,δ)‖L2(�) ≤ τδ≤ ‖V δ − F(Gk,δ)‖L2(�), (8)

for all 1 ≤ k < k∗. In practice, stopping criteria are
needed for all iterative methods, otherwise the scheme
might stop before it is accurate enough, or diverge, or
even waste computing time without significantly improving
the solution. For inverse problems with noisy data this
is even more crucial since running regularization iterative

methods beyond certain threshold forces the method to
“fit the noise”. It is possible to show that, under certain
conditions (we assume that is the case), Gk∗,δ converges to
a solution of F(G) = V as δ → 0; see (Kaltenbacher et al.
2008, Theorem 2.6).

From Eqs. (6) and (8) we obtain an approximation Gk∗,δ

for G. Although the adjoint F ′(Gk,δ)∗ is not known, it is
possible to show that Eq. (6) is actually

G
k+1,δ
i (t, x) = G

k,δ
i (t, x)−wk,δ(V k,δ(t, x)−Ei)U

k(t, x)

(9)

for all i ∈ Ion, where

wk,δ = ‖V δ − F(Gk,δ)‖2
L2(�)

∑

i∈Ion

∥∥
(
V k,δ(t, x) − Ei

)
Uk(t, x)

∥∥2

D(F)

.

Also, V k,δ solves Eq. (3) with G replaced by Gk,δ , and Uk

solves the following PDE with final condition:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− ra

2R
Uxx − CMUt + GLU +

∑

i∈Ion

Gi(t, x)U = α1
(
V δ − V

)
, in (0, T ) × (0, L),

U(T , x) = 0, in x ∈ [0, L],
Ux(t, 0) = −α2

2R

ra

(
V δ(t, 0) − V (t, 0)

)
, in t ∈ [0, T ],

Ux(t, L) = α2
2R

ra

(
V δ(t, L) − V (t, L)

)
, in t ∈ [0, T ].

(10)

The constants α1, α2 depend on the set � as follows:

(α1, α2) =
{

(1, 0) if � = [0, T ] × [0, L],
(0, 1) if � = [0, T ] × {0, L}. (11)

In Theorem 1 of the Appendix, we show how to obtain
Eq. (9) from Eq. (6).

Remark 1 Note from Eq. (9) that G
k+1,δ
i (T , x) =

G
k,δ
i (T , x) for all x ∈ [0, L] and every k ∈ N, since, from

Eq. (10), Uk(T , x) = 0. Thus, G
k,δ
i is never corrected at the

final time T . To recover Gi at time T , one could perform the
computations up to 2T , and then consider only the values
up to T .

The numerical scheme of our method is as fol-
lows. Check Table 1 for notation. Note from Algo-
rithm 1 that solutions of two PDEs are needed for each
iteration.

Remark 2 Whenever G is time independent, and in this case
we write G(t, x) = G(x), the iteration is defined by

G
k+1,δ
i (x) = G

k,δ
i (x)−wk,δ 1

T

∫ T

0
(V k,δ(t, x)−Ei)U

k(t, x) dt

(12)

for i ∈ Ion,
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where

wk,δ = ‖V δ − F(Gk,δ)‖2
L2(�)

∑

i∈Ion

∥∥∥∥
1

T

∫ T

0

(
V k,δ(t, x) − Ei

)
Uk(t, x)dt

∥∥∥∥
2

L∞(0,L)

.

2.1 Theminimal error method applied to the
conductance determination defined on a tree

We now describe the equivalent formulation when the domain
is given by a tree, and we consider for simplicity a tree with
a single branch. Note however that the generalizations for

more complex geometries are straightforward. In general,
the tree � = E ∪ V is defined by the set of edges E and
the set of vertices V . Boundary conditions are imposed on
the terminal vertices VT , and transmission conditions are
imposed on the interior vertices VI . Of course, VT ∪VI = V .
In the case depicted in Fig. 1,

E = {e1, e2, e3}, V = {ν1, ν2, ν3, ν4},
VT = {ν1, ν3, ν4} = {γ1, γ2, γ3}, VI = {ν2}.

Our cable equation model defined on a branched tree is
given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CMVt = ra

2R
Vxx − GL(V − EL) −

∑

i∈Ion

Gi(t, x) [V − Ei] , in (0, T ) × E,

V (0, x) = r(x), in x ∈ �,

Vx(t, γ1) = p(t), in t ∈ [0, T ],
Vx(t, γ2) = Vx(t, γ3) = q(t), in t ∈ [0, T ],
V

e1
x (t, ν2) − V

e2
x (t, ν2) − V

e3
x (t, ν2) = 0, in t ∈ [0, T ],

(13)

where V
ej
x (t, ν2) denotes the derivative of V at the vertex

ν2 taken along the edge ej ∈ {e1, e2, e3} in the direction
towards the vertex.

Consider the operator Eq. (4), where F(G) = V (·, ·)
and V solves Eq. (13). Given V δ , our goal is to obtain an
approximation to G using the iteration Eq. (6). To compute
the adjoint operator F ′(·)∗, we define the following PDE:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− ra

2R
Uk

xx − CMUk
t + GLUk +

∑

i∈Ion

G
k,δ
i (t, x)Uk = V δ − V k,δ, in (0, T ) × E,

Uk(T , x) = 0, in x ∈ �,

Uk
x (t, 0) = Uk

x (t, ν2) = Uk
x (t, ν3) = 0, in t ∈ [0, T ],

Uk
x

e1
(t, ν1) − Uk

x
e2

(t, ν1) − Uk
x

e3
(t, ν1) = 0, in t ∈ [0, T ].

(14)

We then compute G
k+1,δ
i according to Eq. (9). Remarks

1–2 also hold for this problem.

3 Results: numerical simulation

In this section we test the method under different scenarios.
Of course, the solutions are obtained numerically, and for
that we use finite difference scheme in space coupled with
backward Euler in time. To compute the integral in Eq. (12)

Fig. 1 Example of a branched tree with one bifurcation point

we use the trapezoidal rule. In what follows we assume that
the numerical approximations are accurate enough. All the
experiments were performed using Matlab®, and the codes
are available at Mandujano (2020).

To design our in silico experiments, we first choose
G and compute V from Eq. (3), obtaining then V |� .
Of course, in practice, only the values of V δ|� are
given by some experimental measures, and thus subject to
experimental/measurement errors. In our examples, V δ|� is
obtained by considering additive-multiplicative noise

V δ(t, x)=V (t, x)+(aV +b)rand�(t, x) for all (t, x)∈�,

(15)

for scalars a, b, and rand� is a uniformly distributed random
variable taking values in the range [−�, �]. The threshold
δ is such that (cf. Eq. (5)) ‖(aV + b)rand�‖L2(�) ≤ δ, and
we impose then

‖(aV + b)‖L2(�)� = δ. (16)
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In our numerical examples, we use multiplicative and
additive noises, i.e., a = 1/2 and b = 1/2 at Eq. (15).
We noticed no qualitative difference in the results for other
values of a and b.

Remark 3 It is not possible in general to predict how the
added noise will affect the conductances since the operator
F defined in Eq. (4) is not bounded, meaning that small
perturbation of the data might lead to large perturbation of
the conductances. That is why inverse problems are so hard
to approximate.

Next, given the initial guess G1,δ , the data V δ|� , and the
noise threshold δ, we approximate G using the Algorithm 1.
Unlike in “direct” PDE problems where the exact solution
usually has to be computed by numerical over-kill, here we
have the exact G and we use that to gauge the algorithm
performance.

In our numerical examples we consider M = 50 exper-
iments for each δ. Therefore, for an experiment j , we
measured voltage V δ|�j and compute the approximation

G
k∗,δ
j of unknown conductance G. We define the mean and

standard deviation for a function f (in what follows, f will
be either V δ|� or Gk∗,δ):

μf (t, x) = 1

M

M∑

j=1

fj (t, x),

σf (t, x) =
√√√√ 1

M

M∑

j=1

(fj (t, x) − μf (t, x))2, (17)

if f = Gk∗,δ and Ion = {1, 2, · · · , Nion} then μf =(
μ

G
k∗,δ
1

, μ
G

k∗,δ
2

, · · · , μ
G

k∗,δ
Nion

)
.

From Eq. (8), for iteration k∗, we introduce

ErrorG = 1

Nion

∑

i∈Ion

∫

D(G)

|Gi − μ
G

k∗,δ
i

|
|Gi | × 100%,

(18)

where D(G) denotes the domain where G is defined. Given
value V and its approximation μV δ |� , we define the error

ErrorV =
∫

�

∣∣V (t, x) − μV δ |� (t, x)
∣∣

|V (t, x)| d� × 100%. (19)

Remark 4 There seems to be no common agreement in the
literature on what would be the “best” error measurement,
and the choice of the above Mean Absolute Percentage error
is fully justified in, e.g., (de Myttenaere et al. 2016). In
practice, after discretizing the equations and the unknown
functions, only nodal values are known. Consider the space-
time discretization tn = (n − 1)T /(N − 1) for n =

1, 2 · · · , N and xj = (j − 1)L/(J − 1) for j = 1, 2 · · · , J .
Thus, the relative error introduced above Eq. (18) is
approximated by

ErrorG = 1

Nion

T

N

L

J

∑

i∈Ion

J∑

n=1

N∑

j=1

∣∣∣∣∣
Gi(tn, xj )−G

k,δ
i (tn, xj )

Gi(tn, xj )

∣∣∣∣∣

×100%. (20)

Whenever G is time independent, and in this case we
write G(tn, xj ) = G(xj ), the mean absolute percentage
error is defined by

ErrorG = 1

Nion

L

J

∑

i∈Ion

J∑

n=1

∣∣∣∣∣
Gi(xj ) − G

k,δ
i (xj )

Gi(xj )

∣∣∣∣∣ × 100%.

(21)

Similar remark holds for other norms, e.g., for � =
[0, T ] × [0, L], ‖f ‖L2(�) is to be replaced by ‖f ‖l2(�),
where

‖f ‖2
l2(�)

= T

N

L

J

∑

(tn,xj )∈�

|f (tn, xj )|2. (22)

Remark 5 The mean absolute percentage error, for Eq. (19)
and � = [0, T ] × [0, L], is

ErrorV = T

N

L

J

J∑

n=1

N∑

j=1

∣∣∣∣
V (tn, xj ) − μV δ |� (tn, xj )

V (tn, xj )

∣∣∣∣×100%,

(23)

and, for Eq. (19) and � = [0, T ] × {0, L}, is

ErrorV = 1

2

T

N

N∑

j=1

[∣∣∣∣
V (tn, 1) − μV δ |� (tn, 1)

V (tn, 1)

∣∣∣∣

+
∣∣∣∣
V (tn, J ) − μV δ |� (tn, J )

V (tn, J )

∣∣∣∣

]
× 100%. (24)

We present four numerical tests. In the first three
examples the geometry is defined by a segment, and in
the fourth example it is given by a branched tree. The
first example considers only one ion (Ion = {K}), with

Table 2 Numerical results for Example 3.1 with M = 50 experiments
for each noise level �

� ErrorG ErrorV

25% 2.0387 % 26.4003%

5% 0.7738 % 4.7587 %

1% 0.3306 % 0.9567 %

0.2% 0.2034 % 0.1893 %

The first column describes the noise level �, as in Eq. (15). The second
column contains the mean errors according to Eq. (21). Finally, the
third column contains the mean errors according to Eq. (24)
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Fig. 2 Result for Example 3.1
with � = 1% noise. Subplot A
presents the exact, deterministic,
membrane potential at the
end-points. Subplots B and C
show the mean and standard
deviation of the one hundred
membrane potential
measurements, respectively. In
Subplot D displays the
difference between the exact
membrane potential and the
mean of its measurements
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Fig. 3 For Example 3.1 with
� = 1%. Subplot A shows the
exact solution GK. In subplots B
and C present the mean and
standard deviation of the one
hundred approximate solutions,
respectively. Subplot D displays
the difference between the exact
solution and mean of the
approximate solutions
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Table 3 Numerical results for
Example 3.2 with M = 50
experiments for each noise
level �. The first column
describes the noise level �, as
in Eq. (15)

� ErrorG ErrorV

25% 17.7328 % 4.2053 %

5% 2.3030 % 0.6823 %

1% 0.5655 % 0.1312 %

0.2% 0.2061 % 0.0309 %

The second column contains the mean errors according to Eq. (20). Finally, the third column contains
the mean errors according to Eq. (23)
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Fig. 4 For Example 3.2 with
� = 1%. See Fig. 2 for the
subplots description
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Fig. 5 Plots for Example 3.2.
See Fig. 3 for the subplots
description
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Table 4 Numerical results for
Example 3.3 with M = 50
experiments for each noise
level �

� ErrorG ErrorV

25% 8.2571 % 1.7057 %

5% 2.1458 % 2.1458 %

1% 0.5653 % 0.0687 %

0.2% 0.2109 % 0.0136 %

The first column describes the noise level �, as in Eq. (15). The second column contains the mean
errors according to Eq. (21). Finally, the third column contains the mean errors according to Eq. (23)
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Fig. 6 For Example 3.3 with
� = 1%. See Fig. 2 for the
subplots description
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G(x) = GK(x) depending only on the spatial variable,
and the voltage is known at � = [0, T ] × {0, L}, i.e., at
all times but only at the endpoints. In the second example,
still with one ion (Ion = {K}), the conductance depends
on the temporal and spatial variables (t, x) and measured
voltage is known at � = [0, T ] × [0, L], i.e., all the time

and at all points. In the third example, we consider two
ions (Ion = {K, Na}), where G(x) = (GK(x), GNa(x))

depends only on the spatial variable and the data is again
known at � = [0, T ]×[0, L], i.e., all the time for all points.
Finally, in the fourth example we consider the case where
the geometry is defined by a tree, with the conductance

Fig. 7 Results for Example 3.3
with � = 1%. See Fig. 3 for the
subplots description
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Fig. 8 Results for Example 3.3
with � = 1% of noise. See
Fig. 3 for the subplots
description
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being time independent under the presence of one ion, and
the voltage data being known at all the time and all the
points.

For all numerical examples let CM = 1 (μF/cm2),
ra = 0.0238 (cm), R = 34.5 (�cm), GL = 0.3 (mS/cm2)

and EL = 10.613 (mV ); see Tuckwell (1988, page 69),
(Kashef and Bellman 1974, page 4) and (Cooley and Dodge
Jr 1966, page 586). The following Neumann boundary
conditions

Vx(t, 0) = p(t) = −RI (t)

πra2
, Vx(t, L) = q(t) = 0,

correspond to injecting a current I (t) at x = 0,
and imposing a sealed end condition at x = L; see
(Cox 2006; Cox and Griffith 2001; Mascagni 1990;
Mascagni et al. 1989). We consider the current I (t) =
0.1t2 exp(−10t) (mA) and time T = 20 (ms), see Cox and
Griffith 2001, page 101). We assume that initial condition
V (0, x) = r(x) = 0 (mV ), see (Cox 2006; Cox and Griffith
2001). As previously mentioned, we consider M = 50
experiment for each additive-multiplicative noise Eq. (15),

where we set � = 25%, 5%, 1% and 0.2% (Bell and
Craciun 2005; Cox 2006; Tadi et al. 2002). For stopping
criterion Eq. (8), we choose τ = 1.01. Finally, we set the
initial guesses to be zero in the iterative scheme, and thus
the initial relative error is 100%.

In Examples 3.1, 3.2 and 3.3, we consider L = 0.1 (cm),
see (Cox 2006, page 145). We solve Eqs. (3) and (10) via
finite differences in space, with �x = 0.001 (cm), and in
time, with �t = 0.2 (ms).

For Example 3.4, the length of the edges are: |e1| =
|e2| = 0.1 (cm) and |e3| = 0.2 (cm). The values of the
other parameters are the same as above. In this example, we
solve the differential Eqs. (13) and (14) again using finite
differences, but with explicit Euler in time, and �x = �t =
0.01.

Example 3.1 Consider a particular instance from Eq. (3),
where Nion = 1(Ion = {K}), EK = −12 (mV ) and
Gi(t, x) = GK(x). The goal is to estimate

GK(x) = 0.2 + 0.2/ ( 1 + exp( ( 0.1/2 − x )/0.01 ) ) (mS/cm2)

Table 5 Numerical results for
Example 3.4 with M = 50
experiments for each noise
level �

� ErrorG ErrorV

25% 2.8572 % 3.9757 %

5% 0.7661 % 0.8127 %

1% 0.2926 % 0.1605 %

0.2% 0.1204 % 0.0319 %

The first column describes the noise level �, as in Eq. (15). The second column contains the mean
errors according to Eq. (21). Finally, the third column contains the mean errors according to Eq. (23)
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Fig. 9 For Example 3.4 and
edge e1, with � = 1%. See
Fig. 2 for the subplots
description
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given V δ|� = {(

V δ(t, 0), V δ(t, L)
) : t ∈ [0, 20]}. See

Cox (2006).
In Table 2 we present the results for various levels of

noise. At each line of the table the noise is reduced by a
factor of five, and that leads to a similar reduction of the

residual. The same cannot be stated about the approximation
error, exposing the instability of the problem.

In Figs. 2 and 3, we plot results for � = 1% of
noise with M = 50 experiments (see Table 2, line 4). In
Fig. 2, we display the exact membrane potential, the mean

Fig. 10 Plots for Example 3.4
and edge e1. See Fig. 3 for the
subplots description
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Fig. 11 For Example 3.4 and
edge e2, with � = 1%. See
Fig. 2 for the subplots
description
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and standard deviation of the voltage measurement (see
Eq. (17), for f = V δ|�), and the difference between the
exact membrane potential and mean of its measurements.
In Fig. 3, we show the exact conductance, the mean
and standard deviation of the approximate solutions (see
Eq. (17), for f = G

k∗,δ
K ), and the difference between the

conductance and mean of the approximate solutions. We
also consider the higher noise level � = 5% and present the
related figures in the Online Resource.

Example 3.2 We consider conductance as depending on
time and space, where Nion = 1(Ion = {K}), EK =
−12 (mV ), Gi(t, x) = GK(t, x). The goal is to estimate

GK(t, x) = 0.2 + 0.2/ ( 1 + exp( ( 0.1/2 − x )/0.01 ) )

+t + 1 (mS/cm2)

given V δ|� = {
V δ(t, x) : (t, x) ∈ [0, 20] × [0, 0.1]}.

Fig. 12 Plots for Example 3.4
and edge e2. See Fig. 3 for the
subplots description
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Fig. 13 For Example 3.4 and
edge e3, with � = 1%. See
Fig. 2 for the subplots
description
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This example is harder than the previous one since now
the conductance depends on both time and space. In Table 3
we present the results for various levels of noise, and the
same comments of Example 3.1 apply. In Figs. 4 and 5, we
plot numerical results for � = 1% of noise with M = 50
experiments (see Table 3, line 4). Observe that the data for
both V δ|� and GK depend on time and space. See also our
Online Resource for experiments with � = 5%.

Example 3.3 Consider now two different ions, K and Na,
where Nion = 2(Ion = {K, Na})EK = −12 [mV ] and
ENa = 115 [mV ]. The goal is to approximate

GK(x) = 0.2 + 0.2/ ( 1 + exp( ( 0.1/2 − x )/0.01 ) )

and

GNa(x) = 0.1 + 0.1/ ( 1 + exp( ( 0.1/2 − x )/0.01 ) ) ,

Fig. 14 Plots for Example 3.4
and edge e3. See Fig. 3 for the
subplots description
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given V δ|� = {
V δ(t, x) : (t, x) ∈ [0, 20] × [0, 0.1]}.

The extra difficulty in this example lies in the fact that
there are two conductance functions to be discovered. In
Table 4 we present the results for various levels of noise.
In Figs. 6, 7 and 8, we plot results for � = 1% of noise
with M = 50 experiments (see Table 3, line 3). Note that
now there are two conductances, one related to K and the

other to Na. For results with � = 5% see the Online
Resource.

Example 3.4 As our final example, we consider the domain
defined by a tree, as discussed in Section 2.1. We consider
Nion = 1(Ion = {K}), EK = −12 (mV ) and Gi(t, x) =
GK(x). Given V δ in (0, T ) × �, the goal is to estimate

GK(x) = 0.2 + 0.2/ ( 1 + exp( ( 0.1/2 − dist(x, ν1) )/0.01 ) ) if x ∈ e1,

0.2 + 0.2/ ( 1 + exp( ( 0.1/2 − 0.01 − dist(x, ν2) )/0.01 ) ) if x ∈ e2 ∪ e3,

where dist(a, b) denotes the distance between the points a

and b. Table 5 presents the results for various levels of noise.
In Figs. 9, 10 11, 12, 13 and 14, we plot the numerical result
for � = 1%, and in the Online Resource we plot the results
for � = 5%.

4 Conclusions

The inverse problem of finding conductances from voltage
data for a given neuron model is important and difficult.
This paper presents and tests a way to approximate them
based on the minimal error iterative method and applied
to a cable model. Although the scheme has a somewhat
straightforward description, it is not practical in its original
formulation since computing the adjoint of the Gâteux
derivative seems unfeasible in general. The development of
auxiliary equations to overcome such hurdle requires some
art, and is done on a case-by-case basis.

Certainly, the method has limitations and is no panacea.
How well the method performs depends on the noise, on
how close to the solution is the initial guess, the amount of
data, and on the model used. There is a nontrivial interplay
between all those conditions. For instance, determining
two conductances is harder than determining one, finding
conductances that depend on time and space is harder than
finding conductances that depend on space only. Also,
having data at all points is better than if the data is available
at isolated points only.

Our examples display some of these features. For
some of them, the method performs nicely, capturing the
correct conductances. If the level of noise increases, the
method delivers reasonable approximations (see our Online
Resource for that), but these approximations cannot be
qualitatively better than the available data, especially for
inverse problems. Inverse problems are unstable, and thus,
not well-posed and difficult to solve in general. Even when
the method does not do a good job in capturing the correct
conductance, the computed residual is small, and whenever

the residual is of the same order as the noise, there is no
point in iterating any further.

Under reasonable conditions, the method yields good
results even in the presence of noise, as shown here. It is also
general enough to accommodate for different geometries
(straight cables and branched trees), and different measured
data (endpoints, whole cable).

We believe that methods that are capable of inferring
spatial properties of neurons are in demand and will grow in
importance, in particular due to new imagining techniques
such as VSDI. Also, regularizing methods for inverse
problems are applied in several research fields and they can
also contribute to Neuroscience.

Finally, we note that inverse problems are nonlinear by
nature, even if the equations involved are linear. If the
equations are nonlinear, then the problem becomes much
harder since finding the adjoint of the Gateaux derivatives
of the operators involved is highly nontrivial. The present
work represents a first step towards finding conductances
for neuronal models. The final goal is to develop a similar
method for the Hodgkin-Huxley system, but the highly
nonlinear nature of those equations makes the task daunting,
even when considering ODEs.
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Appendix A: Abstract Formulation

In practice, V |� is the data and given such informa-
tion and under the assumption that Eq. (3) holds, the
inverse problem under consideration is to recover or approx-
imate the conductances. The lack of stability, charac-
teristic of ill-posed problems can be tamed by regular-
ization methods (Engl et al. 1996; Kaltenbacher et al.
2008; Kirsch 2011), in particular by the minimal error
method.
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Consider for simplicity T > 0. Let � = {(t, x) : 0 ≤
t ≤ T , 0 ≤ x ≤ L}, and

H(F) = (
L2(�)

)Nion =
{
f : � → R

Nion :
∫

�

|f (ξ)|2d ξ < ∞
}
,

R(F ) = L2(�) =
{
f : � → R :

∫

�

|f (ξ)|2d ξ < ∞
}

.

It is well-known that H(F) and R(F) become Hilbert
spaces under the inner products

〈f, h〉H(F) =
∫

�

f (ξ)h(ξ)dξ,

〈f, h〉R(F) =
∫

�

f (ξ)h(ξ)dξ,.

and the associated norms ‖f ‖H(F) = 〈f, f 〉1/2
H(F),

‖f ‖R(F) = 〈f, f 〉1/2
R(F). Note that the inner product on R(F)

depends on �, see Eq. (11), as follows:

〈f, h〉R(F) = α1

∫ L

0

∫ T

0
f (t, x)h(t, x) dt dx

+α2

∫ T

0
f (t, 0)h(t, 0)dt + α2

∫ T

0
f (t, L)g(t, L) dt,

(25)

where α1, α2 are as in Eq. (11).
The set D(F) = (L∞(�))Nion ⊂ H(F) is the Banach

space of “essentially” bounded functions (see Kreyszig
(1978) for precise definitions). Consider the operator F :
D(F) ⊂ H(F) → R(F) defined by F(G) = V |� . Our
goal is to find an approximation for G using the minimal
error iteration defined by Eq. (6).

In the next Theorem we show how to obtain Eq. (9) from
Eq. (6).

Theorem 1 Consider the iteration in Eq. (6). Then Eq. (9)
holds

Proof Given Gk,δ ∈ D(F) and θ = (θ1, . . . , θNion) ∈
H(F), the Gâteux derivative of F at Gk,δ in the direction θ

is given by

F ′(Gk,δ)(θ) = lim
λ→0

F(Gk,δ + λθ) − F(Gk,δ)

λ
= Wk|�,

(26)

where Wk solves

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ra

2R
Wk

xx(t, x) − CMWk
t (t, x) − GLWk(t, x)

−
∑

i∈Ion

G
k,δ
i (t, x)Wk(t, x) =

∑

i∈Ion

θi(V
k,δ(t, x) − Ei) in �,

Wk(0, x) = 0 for 0 < x < L,

Wk
x (t, 0) = Wk

x (t, L) = 0 for 0 < t < T,

(27)

and V k,δ solves Eq. (3) with Gi replaced by G
k,δ
i . To

obtain Eq. (27) from Eq. (26), it is enough to consider
the difference between problem in Eq. (3) with coefficients
Gk,δ + λθ and Gk,δ , divide by λ and take the limit λ → 0.

Let V k,δ|� = F(Gk,δ). From the minimal error iteration
in Eq. (6), we gather that

〈Gk+1,δ − Gk,δ, θ〉H(F) = wk,δ〈F ′(Gk,δ)∗(V δ |� − F(Gk,δ)), θ〉H(F)

= wk,δ〈F ′(Gk,δ)∗(V δ |� − V k,δ |�), θ〉H(F).

By definition of adjoint operator,

〈Gk+1,δ − Gk,δ, θ〉H(F) = wk,δ〈V δ |� − V k,δ |�, F ′(Gk,δ)(θ)〉R(F)

= wk,δ〈V δ |� − V k,δ |�,Wk |�〉R(F),(28)

from Eq. (26).
Although Eq. (28) yields an interesting relation, it

carries an impeding dependence on θ through Wk . It

is possible to avoid that by performing some “trick”
manipulations.

Multiplying the first equation from (10) by −Wk , and
integrating in the intervals [0, T ] and [0, L] we gather that

∫ L

0

∫ T

0

ra

2R
Uk

xx(t, x)Wk(t, x) dt dx

+
∫ L

0

∫ T

0
CM Uk

t (t, x)Wk(t, x) dt dx

−
∫ L

0

∫ T

0
GLUk(t, x)Wk(t, x)dtdx

−
∫ L

0

∫ T

0

∑

i∈ion

G
k,δ
i (t, x) Uk(t, x)Wk(t, x) dt dx =

− α1

∫ L

0

∫ T

0

(
V δ(t, x)−V k,δ(t, x)

)
Wk(t, x) dt dx. (29)

Integrating by parts twice the first term from Eq. (29)
with respect to the space variable, and using the boundary
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conditions for Wk we have
∫ L

0

∫ T

0

ra

2R
Uk

xx(t, x)Wk(t, x) dt dx

=
∫ L

0

∫ T

0

ra

2R
Uk(t, x)Wk

xx(t, x) dt dx

+ ra

2R

∫ T

0
Uk

x (t, x)Wk(t, x)|L0 dt, (30)

where we denote Uk
x (t, x)Wk(t, x)|L0 = Uk(t, L)Wk(t, L)

−Uk(t, 0)Wk(t, 0). Similarly, integrating by parts the

second term from Eq. (29) with respect to time and using
the initial condition of Wk and the final condition of Uk , we
gather that

∫ L

0

∫ T

0
CM Uk

t (t, x)Wk(t, x) dt dx

= −
∫ L

0

∫ T

0
CMUk(t, x)Wk

t (t, x) dt dx. (31)

Substituting Eqs. (30) and (31) in Eq. (29), it follows that

∫ L

0

∫ T

0

(
ra

2R
Wk

xx(t, x) − CMWk
t (t, x) − GLWk(t, x) −

∑

i∈ion

G
k,δ
i (t, x)Wk(t, x)

)
Uk(t, x) dtdx

= −α1

∫ L

0

∫ T

0

(
V δ(t, x) − V k,δ(t, x)

)
Wk(t, x) dt dx − ra

2R

∫ T

0
Uk

x (t, x)Wk(t, x)|L0 dt .

Substituting the first equation from Eq. (27) in the
previous equation, we obtain

∫ L

0

∫ T

0

∑

i∈Ion

θi(V
k,δ(t, x) − Ei)U

k(t, x) dt dx

= −α1

∫ L

0

∫ T

0

(
V δ(t, x) − V k,δ(t, x)

)
Wk(t, x) dtdx

− ra

2R

∫ T

0
Uk

x (t, x)Wk(t, x)|L0 dt .

From the boundary conditions from Eq. (10), the
following expression holds:

∫ L

0

∫ T

0

∑

i∈Ion

θi(V
k,δ(t, x) − Ei)U

k(t, x) dtdx =

−α1

∫ L

0

∫ T

0

(
V δ(t, x) − V k,δ(t, x)

)
Wk(t, x) dtdx

−α2

∫ T

0

(
V δ(t, 0) − V k,δ(t, 0)

)
Wk(t, 0)

−α2

∫ T

0

(
V δ(t, L) − V k,δ(t, L)

)
Wk(t, L) dt .

From the previous equation and the definition of the inner
product in Eq. (25), we have

∫ L

0

∫ T

0

∑

i∈Ion

θi(V
k,δ(t, x) − Ei)U

k(t, x) dtdx

= −〈V δ|� − V k,δ|�, Wk|�〉R(F). (32)

From Eqs. (28) and (32) we have

∫ L

0

∫ T

0

∑

i∈Ion

θi

(
G

k+1,δ
i (t, x) − G

k,δ
i (t, x)

)
dtdx

= −wk,δ

∫ L

0

∫ T

0

∑

i∈Ion

θi(V
k,δ(t, x) − Ei)U

k(t, x) dtdx.

Since θ ∈ H(F) is arbitrary and L∞(�) is dense in
L2(�), we gather that the following iteration holds:

G
k+1,δ
i (t, x) = G

k,δ
i (t, x) − wk,δ(V k,δ(t, x) − Ei)U

k(t, x)

for all i ∈ Ion.
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