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Abstract

In this article we investigate a family of randomized Kaczmarz type methods, for solving
systems of linear ill-posed equations. The method under consideration is a probabilistic
version of the projective Landweber-Kaczmarz (PLWK) method in [20] (see also [21]). We
prove mean square convergence to zero of the iteration error.

Numerical tests are presented for a linear ill-posed problem modeled by a linear system
with over 107 equations, indicating a superior performance of the proposed method when
compared with other well established iterations. Our preliminary investigation indicates that
the proposed iteration is a promising alternative for computing stable solutions of large scale
systems of linear ill-posed equations.
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1 Introduction

The classical Kaczmarz iteration consisting of cyclic orthogonal projections was devised in 1937
by the Polish mathematician Stefan Kaczmarz for solving systems of linear equations [17]. This
method is simple to implement, and it was successfully used for solving ill-posed linear systems
related to several relevant applications, e.g., X-ray Tomography1 [15, 16, 24, 25, 26, 27] and
Signal Processing [6, 28, 34].

The starting point of our approach is the projective Landweber (PLW) method [21] and
its corresponding Kaczmarz version, the projective Landweber-Kaczmarz (PLWK) method [20].
Our main goal is to modify the PLWK, in order to obtain an efficient method for computing (in
a stable way) approximate solutions to large scale systems of linear ill-posed equations.

1.1 Ill-posed systems:

The inverse problem we are interested in consists of determining an unknown quantity x ∈ X
from the set of data (y0, . . . , yN−1) ∈ Y N , where X, Y are Hilbert spaces and N >> 1 is large

†joelrabelo@ufpi.edu.br, ‡yuri.saporito@gmail.com, §acgleitao@gmail.com.
1In the tomography literature, the Kaczmarz method is called “Algebraic Reconstruction Technique” (ART).
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(the case yi ∈ Yi with possibly different spaces Y0, . . . , YN−1 can be treated analogously). In
practical situations, the exact data are not known. Instead, only approximate measured data
yδi ∈ Y are available such that

‖yδi − yi‖ ≤ δi , i = 0, . . . , N − 1 , (1)

with δi > 0 (noise level). We use the notation δ := (δ0, . . . , δN−1).
The finite set of data above is obtained by indirect measurements of the parameter x, this

process being described by the model Aix = yi, for i = 0, . . . , N − 1. Here Ai : X → Y are
linear ill-posed operators [10]. Summarizing, the abstract formulation of the inverse problems
under consideration consists in finding x ∈ X such that

Ai x = yδi , i = 0, . . . , N − 1 . (2)

Standard methods for the solution of system (2) are based in the use of Iterative type regu-
larization [1, 9, 14, 18, 19] or Tikhonov type regularization [9, 23, 30, 32, 33, 29] after rewriting
(2) as a single equation

Ax = yδ, with A := (A0, . . . , AN−1) : X → Y N , yδ :=
(
yδ0, . . . , y

δ
N−1

)
. (3)

If one resorts to the functional analytical formulation (3), one has to face the numerical chal-
lenges of solving a large scale system of ill-posed equations [7]. When applied to (3), the above
mentioned solution methods may become inefficient if N is large.

An alternative technique for solving system (2) in a stable way is to use Kaczmarz (cyclic)
type regularization methods. This technique was introduced in [13, 11], [8], [12], [2], [22] and
[5] for the Landweber iteration, the Steepest-Descent iteration, the Expectation-Maximization
iteration, the Levenberg-Marquardt iteration, the REGINN-Landweber iteration, and the Iter-
atively Regularized Gauss-Newton iteration respectively.

1.2 PLW and PLWK methods:

The PLW method [21] (originally proposed for nonlinear ill-posed equations) is an iterative type
method for solving (2) when N = 1, i.e., A0x = y0. This method produces a sequence (xδk) such
that, in each iteration k, a half space Hxδk

:= {z ∈ X, 〈z − xδk, A∗0(yδ −A0x
δ
k)〉 ≥ ‖yδ −A0x

δ
k‖2}

separating the current iterate xδk from the solution set A−10 (y0) is defined, and xδk+1 (the next

iterate) is a relaxed projection of xδk onto this set. The resulting iterative method for solving
A0x = yδ0 can be written in the form

xδk+1 := xδk − θk λk A
∗
0

(
A0x

δ
k − yδ0

)
, (4)

where θk ∈ (0, 2) is a relaxation parameter and λk ≥ 0 gives the exact projection of xδk onto Hxδk
(see [21, Eq. (8)]). Observe that this iteration is a Landweber iteration with a stepsize control.

The PLWK method [20] (originally proposed for systems of nonlinear ill-posed equations) is
an iterative method for solving (2) when N > 1. It consists in coupling the PLW method (4)
with the Kaczmarz (cyclic) strategy and incorporating a bang-bang parameter, namely

xδk+1 := xδk − θk λk ωk A
∗
[k]

(
A[k]x

δ
k − yδ[k]

)
. (5a)

Here the parameters θk, λk have the same meaning as in (4), while

ωk = ωk(δ[k], y
δ
[k]) :=

{
1 ‖A[k]x

δ
k − yδ[k]‖ > τδ[k]

0 otherwise
, (5b)
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where τ > 1 is an appropriate chosen positive constant and [k] := (k mod N) ∈ {0, . . . , N − 1}.
As usual in Kaczmarz type algorithms, a group of N subsequent steps (starting at some

integer multiple of N) is called a cycle. In the case of noisy data, the iteration terminates if all
ωk become zero within a cycle, i.e., if ‖Aixδk+i − yδi ‖ ≤ τδi, i ∈ {0, . . . , N − 1}, for some integer
multiple k of N .

In [20] the authors also consider the PLWKr method, namely a randomized version of the
PLWK method (in the spirit of [3]) where [k] is randomly chosen in {0, . . . , N − 1} (the cyclic
structure of PLWK is preserved, i.e., within a cycle each equation is chosen exactly once).

The PLWK iteration in (5) exhibits the following characteristic: For noise free data, ωk = 1
for all k and each cycle consist of exactly N steps of type (4). Thus, the numerical effort required
for the computation of one cycle of PLWK rivals the effort needed to compute one step of PLW
(or Landweber) for (3). In this manuscript we propose and analyze a randomized version of
the PLWK method, namely the randomized projective Landweber-Kaczmarz (rPLWK) method.
Our main goal is to modify the PLWK, in order to obtain an efficient method for computing
approximate solutions to large scale systems (2) of ill-posed equations.

1.3 Outline of the manuscript:

In Section 2 we state the main assumptions and introduce the rPLWK method.
Section 3 is devoted to the convergence analysis of rPLWK. We estimate the average gain (Propo-
sition 3.2), prove monotonicity of average iteration error (Corollary 3.4) and square summability
of the average residuals (Corollary 3.5). Moreover, convergence for exact data is proven (Theo-
rem 3.7).
In Section 4 we present numerical experiments for a linear ill-posed problem modeled by a Hilbert
type matrix with over 106 lines, while Section 5 is devoted to final remarks and conclusions.

2 The randomized PLWK method:

In what follows we introduce the randomized projective Landweber-Kaczmarz (rPLWK) method
for solving the linear ill-posed problem (1), (2) in the case of exact data, i.e., δi = 0. In this
case, the inverse problem can be written in the form

Ai x = yi , i = 0, . . . , N − 1 , (6)

or simply Ax = y (compare with (3)).
We start this section by presenting the main assumptions, which are required for the analysis

derived in this paper.

2.1 Main assumptions

We assume that some guess x0 ∈ X for the solution of (6) is given (e.g., x0 = 0) as well as
a sequence sequence (θk) ∈ R of relaxation parameters. For the remaining of this article we
suppose that the following assumptions hold true:

(A1) There exists x? ∈ X s.t. Ai x
? = yi, i = 0, . . . , N − 1; here yi ∈ R(Ai) are exact data.

(A2) Ai : X → Y are linear, bounded and ill-posed operators, i.e., even if the operator
A−1i : R(Ai)→ X (the left inverse of Ai) exists, it is not continuous.

(A3) The sequence (θk) satisfies 0 < infk θk and supk θk < 2.

Notice that Assumption (A2) implies the existence of a constant C > 0 s.t. maxi ‖Ai‖ ≤ C.
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2.2 Description of the method

In the sequel we introduce the rPLWK method for solving (6). Given x0 and (θk) as in Sec-
tion 2.1, we consider the sequence (xk) ∈ X genarated by the iteration formula

xk+1 = xk − θk λIk A
∗
Ik

(AIkxk − yIk) , k = 0, 1, . . . (7a)

where the stepsize λIk is given by

λIk :=


‖AIkxk − yIk‖2

‖A∗Ik(AIkxk − yIk)‖2
, if A∗Ik(AIkxk − yIk) 6= 0

0 , otherwise

(7b)

Here Ik is an independent and identically distributed sequence of indexes taking values in
{0, . . . , N − 1} in the probability space (Ω,F ,P). We denote pi = P(Ik = i).

The careful reader observes that, differently from classical Kaczmarz type methods (e.g.,
Kaczmarz/ART [17], LWK [13, 11], PLW [21], PLWK and its random variant PLKWr [20],
LMK [2], EMK [12]), the rPLWK method exhibits no cyclic structure since the choice of the
index Ik is independent of Ij for j = 1, . . . , k − 1. probabilistic The stochastic structure of
the rPLKW method is motivated by the ideas discussed in [31], where the operator A in (3)
is considered to be of the form A = (Ai)

N−1
i=0 ∈ RN×M , i.e., a matrix with lines Ai ∈ R1,M ,

X = RM,1, Y = R and N >> M . The authors propose a non-cyclic method with an iterative
step analog to the step of the Kaczmarz method.2 In [31] the index Ik is chosen from the set
{0, . . . , N − 1} at random, with probability pi proportional to ‖Ai‖2.

Remark 2.1. The rPLWK method with exact projections is obtained by taking θk = 1
in (7a), which amounts to define xk+1 as the orthogonal projection of xk onto HIk,xk , where

Hi,x := {z ∈ X | 〈z − x, A∗i (yi −Aix)〉 ≥ ‖yi −Aix‖2}

(compare with the PLW method in [21]). A relaxed variant of the rPLWK method uses θk ∈ (0, 2)
so that xk+1 is defined as a relaxed projection of xk onto HIk,xk .

Remark 2.2. Notice that A∗i (Aix−yi) = 0 implies Aix = yi.
3Consequently, the rPLWK method

in (7) can be interpreted as follows:

• If AIkxk 6= yIk , then xk+1 is given by (7a) with λk = ‖AIkxk − yIk‖2‖A∗Ik(AIkxk − yIk)‖−2;

• If AIkxk = yIk , then xk+1 = xk and λk = 0.

Remark 2.3. Assumption (A2) imply λIk ≥ C−2 if ‖AIkxk − yIk‖ > 0 (see also Remark 2.2).
In other words, C−2 is a natural lower bound for the stepsizes defined in (7b), whenever xk is
not a solution of the equation AIkx = yIk .

3 Convergence Analysis

In what follows we estimate the “average gain” E[‖x∗ − xk+1‖2]− E[‖x∗ − xk‖2], where x∗ ∈ X
is a solution of (6). This is a fundamental result for the forthcoming analysis.

Remark 3.1. Given x∗ ∈ X a solution of (6), the mean square iteration error E[‖x∗−xk‖2] is
defined by the average error over all possible realizations of I1, . . . , Ik−1 that define xk.

2Namely, xk+1 = xk − (yIk −AIkxk)‖AIk‖
−2A∗Ik , k = 0, 1, . . .

3Indeed, notice that Aix − yi ∈ R(Ai). Moreover, A∗i (Aix − yi) = 0 implies Aix − yi ∈ N(A∗i ) = R(Ai)
⊥.

Consequently, Aix− yi ∈ R(Ai) ∩R(Ai)
⊥ = {0}.
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Proposition 3.2. Let assumptions (A1), (A2) hold true and (xk) be a sequence generated by
the rPLWK method (7). Then, for any x∗ solution of (6) we have

E[‖x∗ − xk+1‖2]− E[‖x∗ − xk‖2] = θk(θk − 2)E[λIk‖AIkxk − yIk‖
2] , k = 0, 1, . . . (8)

Proof. From (A1) we know that
⋂
iA
−1
i (yi) 6= ∅. Thus, for x∗ as in the assumptions we have

‖x∗ − xk+1‖2 − ‖x∗ − xk‖2 = 2〈x∗ − xk, xk − xk+1〉+ ‖xk − xk+1‖2

= −2θkλIk〈xk − x
∗, A∗Ik(AIkxk − yIk)〉+ θ2kλ

2
Ik
‖A∗Ik(AIkxk − yIk)‖2

= −2θk
‖AIkxk − yIk‖4

‖A∗Ik(AIkxk − yIk)‖2
+ θ2k

‖AIkxk − yIk‖4

‖A∗Ik(AIkxk − yIk)‖2

= θk(θk − 2)
‖(AIkxk − yIk)‖4

‖A∗Ik(AIkxk − yIk)‖2
= θk(θk − 2)λIk‖AIkxk − yIk‖

2. (9)

Thus, if we denote by Fk the σ-algebra generated by I1, . . . , Ik−1, we conclude that xk is mea-
surable with respect to Fk, and Ik is independent of it. Consequently,

E[‖x∗ − xk+1‖2 − ‖x∗ − xk‖2|Fk] = θk(θk − 2)E[λIk‖AIkxk − yIk‖
2|Fk].

Now, taking the full conditional yields (8).

Remark 3.3. Notice that, in the final step of the proof of Proposition 3.2 we have

E[λIk‖AIkxk − yIk‖
2|Fk] =

N−1∑
i=0

pi λi ‖Aixk − yi‖2 =
N−1∑
i=0

pi
‖Aixk − yi‖4

‖A∗i (Aixk − yi)‖2
.

A direct consequence of Proposition 3.2 is the monotonicity of the mean square iteration
error:

Corollary 3.4. Let assumption (A1) hold true and (xk) be a sequence generated by the rPLWK
method (7). Then, for any x∗ solution of (6) we have

E[‖x∗ − xk+1‖2] ≤ E[‖x∗ − xk‖2] , k = 0, 1, . . . (10)

Another consequence of Proposition 3.2 is discussed in the next corollary. This result is
needed for the proof of the main convergence theorem of this manuscript (see Theorem 3.7).

Corollary 3.5. Let assumptions (A1), (A3) hold true and (xk) be a sequence generated by the
rPLWK method (7). Then, the series

∞∑
k=0

θk E[λIk‖AIkxk − yIk‖2] and
∞∑
k=0

E[‖AIkxk − yIk‖2]

are summable.

Proof. The summability of the first series follows from (A3) together with the fact that the series∑
k θk(2− θk)E[λIk‖AIkxk − yIk‖2] is summable (see Proposition 3.2). The summability of the

second series follows from (A3), the summability of the first series, and the facts:

i) λIk = 0 iff AIkxk = yIk ; ii) λIk ≥ 1/C2 whenever ‖AIkxk − yIk‖ > 0
(see Remarks 2.2 and 2.3).
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Yet another consequence of Proposition 3.2 is the fact that the sequence (xk) generated
by the rPLKW method with exact projections (i.e., obtained by taking θk = 1 in (7a)) is an
average reasonable wanderer in the sense of [4], i.e.,

∑∞
k=0 E[‖xk − xk+1‖2] < ∞. Indeed,

since θk = 1, it follows from (7) that either AIkxk = yIk and xk+1 = xk; or ‖AIkxk − yIk‖ > 0
and xk+1 = xk − λIkA

∗
Ik

(AIkxk − yIk) ∈ HIk,xk (see Remark 2.1). In either case we have

〈xk − x∗, xk − xk+1〉 = ‖xk − xk+1‖2 for any solution x∗ of AIkx = yIk .4 Thus, arguing as in (9)
we obtain

‖x∗ − xk+1‖2 − ‖x∗ − xk‖2 = 2〈x∗ − xk, xk − xk+1〉+ ‖xk − xk+1‖2 = −‖xk − xk+1‖2.

Now, arguing as in Corollary 3.5 we conclude that
∞∑
k=0

E[‖xk − xk+1‖2] <∞.

We are now ready to state and prove the main result of this manuscript, namely convergence
in mean square of the rPLWK method. First, however, we briefly recall the concept of minimal
norm solutions of (6).

Remark 3.6. It is worth noticing that there exists an x0-minimal norm solution of (6), i.e., a
solution x† of (6) satisfying ‖x†− x0‖ = inf{‖x− x0‖; x ∈ X is solution of (6)}.5Moreover, x†

is the only solution of (6) with this property.

Theorem 3.7 (Convergence for exact data). Let assumptions (A1), . . . ,(A3) hold true. Then,
any sequence (xk) generated by the rPLWK method (7) converges in mean square to x†, the
x0-minimal norm solution of (6). I.e., E[‖x† − xk‖2]→ 0 as k →∞.

Proof. Let x? be given as in (A1). The proof is divided in three main steps:
Step 1. We prove that (xk) is a Cauchy sequence.
It is enough to prove that ek := x? − xk is a Cauchy sequence. From Corollary 3.4 follows

lim
k→∞

E[‖ek‖2] = ε , (11)

for some ε ≥ 0. In order to prove that (ek) is a Cauchy sequence, we first prove

E[〈en − ek, en〉]→ 0 and E[〈el − en, en〉]→ 0 as k, l→∞, (12)

with k ≤ l for some k ≤ n ≤ l (compare with [14, Theorem 2.3]).Notice that E[〈· , · 〉] defines an
inner product in L2(Ω;X).6

Notice that, for any k ≤ l, one can always choose an index n with k ≤ n ≤ l such that

E[λI‖AI xn − yI‖2] ≤ E[λI‖AI xj − yI‖2] , ∀ k ≤ j ≤ l (13)

holds true.7 Next, we argue with (7a) and the Cauchy–Schwartz inequality to estimate∣∣E[〈en − ek, en〉]
∣∣ =

∣∣∣ n−1∑
j=k

E[〈xj+1 − xj , x? − xn〉]
∣∣∣

=
∣∣∣ n−1∑
j=k

E[θj λIj 〈A∗Ij (yIj −AIjxj), x
? − xn〉]

∣∣∣
=

∣∣∣ n−1∑
j=k

θj E[λI〈yI −AIxj , AI(x? − xn)〉]
∣∣∣

≤
n−1∑
j=k

θj E[λI‖AIxj − yI‖2]
1
2 E[‖AIxn − yI‖2]

1
2 . (14)

4Notice that all solutions of AIkx = yIk belong to HIk,xk .
5See, e.g., [9] for details.
6L2(Ω;X) is the space of square integrable random variables defined on Ω and taking values in X.
7We adopt the notation E[λI‖AI xk − yI‖2] = E[λIk‖AIk xk − yIk‖

2].
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Now notice that, due to (13), we have for all j ∈ {k, k + 1, . . . , l}

E[‖AIxn − yI‖2] = C2E[C−2‖AIxn − yI‖2] ≤ C2E[λI‖AIxn − yI‖2] ≤ C2E[λI‖AIxj − yI‖2] .

Substituting this inequality in (14) we obtain

∣∣E[〈en − ek, en〉]
∣∣ ≤ C

n−1∑
j=k

θj E[λI‖AIxj − yI‖2] = C
n−1∑
j=k

θj E[λIj‖AIjxj − yIj‖2].

Consequently, Corollary 3.5 allow us to conclude E[〈en − ek, en〉]→ 0 as k, l→∞. Analogously
one proves E[〈el − en, en〉]→ 0 as k, l→∞, establishing (12).

Finally, one argues with (12), (11), inequality E[‖ej−ek‖2]
1
2 ≤ E[‖ej−el‖2]

1
2 +E[‖el−ek‖2]

1
2

and identities

E[‖ej − el‖2] = 2E[〈el − ej , el〉] + E[‖ej‖2]− E[‖el‖2] ,
E[‖el − ek‖2] = 2E[〈el − ek, el〉] + E[‖ek‖2]− E[‖el‖2]

to conclude that E[‖ej − ek‖2]→ 0, as k, l→∞, i.e., (ek) is a Cauchy sequence in L2(Ω;X).

Step 2. We prove that (xk) converges to some x∗ in L2(Ω;X), which is a solution of (6).
Since (xk) is Cauchy in L2(Ω;X), it has an accumulation point x∗. Moreover, it follows from
Corollary 3.5 that the mean square residuals E[‖AIxk − yI‖2] converge to zero as k → ∞.
Consequently, E[‖AIx∗−yI‖2] = 0, i.e., x∗ ∈ X and ‖Aix∗−yi‖2 = 0 for i = 0, . . . , N −1. Thus
x∗ is a solution of (6).

Step 3. We prove that x∗ = x†.
Indeed, notice that xk+1 − xk ∈ R(A∗Ik) ⊂ N (AIk)⊥ ⊂ N (A)⊥, for k = 0, 1, . . . 8 Thus, an

inductive argument shows that x∗ ∈ x0 +N (A)⊥. However, x† is the only solution of (6) with
this property (see Remark 3.6), concluding the proof.

4 Numerical experiments

In this section the rPLWK method in (7) is implemented for solving a benchmark problem,
which happens to be a well known system of linear ill-posed equations.9

Let B = (Bi)
N−1
i=0 ∈ RN×M be a Hilbert type matrix with lines Bi =

(
1

i+j+1

)M−1
j=0

∈ R1,M ,

X = RM,1 and Y = R, where N = 106 and M = 102.
The operator A = (Ai)

N−1
i=0 ∈ RN×M with lines Ai ∈ R1,M , is obtained by a random shuffle

of the lines of B. In our numerical experiments we set x? = (1, . . . , 1) ∈ X and compute the
corresponding exact data yi = Ai x

?. The noise levels are δi = 10−16, what corresponds to
the MATLAB double precision accuracy. The performance of the rPLWK method is compared
against two concurrent Kaczmarz type methods, namely: (1) Landweber Kaczmarz with ran-
dom ordering of equations within cycles [21]; (2) Projective Landweber Kaczmarz with random
ordering of equations within cycles [20].

In order to better investigate the behavior of iteration (7), four different runs of the rPLWK
method are computed for the same set of data. In the first three runs (run 1, 2 and 3), the indexes
Ik are chosen from the set {0, . . . , N − 1} at random, with equal probability, i.e., pi = N−1 for
i = 1, . . . , N − 1. In the last run (run *) each index Ik is chosen from the set {0, . . . , N − 1}
at random, with probability pi proportional to ‖Ai‖2 (as proposed in [31] for the randomized
Kaczmarz iteration). The results are shown in Figures 1 to 4.

8Here A = (Ai)
N−1
i=0 : X → Y N .

9Computations are performed using MATLABR©R2017a, running in a IntelR© CoreTM i7-3520M CPU .
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We consider in our numerical experiments systems of four distinct dimensions, namely:
N = 104 in Figure 1, N = 105 in Figure 2, N = 106 in Figure 3 and N = 107 in Figure 4.
The first three runs of the rPLKW method (run 1, 2 and 3) produced similar results for all
tested dimensions. This last run of the rPLKW method (run *) delivered the best numerical
performance in all tested dimensions. Moreover, the improvement of the numerical performance
increases with N .

In each figure, the first plot (TOP) shows the evolution of the residual ‖Axk − y‖, while
the second plot (BOTTOM) shows the relative iteration error ‖x?− xk‖/‖x?‖. All methods
are stopped after 20N iterative steps (this corresponds to 20 cycles of methods (1) and (2)). In
these plots the x-axis shows the accumulated number of operations, measured by the number of
computed ’matrix× vector’ products (see Remark 4.1 below).

It is worth noticing that, in Kaczmarz type methods we have monotonicity of the mean
square iteration error E[‖x? − xk‖2], see Corollary 3.4. However monotonicity of mean square
residual E[‖Axk − y‖2] cannot be guaranteed. These two facts can be observed in all Figures.

Remark 4.1. In Kaczmarz type methods, the computation of an iterative step is avoided (i.e.,
xk+1 = xk) whenever the residual satisfies ‖Aixk − yi‖ ≤ τδi for some τ > 1. Consequently, the
numerical burden of computing a cycle differs from method to method (as well as from cycle to
cycle of the same method). Therefore, plotting iteration errors (or residuals) after each cycle
does not give a proper comparison of the efficiency of these methods. In our figures the evolution
of iteration error and residual are plotted as functions of accumulated number of operations (i.e.,
computed ’matrix× vector’ products). This allows a fair comparison between these methods, since
the number of computed iterates is proportional to the total computational burden of a Kaczmarz
type method.

5 Conclusions

We investigate randomized Landweber-Kaczmarz type methods for computing stable approxi-
mate solutions to large scale systems of linear ill-posed operator equations. The main contribu-
tion of this article is to propose and analyze, in the case of exact data, a stochastic version of
the PLKW method in [20] (see also [21]).

We prove monotonicity of the proposed rPLWK method (Corollary 3.4). Moreover, we
provide estimates to the ”average gain” E[‖x? − xk‖2] − E[‖x? − xk+1‖2] (Proposition 3.2), as
well as a lower bound to the proposed stepsizes λIk (Remark 2.3). A convergence proof in the
case of exact data is given (Theorem 3.7).

An algorithmic implementation of the rPLWK method is proposed. The resulting rPLWK
algorithm is tested for a well known benchmark problem modeled by a large scale Hilbert type
matrix, and compared with two well known Kaczmarz type methods, namely LWK and PLWK.
The obtained results validate the efficiency of our method.
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Figure 1: N = 104: (TOP) Residual ‖Axk − y‖; (BOTTOM) Relative iteration error ‖x? − xk‖/‖x?‖.
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Figure 2: N = 105: (TOP) Residual ‖Axk − y‖; (BOTTOM) Relative iteration error ‖x? − xk‖/‖x?‖.
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Figure 3: N = 106: (TOP) Residual ‖Axk − y‖; (BOTTOM) Relative iteration error ‖x? − xk‖/‖x?‖.
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Figure 4: N = 107: (TOP) Residual ‖Axk − y‖; (BOTTOM) Relative iteration error ‖x? − xk‖/‖x?‖.
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