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Abstract
In this article we propose and analyze a nonstationary iterated Tikhonov Kacz-
marz (iTK) type method for obtaining stable approximate solutions to sys-
tems of ill-posed equations modeled by linear operators acting between Hilbert
spaces. We generalize for the iTK iteration the criteria proposed in [5] for
the iterated Tikhonov method. The goal is to devise an efficient strategy for
choosing the Lagrange multipliers in this method. Convergence analysis for the
resulting iTK method is provided, including convergence for exact data, stabil-
ity and semi-convergence.Numerical experiments are presented for two distinct
applications, namely: an image deblurring problem and a 2D elliptic parameter
identification problem (the inverse potential problem). The obtained numerical
results validate the efficiency of the proposed method.

Keywords: ill-posed problems, systems of linear equations, iterated Tikhonov
method, Kaczmarz method

(Some figures may appear in colour only in the online journal)

1. Introduction

In this article we propose a nonstationary iterated Tikhonov Kaczmarz (iTK) type method for
obtaining regularized approximations of systems of linear ill-posed operator equations. This
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is a Kaczmarz type method [25], where each step is defined as in the iterated Tikhonov (iT)
method [6, section 1.2] with the Lagrange multiplier being chosen as to guarantee the residual
of the next iterate to be in a range [5].

The inverse problem we are interested in consists of determining an unknown quantity x ∈ X
from the set of data (y0, . . . , yN−1) ∈ YN , where X and Y are Hilbert spaces, and N � 1. In
practical situations, one does not know the data exactly. Instead, only approximate measured
data yδi ∈ Y satisfying

‖yδi − yi‖ � δi, i = 0, . . . , N − 1, (1)

are available, where δi > 0 are the (known) noise levels. The available data yδi are obtained
by indirect measurements of the parameter x. This process being described by the system of
ill-posed operator equations

Ai x = yi, i = 0, . . . , N − 1, (2)

where Ai : X → Y are bounded linear operators, whose inverses A−1
i : R(Ai) → X either do not

exist, or are not continuous. Consequently, approximate solutions are extremely sensitive to
noise in the data.

Linear ill-posed problems are commonly found in applications, ranging from image anal-
ysis to parameter identification in mathematical models. There is a vast literature on iterative
methods for the stable solution of (2). We refer the reader to the text books [1, 2, 13, 16, 23,
26, 27, 30, 31, 33] and the references therein.

1.1. Iterated Tikhonov type methods

Standard iT type methods for solving the ill-posed problem (1) and (2) are defined, after
rewriting (2) as a single equation Ax = y, where A = (A0, . . . , AN−1) : X → YN and yδ =
(yδ0, . . . , yδN−1), by the iteration formula

xδk+1 = arg min
x∈X

{
λk‖Ax − yδ‖2 + ‖x − xδk‖2

}
(3)

or, equivalently, by

xδk+1 = xδk − λk

(
I + λkA∗A

)−1
A∗ (Axδk − yδ

)
=

(
λ−1

k I + A∗A
)−1 [

λ−1
k xδk + A∗yδ

]
, (4)

where A∗ : YN → X is the adjoint operator of A. The parameter λk > 0 can be viewed as the
Lagrange multiplier of the problem of projecting xδk onto a levelset of ‖Ax − yδ‖2 (see [5,
section 1, pg.4] or [13, section 5.1, pg 122]). If the sequence {λk = λ} is constant, iteration (4)
is called stationary iT [16, 28, 30], otherwise it is denominated nonstationary iT [6, 14, 20].

In the nonstationary iT methods, each λk is chosen either a priori (e.g., the geometrical
choice λk = qk, q > 1) or a posteriori [5, 11]. In this article we focus on the a posteriori strat-
egy investigated in [5], where the authors propose a choice for the Lagrange multipliers, which
requires the residual at the next iterate to assume a prescribed value dependent on the current
residual and also on the noise level. More precisely, λk is chosen so that the next iterate has
a prescribed residual satisfying δ � ‖Axδk+1 − yδ‖ � Φ(‖Axδk − yδ‖, δ), where Φ represents a
convex combination of ‖Axδk − yδ‖ and δ.

The iT type methods may become inefficient if N is large or the evaluation of the step in (4)
is expensive. In such cases, Kaczmarz type methods which cyclically consider each equation
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in (2) separately, are reported to be faster [32] and are often the method of choice in practice.
On the other hand, only few theoretical results about regularizing properties of iT-Kaczmarz
methods are available, so far (see, e.g., [9]).

1.2. Iterated Tikhonov Kaczmarz type methods

The method proposed and analyzed in this manuscript for solving the ill-posed problem (1)
and (2) is a Kaczmarz type method, where each step is defined as in the iT method (4) and the
choice of Lagrange multipliers proposed in [5] is adopted. This iterative method is defined by

xδk+1 = xδk + hk, (5)

where

hk =

{
λk(I + λkA∗

[k]A[k])−1A∗
[k]

(
yδ[k] − A[k]x

δ
k

)
, if ‖A[k]x

δ
k − yδ[k]‖ > τδ[k]

0, otherwise

(6)

and

λk =

{
chosen as in algorithm 1, if ‖A[k]x

δ
k − yδ[k]‖ > τδ[k]

0, otherwise.
(7)

Here [k] = (k mod N) ∈ {0, 1, . . . , N − 1}, xδ0 = x0 ∈ X is an initial guess and τ > 1 is a fixed
constant (see next section).

The hk ∈ X in (6) is inspired in the iterative step proposed in [5] for the [k]-th equation
A[k]x = y[k] of system (2), with data yδ[k] given as in (1). Notice that, if ‖A[k]xδk − yδ[k]‖ � τδ[k],
for some k, then the computation of (λk, hk) is avoided and we set λk = 0, hk = 0 and
xδk+1 = xδk .

Following [5] we refer to this method as range-relaxed iterated Tikhonov Kaczmarz
(rriTK) method. Essentially, it consists in incorporating the Kaczmarz strategy to the range-
relaxed iterated Tikhonov (rriT) method in [5]. This procedure is analog to the one intro-
duced in [10, 17–19], and [7] regarding the Landweber Kaczmarz (LWK), the steepest
descent Kaczmarz, the expectation maximization Kaczmarz, and the iteratively regular-
ized Gauss–Newton–Kaczmarz (irGNK) iterations respectively. It is worth mentioning that
iteration (5)–(7) was considered in [9] for the constant choice λk = λ.

In Kaczmarz type algorithms, a group of N subsequent steps (starting at some multiple of
N) is called a cycle. The iteration (5)–(7) should be terminated when, for the first time, all xδk
are equal within a cycle. That is, we stop the iteration at step k∗ = k∗

(
{δi}i, {yδi }i

)
s.t.

k∗ := min
{

lN : l ∈ N and xδlN = xδlN+1 = · · · = xδlN+N

}
. (8)

In other words, k∗ ∈ N is the smallest multiple of N such that xδk∗ = xδk∗+1 = · · · = xδk∗+N or,
equivalently, such that λk∗ = λk∗+1 = · · · = λk∗+N = 0.

1.3. Outline of the manuscript

The article is organized as follows: in section 2 we introduce the rriTK method, proposed
and analyzed in this manuscript. A detailed formulation of this method is given. It is proven
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that the method is well defined and some preliminary results are obtained, including an esti-
mate for the ‘gain’ (proposition 2.4), as well as an estimate for the Lagrange multipliers λk

(corollary 2.6). In section 3 a convergence result for the exact data case is presented (theorem
3.2). Stability and semi-convergence results are established in section 4 (theorems 4.3 and 4.4
respectively). Section 5 is devoted to numerical experiments. Two distinct applications are con-
sidered: an image deblurring problem and a 2D elliptic parameter identification problem (the
inverse potential problem (IPP)). The performance of the rriTK method is compared with other
Kaczmarz type methods, namely the geometric iTK method (giTK) with λk = 2k, the station-
ary iTK method (siTK) with λk = 2 and the Landweber-Kaczmarz method (LWK). Section 6
is dedicated to final remarks and conclusions.

2. A range-relaxed iterated Tikhonov Kaczmarz method

In the following we introduce the rriTK method for solving the ill-posed linear system (1) and
(2). Subsection 2.1 is devoted to main assumptions needed in the analysis. The new method
is presented in subsection 2.2 and a corresponding algorithm is discussed. In subsection 2.3
we derive some basic properties of the proposed method, and prove preliminary results and
estimates.

The implementable method proposed here, happens to be a nonstationary iTK type method
where, in each iteration, the set of feasible choices for the Lagrange multipliers is an interval,
instead of a single real number. For this reason, this method is called a (nonstationary) range-
relaxed iT method.

2.1. Main assumptions

For the remaining of this article we suppose that the following assumptions hold true:

(A1) There exists x� ∈ X such that Aix� = yi, where yi ∈ R(Ai), i = 0, . . . , N − 1, are the
exact data.

(A2) The operators Ai : X → Y are linear, bounded and ill-posed, i.e., even if the operator
A−1

i : R(Ai) → X (the left inverse of Ai) exists, it is not continuous.

From (A2) it follows the existence of C > 0 with maxi‖Ai‖ � C.

2.2. Description of the method

As already discussed in the introduction, the iterative step of the rriTK method is analog to the
one proposed in [5]. This step is discussed in the following.

Given k ∈ N, set i = [k] and define for μ > 0 the levelsets Ωi
μ := {x ∈ X; ‖Aix − yδi ‖ � μ}

of the residual w.r.t. the ith-equation of system (2). If the iterate xδk does not belong to Ωi
δi

, the
next iterate xδk+1 is computed by solving the range-relaxed projection problem⎧⎨

⎩min
x

‖x − xδk‖2

s.t. ‖Aix − yδi ‖2 � μ2, Φ̄(‖Aix
δ
k − yδi ‖, δi) � μ � ¯̄Φ(‖Aix

δ
k − yδi ‖, δi)

(9)

for (x,μ) ∈ X × R, where Φ̄(u, v) = p̄u + (1 − p̄)v and ¯̄Φ(u, v) = ¯̄pu + (1 − ¯̄p)v,
∀ u, v ∈ R, with 0 < p̄ < ¯̄p < 1. Thus the interval [Φ̄(‖Aixδk − yδi ‖, δi), ¯̄Φ(‖Aixδk − yδi ‖, δi)] is
non-degenerate. If (x′, μ′) is a solution of (9), we define xδk+1 = x′ and ‖Aixδk+1 − yδi ‖ = μ′

(see lemma 2.1). As observed in [5], xδk+1 is generated from xδk by projecting it onto anyone
of the range of convex sets (Ωi

μ)
Φ̄�μ� ¯̄

Φ
.
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Algorithm 1. The range-relaxed iterated Tikhonov Kaczmarz (rriTK) method.

[1] choose an initial guess x0 ∈ X and λmax > 0; set k := 0;
[2] choose τ > 1, and 0 < p̄ < ¯̄p < 1;
[3] repeat

[3.1] i = [k];
[3.2] if

[
‖Ai xδk − yδi ‖ > τδi

]
then

compute (λk, hk) ∈ R× X such that{
hk,= −λk

(
I + λkA∗

i Ai
)−1

A∗
i

(
Ai xδk − yδi

)
p̄‖Aix

δ
k − yδi ‖+ (1 − p̄)δi � ‖Ai(x

δ
k + hk) − yδi ‖ � ¯̄p‖Aix

δ
k − yδi ‖+ (1 − ¯̄p)δi

if[λk > λmax]then
λk = λmax; hk = −λmax

(
I + λmax A∗

i Ai

)−1
A∗

i

(
Ai xδk − yδi

)
else
λk = 0; hk = 0;

[3.3] xδk+1 = xδk + hk;
[3.4] k = k + 1;
until [([k] = 0) and (λk−1 = λk−2 = · · · = λk−N = 0)];

[4] k∗ = k − N;

Since the solution of (9) is not unique, there are several possible choices for xδk+1. The next
lemma addresses this problem. For a proof we refer the reader to [5, lemma 2.3].

Lemma 2.1. Suppose ‖Aixδk − yδi ‖ > δi. The following assertions are equivalent:

(a) x′ = ΠΩμ(xδk) and Φ̄(‖Aixδk − yδi ‖, δi) � μ′ � ¯̄Φ(‖Aixδk − yδi ‖, δi);
(b) (x′,μ′) ∈ X × R is a solution of the range-relaxed projection problem (9);
(c) x′ = xδk − λ(I + λA∗

i Ai)−1A∗
i (Aixδk − yδi ), for some λ > 0,

Φ̄(‖Aix
δ
k − yδi ‖, δi) � ‖Aix

′ − yδi ‖ � ¯̄Φ(‖Aix
δ
k − yδi ‖, δi),

and μ′ = ‖Aix′ − yδi ‖;

(here ΠΩ(x) represents the orthogonal projection of x onto the convex set Ω).

It follows from lemma 2.1 that solving the range-relaxed projection problem in (9) sums
up to solving the inequalities Φ̄(‖Aixδk − yδi ‖, δi) � ‖Aix′ − yδi ‖ � ¯̄Φ(‖Aixδk − yδi ‖, δi), where
x′ = xδk − λ(I + λA∗

i Ai)−1A∗
i (Aixδk − yδi ), and μ′ = ‖Aix′ − yδi ‖.

We use this result to propose an implementable version of the rriTK method in algorithm 1.

Remark 2.2 (On the bound of the Lagrange multipliers in algorithm 1).

• In algorithm 1 the Lagrange multipliers λk are bounded from above by some λmax > 0.
This is needed in order to prove convergence for exact data (see theorem 3.2).

This assumption is also used in the proof of the stability theorem 4.3 (see step 1 of the
proof). However, an alternative proof of theorem 4.3 can be given without this assumption.

• It is worth noticing that, in the noisy data case the assumption λk � λmax, k = 0, . . . , k∗,
plays no role, since λmax can be chosen arbitrarily large and algorithm 1 always stops after
a finite number of steps (see corollary 2.8).

Consequently, the rriTK method can be implemented without any bound on the λk’s. 4

4 As a matter fact, it is to expect that the multipliers will assume larger values for problems with small levels of noise
(see numerical experiments in section 5).
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• In the particular case N = 1, system (2) reduces to a single linear operator equation, and
all results in this article can be proven without the assumption λk � λmax. In this case,
the rriTK investigated in this manuscript happens to be a particular instance of the rrLM
method considered in [29] for solving nonlinear operator equations.

2.3. Preliminary results

For simplicity of notation we write bδ
k := yδi − Aixδk+1 = yδi − Aihk − Aixδk , with i = [k], and

C := max j‖Aj‖. Moreover, for exact data y = (y0, . . . , yN−1), the iterates in (5) are denoted by
xk, in contrast to xδk in the noisy data case (analog notation for bk := yi − Aixk+1).

Our first result concerns basic properties of the iterative step of the rriTK method. The proofs
of the assertions are straightforward and will be omitted.

Lemma 2.3. Assume that (A1) and (A2) are satisfied and let xδk, hk, λk be defined by (5)–(7)
respectively. In the noisy data case, if λmax is large enough, the assertions

(a) Ai xδk+1 − yδi = (λkAi A∗
i + I)−1(Ai xδk − yδi );

(b) hk = λkA∗
i

(
yδi − Ai xδk+1

)
;

(c) p̄‖Ai xδk − yδi ‖ � ‖Ai xδk+1 − yδi ‖ � ‖Ai xδk − yδi ‖;

hold true for 0 � k < k∗. In the exact data case assertions a) and b) hold true. Moreover,

(d) p̄‖Ai xk − yi‖ � ‖Ai xk+1 − yi‖ � ¯̄p‖Ai xk − yi‖, whenever λk < λmax;
(e) (1 + λmax C2)−1‖Ai xk − yi‖ � ‖Ai xk+1 − yi‖ � ‖Ai xk − yi‖, whenever λk = λmax.

In what follows we estimate the ‘gain’ ‖xδk+1 − x�‖2 − ‖xδk − x�‖2. This is a central result
for the analysis derived in this manuscript.

Proposition 2.4. Assume that (A1) and (A2) are satisfied and let xδk, hk, λk be defined by
(5)–(7) respectively. Then

‖xδk+1 − x�‖2 − ‖xδk − x�‖2 � 2 p̄λk ‖bδ
k‖(δi − ‖Aix

δ
k − yδi ‖) − ‖xδk+1 − xδk‖2, (10)

for k = 0, . . . , k∗ − 1. In particular, in the exact data case (yδi = yi) we have

‖xk+1 − x�‖2 − ‖xk − x�‖2 � −2γ2 λk‖Ai xk − yi‖2 − ‖xk+1 − xk‖2, (11)

for k = 0, . . . ., with γ := min{ p̄, (1 + λmax C2)−1}.

Proof. Let i = [k]. If ‖Ai xδk − yδi ‖ � τδi, then λk = 0 and xδk+1 = xδk . Thus, (10) is trivial.
Otherwise, it follows from lemma 2.3(b) that

‖xδk+1 − x�‖2 − ‖xδk − x�‖2

= 2 〈xδk+1 − xδk , xδk+1 − x∗〉 − ‖xδk+1 − xδk‖2

= 2λk 〈yδi − Aix
δ
k+1, Ai(xδk+1 − x�)〉 − ‖xδk+1 − xδk‖2

= 2λk 〈yδi − Aix
δ
k+1, Aix

δ
k+1 − yδi + yδi − Aix

�〉 − ‖xδk+1 − xδk‖2

� 2λk

[
−‖bδ

k‖2 + ‖bδ
k‖ δi

]
− ‖xδk+1 − xδk‖2. (12)

It follows from step [3.2] of algorithm 1 that Φ̄(‖Aixδk − yδi ‖, δi) = p̄‖Aixδk − yδi ‖+ (1 −
p̄)δi � ‖bδ

k‖. Consequently −‖bδ
k‖2 + ‖bδ

k‖δi = ‖bδ
k‖(δi − ‖bδ

k‖) � p̄‖bδ
k‖(δi − ‖Aixδk − yδi ‖),
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and (10) follows. In the exact data case, it follows from lemma 2.3(d) and (e) that −‖bk‖2 �
−min{ p̄2, (1 + λmax C2)−2}‖Aixk − yi‖2; consequently (12) implies (11). �

Proposition 2.4 has several relevant consequences, namely: monotonicity of the rriTK
method (corollary 2.5); a uniform estimate for the Lagrange multipliers (corollary 2.6);
summability of important series (corollary 2.7); finiteness of the stoping index k∗
(corollary 2.8).

Corollary 2.5. Assume that (A1) and (A2) are satisfied and let xδk, hk, λk be defined by
(5)–(7) respectively. Then

‖xδk+1 − x�‖2 � ‖xδk − x�‖2, k = 0, . . . , k∗ − 1. (13)

Additionally, in the exact data case we have ‖xk+1 − x�‖2 � ‖xk − x�‖2, for k = 0, 1, . . . .

Corollary 2.6. Assume that (A1) and (A2) are satisfied and let xδk, hk, λk be defined by
(5)–(7) respectively. Moreover, let bδ

k be defined as above. Then

λk �
(
‖Aixδk − yδi ‖ − ‖bδ

k‖
)
‖Aixδk − yδi ‖

‖A∗
i (Aixδk − yδi )‖2

, k = 0, . . . , k∗ − 1. (14)

Moreover, if ‖Ai xδk − yδi ‖ > τδi ( for some 0 � k � k∗ − 1) then λk > C−2(1 − ¯̄p)(1 − 1/τ ),
with C > 0 defined as above.

Additionally, in the exact data case it holds λk � min{λmax, C−2(1 − ¯̄p)}.

Proof. Let 0 � k < k∗. If ‖Aixδk − yδi ‖ � τδi thenλk = 0 and xδk+1 = xδk . Thus, (14) is trivial.
On the other hand, if ‖Aixδk − yδi ‖ > τδi, the proof of (14) follows the lines of [5, corollary 2.5].

To prove the second assertion, notice that ‖bδ
k‖ � ¯̄p‖Aixδk − yδi ‖+ (1 − ¯̄p)δ. Consequently,

‖Aixδk − yδi ‖ − ‖bδ
k‖ � (1 − ¯̄p)(‖Aixδk − yδi ‖ − δi). Thus, it follows from (14) that

λk � C−2 ‖Aixδk − yδi ‖ − ‖bδ
k‖

‖Aixδk − yδi ‖

� C−2(1 − ¯̄p)

(
1 − δi

‖Aixk − yi‖

)
> C−2(1 − ¯̄p)(1 − 1/τ ).

In the exact data case, given k ∈ N, either λk < λmax and ‖bk‖ � ¯̄p‖Aixk − yi‖ (see lemma
2.3(d)) or λk = λmax (see lemma 2.3(e)). In the first case, it follows from (14) that

λk � C−2

(
1 − ‖bk‖

‖Aixk − yi‖

)
� C−2(1 − ¯̄p).

Consequently, λk � min{λmax, C−2(1 − ¯̄p)}. �

Corollary 2.7. Assume that (A1) and (A2) are satisfied and let xk, hk, λk be defined by
(5)–(7) in the exact data case (i.e. yδi = yi, i = 0, . . . , N − 1). Then the series

∞∑
k=0

‖xk+1 − xk‖2,
∞∑

k=0

λk ‖A[k]xk − y[k]‖2,

∞∑
k=0

λk ‖bk‖2 and
∞∑

k=0

‖A[k]xk − y[k]‖2

are all summable.

7



Inverse Problems 37 (2021) 045005 R Filippozzi et al

Proof. The first two assertions follow from (11), using a telescopic series argument. The next
assertion follow from a comparison test and lemma 2.3(d) and (e). The last assertion follows
from the second one and corollary 2.6. �

Corollary 2.8. Assume that (A1) and (A2) are satisfied and let xδk, hk, λk be defined by
(5)–(7). Then the stopping index k∗ defined in (8) is finite and

k∗ � N‖x0 − x�‖2
[
2 p̄2 (1 − ¯̄p) C−2 δ2

min(τ − 1)2
]−1

. (15)

Proof. Assume by contradiction that k∗ is not finite, i.e., in each cycle {lN, . . . , lN + N − 1},
l ∈ N, of the rriTK method, there exists at least one index j(l) ∈ {0, . . . , N − 1} such that
‖A j(l) xlN+ j(l) − yδj(l)‖ � τδ j(l).

From proposition 2.4 it follows that (10) holds for k ∈ N. Summing over k and using the
fact that either ‖A[k]xδk − yδ[k]‖ � τδ[k] or λk = 0, we obtain (with the notation i = [k])

‖x0 − x∗‖2 � 2 p̄
lN∑

k=0

λk‖bδ
k‖

(
‖Aix

δ
k − yδi ‖ − δi

)

� 2 p̄2
lN∑

k=0

λk‖Ai xδk − yδi ‖
(
‖Ai xδk − yδi ‖ − δi

)

� 2 p̄2
l∑

s=0

λsN+ j(s)‖A j(s) xδsN+ j(s) − yδj(s)‖

×
(
‖A j(s) xδsN+ j(s) − yδj(s)‖ − δ j(s)

)
� 2 p̄2

l∑
s=0

λsN+ j(s)τδ
2
j(s)(τ − 1)

� l 2 p̄2(1 − ¯̄p)C−2 δ2
min(τ − 1)2, (16)

(the last inequality follows from corollary 2.6). Since the right-hand side of (16) becomes
unbounded as l →∞ a contradiction is established, and the finiteness of k∗ follows. Estimate
(15) follows now substituting l = k∗/N in (16). �

3. A convergence result for exact data

Our main goal in this section is to prove convergence of the rriTK method in the case δi = 0,
i = 0, . . . , N − 1. Notice that, in this exact data case, λk = 0 and hk = xk+1 − xk = 0 if and
only if ‖Aixk − yi‖ = 0 (see step [3.2] of algorithm 1).

Remark 3.1. It is worth noticing that there exists an x0-minimal norm solution of (2), a
solution x† of (2) such that ‖x† − x0‖ = inf {‖x − x0‖; Ax = y}. This assertion is a direct
consequence of [13]. Moreover, x† is the only solution of (2) with this property.

Theorem 3.2 (Convergence for exact data). Assume that (A1) and (A2) are satisfied
and let xk, hk, λk be defined by (5)–(7) in the exact data case (i.e. yδi = yi, i = 0, . . . , N − 1).
Then xk → x†, as k →∞.

8
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Proof. We define ek := x� − xk. From corollary 2.5 follows that ‖ek‖ is monotone non-
increasing. Thus, ‖ek‖ converges to some ε � 0. In what follows we show that ek is in fact
a Cauchy sequence.

In order to prove that ek is indeed a Cauchy sequence, it suffices to prove |〈en − ek, en〉| → 0,
|〈en − el, en〉| → 0 as k, l →∞ with k � l for some k � n � l [21, theorem 2.3]. Let k � l be
arbitrary and write k = k0N + k1, l = l0N + l1, with k1, l1 ∈ {0, . . . , N − 1}. Now let n0 ∈
{k0, . . . , l0} be such that for all i0 ∈ {k0, . . . , l0}

N−1∑
s=0

λn0N+s ‖As xn0N+s − ys‖ �
N−1∑
s=0

λi0N+s ‖As xi0N+s − ys‖, (17)

and set n := n0N + N − 1 (if n0 = l0, we set n := n0N + l1; so that k � n � l). Therefore

|〈en − ek, en〉| =
∣∣∣∣∣

n−1∑
i=k

〈(xi+1 − xi), (xn − x�)〉
∣∣∣∣∣

=

∣∣∣∣∣
n−1∑
i=k

λi〈A[i] xi+1 − y[i], A[i] xn − A[i] x�〉
∣∣∣∣∣

�
n0∑

i0=k0

N−1∑
i1=0

λi‖Ai1 xi+1 − yi1‖ ‖Ai1 xn − yi1‖

�
n0∑

i0=k0

N−1∑
i1=0

λi‖bi‖ ‖Ai1 xn − yi1‖ (18)

(we use the notation i = i0N + i1). The last term on the right-hand side of (18) can be estimated
by

‖Ai1 xn − yi1‖ = ‖Ai1 xn0N+N−1 − yi1‖

� ‖Ai1 xn0N+i1+1 − yi1‖+
N−2∑

s=i1+1

‖Ai1 xn0N+s+1 − Ai1 xn0N+s‖

� ‖Ai1 xn0N+i1+1 − yi1‖+
N−2∑

s=i1+1

C‖xn0N+s+1 − xn0N+s‖

� ‖Ai1 xn0N+i1+1 − yi1‖+
N−2∑

s=i1+1

Cλn0N+s‖A∗
s (ys − Asxn0N+s)‖

� ‖Ai1 xn0N+i1+1 − yi1‖+
N−1∑
s=0

C2λn0N+s‖Asxn0N+s − ys‖

�
N−1∑
s=0

(1 + C2λn0N+s)‖Asxn0N+s − ys‖

�
(

1
λmin

+ C2

) N−1∑
s=0

λn0N+s‖Asxn0N+s − ys‖.

9
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(with λmin = min{λmax, C−2(1 − ¯̄p)}, see corollary 2.6). Hence, it follows from (17) that
‖Ai1 xn − yi1‖ � ( 1

λmin
+ C2)

∑N−1
s=0 λi0N+s‖Asxi0N+s − ys‖, for all i0 ∈ {k0, . . . , l0}. Inserting

this last inequality into (18) we obtain

|〈en − ek, en〉| �
(

1
λmin

+ C2

) n0∑
i0=k0

⎡
⎣N−1∑

i1=0

λi‖bi‖

⎤
⎦
[

N−1∑
s=0

λi0N+s‖Asxi0N+s − ys‖
]

=

(
1

λmin
+ C2

) n0∑
i0=k0

⎡
⎣N−1∑

i1=0

λi‖bi‖

⎤
⎦
⎡
⎣N−1∑

i1=0

λi‖Ai1 xi − yi1‖

⎤
⎦

�
(

1
λmin

+ C2

)
Nλmax

2

n0∑
i0=k0

⎡
⎣N−1∑

i1=0

λi‖bi‖2 +

N−1∑
i1=0

λi‖Ai1 xi − yi1‖2

⎤
⎦ .

(19)

Hence by corollary 2.7 the right-hand side of (19) goes to zero as k, l →∞. Analogously one
shows that |〈en − el, en〉| → 0 as k, l →∞.

Thus, ek is a Cauchy sequence and xk converges to some x+ ∈ X. Since the residuals
‖A[k]xk − y[k]‖ converge to zero as k →∞ (see corollary 2.7), this x+ is a solution of (2).

It follows from lemma 2.3(b) that xk+1 − xk ∈ R(A∗
i ) ⊂ N (Ai)⊥ ⊂ N (A)⊥. An inductive

argument shows that x+ ∈ x0 +N (A)⊥, by remark 3.1x† is the only solution of (2), and with
that follows the result. �

4. Convergence for noisy data

In this section we assume that A1 and A2 hold true and that xδk , hk defined in (5), τ , p̄ and
¯̄p defined in algorithm 1. Our main goal in this section is to prove that xδk∗(δ) converges to a
solution of (2) as δ → 0, where k∗(δ) = k∗ is defined in (8). In addition, we will show first that
our method is stable.

Definition 4.1. For k < k∗, a vector z ∈ X is called a successor of xδk if there exists a pair
(λk � 0, hk ∈ X) defined as in step [3.2] of algorithm 1, such that z = xδk + hk.

Definition 4.2. A noiseless sequence is a sequence (xk)k�0 ⊂ X generated by algorithm 1
with δi = 0, i = 0, . . . , N − 1. Notice that

(a) xk+1 is a successor of xk for all k ∈ N;
(b) xk+1 = arg minx Tk,λk (x), where Tk,λk (x) :=λk‖Aix − yi‖2 + ‖x − xk‖2 and λk � 0 is

defined as in step [3.2] of algorithm 1;
(c) hk = xk+1 − xk = 0 if and only if Aixk = yi (see step [3.2] of algorithm 1); in this case,

the unique successor of xk is z = xk itself.

Theorem 4.3 (Stability). Assume that (A1) and (A2) hold true. Let δ j := (δ j
0, . . . , δ j

N−1) j∈N

be a zero sequence and yδ j
= (yδ

j

0 , . . . , yδ
j

N−1) j∈N a corresponding sequence of noisy data sat-

isfying (1). For each j ∈ N, let xδ
j

k+1 be a successor of xδ
j

k for 0 � k � k∗(δ j, yδ j
). Then, there

exists a noiseless sequence (xk)k∈N such that, for every fixed k ∈ N, there exists a subsequence
(δ jm), which depends on k, satisfying

xδ
jm

l → xl, as jm →∞, for l = 0, . . . , k.

10
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Proof. We use an inductive argument. Since xδ0 = x0 for every δ � 0, the assertion is clear
for k = 0. Our main argument consists of repeatedly choosing a subsequence of the current
subsequence. In order to avoid a notational overload, we denote a subsequence of (δ j) j again
by (δ j) j. Suppose by induction that the assertion holds true for some k ∈ N, i.e., that there
exists a subsequence (δ j) j and (xl)k

l=0 satisfying

xδ
j

l → xl, as j →∞, for l = 0, . . . , k, (20)

where xl+1 is a successor of xl for l = 0, . . . , k − 1. 5

Since xδ
j

k+1 is a successor of xδ
j

k (for each δ j) there exists a positive number λδ j

k such that

xδ
j

k+1 = xδ
j

k − λδ j

k

(
I + λδ j

k A∗
i Ai

)−1
A∗

i

(
Ai xδ

j

k − yδ
j

i

)
. Our next goal is to prove the existence of

a successor xk+1 of xk, and of a subsequence (δ j) j of the current sequence, such that xδ
j

k+1 →
xk+1 as j →∞, completing the inductive proof. We divide this proof in three steps as follows:

Step 1. We define an element xk+1 ∈ X;
Step 2. We show that

xδ
j

k+1 → xk+1, as j →∞; (21)

Step 3. We prove that xk+1 is a successor of xk.

Proof of step 1. It follows from algorithm 1 that λ
δ j
k � λmax for each k ∈ N fixed (see remark

2.2). Consequently, there exists a λk > 0 satisfying

λk := lim
j→∞

λ
δ j
k < ∞. (22)

If λk = 0 we set xk+1 := xk, otherwise we set xk+1 := arg minx∈XTk,λk (x), with Tk,λk as in
definition 4.2 item 2.
Proof of step 2. From definition of xδ

j

k+1 and xk+1 it follows that

λδ j

k A∗
i (Aix

δ j

k+1 − yδ
j

i ) + xδ
j

k+1 − xδ
j

k = 0

= λkA∗
i (Aixk+1 − yi) + xk+1 − xk,

from where we obtain

0 = λδ j

k A∗
i Ai(xδ

j

k+1 − xk+1) + xδ
j

k+1 − xk+1 + (λδ j

k − λk)A∗
i Aixk+1

+ λkyi − λδ j
yδ

j

i − xδ
j

k + xk.

Multiplying the last expression by xδ
j

k+1 − xk+1 we get

‖xδ
j

k+1 − xk+1‖2 � λδ j

k ‖Ai(xδ
j

k+1 − xk+1)‖2 + ‖xδ
j

k+1 − xk+1‖2

= |λk − λδ j

k |〈A∗
i Aixk+1, (xδ

j

k+1 − xk+1)〉

+ 〈xk − xδ
j

k , xδ
j

k+1 − xk+1〉+ 〈λδ j

k yδ
j

i − λkyi, xδ
j

k+1 − xk+1〉

� C2|λk − λδ j

k | ‖xk+1‖ ‖xδ
j

k+1 − xk+1‖+ ‖xk − xδ
j

k ‖

× ‖xδ
j

k+1 − xk+1‖+ ‖λkyi − λδ j

k yδ
j

i ‖ ‖xδ
j

k+1 − xk+1‖.

5 Notice that k∗(δ j, yδ j
) � k for large enough j.

11
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Consequently ‖xδ
j

k+1 − xk+1‖ � C2|λk − λδ j

k | ‖xk+1‖+ ‖xk − xδ
j

k ‖+ ‖λkyi − λδ j

k yδ
j

i ‖. In view
of (1), (20) and (22) it follows that (21) holds.
Proof of step 3. We consider two cases:
First case: ‖Aixk − yi‖ = 0: in order to prove that xk+1 is a successor of xk, it is enough
to prove that xk+1 = xk (see definition 4.2). From the definition of xk+1 in step 1 we have
either xk+1 = xk (and we are done) or xk+1 := arg minx∈XTk,λk (x). From where we obtain
λkA∗

i [Ai(xk+1 − xk) + Aixk − yi] + (xk+1 − xk) = 0. Thus, (λkA∗
i Ai + I)(xk+1 − xk) = 0 and

xk+1 = xk follows.
Second case: ‖Aixk − yi‖ > 0: it follows from (20) that lim j‖Aixδ

j

k − yδ
j

i ‖ = ‖Aixk − yi‖ > 0.
Consequently, for sufficiently large j we have ‖Aixδ

j

k − yδ
j

i ‖ > τδ j
i ,

xδ
j

k+1 = xδ
j

k − λδ j

k

(
I + λδ j

k A∗
i Ai

)−1
A∗

i

(
Ai xδ

j

k − yδ
j

i

)
(23)

and

p̄‖Aix
δ j

k − yδ
j

i ‖+ (1 − p̄)δ j
i � ‖Aix

δ j

k+1 − yδ
j

i ‖ � ¯̄p‖Aix
δ j

k − yδ
j

i ‖+ (1 − ¯̄p)δ j
i .

(24)

Since xδ
j

k+1 → xk+1 as j →∞ (see step 2.), we take the limit j →∞ in (23) and (24) to conclude
that (λk, hk) (with hk := xk+1 − xk, defined in step 1) satisfy the range relaxed problem in step
[3.2] of algorithm 1. Consequently, xk+1 is a successor of xk. �

Theorem 4.4 (Semi-convergence). Assume that (A1) and (A2) hold true. Let
δ j := (δ j

0, . . . , δ j
N−1) j∈N be a zero sequence and yδ j

= (yδ
j

0 , . . . , yδ
j

N−1) j∈N a corresponding

sequence of noisy data satisfying (1). For each j ∈ N, let xδ
j

k+1 be a successor of xδ
j

k for

0 � k � k j
∗ = k∗(δ j, yδ j

). Then, every subsequence of xδ
j

k j
∗

has itself a subsequence converging

strongly to x†, the x0-minimal norm solution of (2).

Proof. We consider two cases: assume first that the sequence (k j
∗) j∈N is bounded. Then it has a

finite accumulation point. In this case, since (k j
∗) ∈ N we can extract a subsequence (δ jm)m∈N of

(δ j) such that k jm
∗ = n for some n ∈ N, and all jm. From theorem 4.3, the subsequence (xδ

jm
n )m∈N

has itself a subsequence (denoted again by (xδ
jm

n )m∈N) converging to xn, i.e.,

lim
m→∞

xδ
jm

k jm
∗

= lim
m→∞

xδ
jm

n = xn.

Notice that xn is a solution of (2). Indeed, for i ∈ {0, . . . , N − 1} we have

‖Aixn − yi‖ = lim
m→∞

‖Aix
δ jm

k jm
∗

− yi‖

� lim
m→∞

(
‖Aix

δ jm

k jm
∗

− yδ
jm

i ‖+ ‖yδ
jm

i − yi‖
)

� lim
m→∞

(τ + 1)δ jm = 0.

In the second case we assume that (k j
∗) j is not bounded. Thus there exists a monotone increasing

subsequence, again denoted by (k j
∗), such that k j

∗ →∞ as j →∞. Fix ε > 0 and let (xk)k∈N be

12
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a noiseless sequence (see definition 4.2). From theorem 3.2 follows that xk → x†, where x† is
the x0-minimum norm solution of (2). Then there exists an index L = L(ε) ∈ N such that,

‖xk − x†‖ <
ε

2
, k � L. (25)

Moreover, since k j
∗ →∞ as j →∞, there exists J ∈ N such that k j

∗ � L, for all j � J.
Furthermore, from corollary 2.5 follows

j � J ⇒
∥∥∥xδ

j

k j
∗
− x†

∥∥∥ �
∥∥∥xδ

j

L − x†
∥∥∥ ,

and from theorem 4.3 follows the existence of a subsequence (δ jm) (depending on L(ε)) and of
an M ∈ N such that

m � M =⇒
∥∥∥xδ

jm

L − xL

∥∥∥ <
ε

2
.

Thus, for jm � max {J, M} we have∥∥∥xδ
jm

k jm
∗

− x†
∥∥∥ �

∥∥∥xδ
jm

L − x†
∥∥∥ �

∥∥∥xδ
jm

L − xL

∥∥∥+ ‖xL − x†‖ < ε. (26)

Note that the subsequence (δ jm) depends on ε. We construct an independent subsequence using
a diagonal argument: choosing ε = 1, we can find a subsequence (δ j) j∈N and select a number
j1 ∈ N such that∥∥∥xδ

j1

k
j1∗
− x†

∥∥∥ < 1. (27)

Since the current subsequence (δ j) j∈N is also a positive-zero sequence, the above reasoning can
be applied again with ε = 1

2 . We choose a number j2 � j1 such that

∥∥∥xδ
j2

k
j2∗
− x†

∥∥∥ <
1
2
. (28)

Using induction, it is therefore possible to construct a subsequence (δ jm )m∈N with the
property

∥∥∥xδ
jm

k jm
∗

− x†
∥∥∥ <

1
m

, for all m ∈ N, (29)

this is implies that

∥∥∥∥xδ
jm

k jm
∗

− x†
∥∥∥∥→ 0, as m →∞. �

5. Numerical experiments

In this section the rriTK method, algorithm 1, is implemented for solving two distinct inverse
problems, namely: 1) the image deblurring problem [4]; 2) the IPP [22].

The performance of the rriTK method is compared against three other Kaczmarz type
methods, namely: the Landweber Kaczmarz (LWK), the geometric iterated Tikhonov Kacz-
marz (giTK) with λk = 2k and the stationary iterated Tikhonov Kaczmarz method (siTK) with
λk = 2 methods.

13
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Figure 1. Image deblurring: setup of the inverse problem. (a) Original image x; (b) point
spread function; (c) blurred image y.

Table 1. Image deblurring: number of computed cycles; in parentheses the number of
computed steps.

δ rriTK giTK

10% 15 (124) 111 (850)
1% 24 (212) 116 (939)
0.1% 29 (262) 119 (1023)

5.1. Image deblurring

These are finite dimensional problems modeled, in general, by high dimensional linear systems
of the form Ax = y. Here the vector x ∈ X = R

n represents the pixel values of an unknown true
image, while the vector y ∈ Y = X contains the pixel values of the observed (blurred) image.
The operator A : X → X describes the (discretized) blurring phenomenon [3, 4]. We consider
the situation where the blur of the image is modeled by a space invariant point spread function
(PSF).

In the continuous setting, the blurring process is represented by an integral operator of con-
volution type. Thus, the mathematical model corresponds to an integral equation of the first
kind [13]. In the discrete setting, after incorporating appropriate boundary conditions into the
model, the discrete convolution is evaluated by means of the FFT algorithm.

The setup of our deblurring experiment is shown in figure 1: (a) True image x ∈ R
n, n =

2562 (Cameraman 256 × 256); (b) PSF is the rotationally symmetric Gaussian low-pass filter
of size [256 256] and standard deviation σ = 4; (c) Exact data y = Ax ∈ R

n (blurred image).
The linear operators Ai in (2) correspond to blocks of lines of the (discretized) blurring

operator A (i.e., N = 16 blocks with 32 lines each), while the data yi is defined accordingly. In
the implementation of the rriTK method we use the values p̄ = 0.1, ¯̄p = 0.5. All implemented
methods are stopped according to the discrepancy principle with τ = 1.5. The available data
yδi is generated by adding artificial (white) noise to the blurred image yi. As initial (for all
methods) guess we set x0 = yδ (the noisy blurred image).

In our experiments, relative noise ‖yi − yδi ‖/‖yi‖ of three distinct levels, namely 0.1%, 1%
and 10%, are used. The results are summarized in table 1, where the number of computed cycles
for each method is shown, as well as the number of computed steps. It is worth mentioning that
the LWK and siTK methods have not reached the stop criteria (these methods were stopped
after 104 cycles).

14
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Figure 2. Image deblurring: noisy data case δ = 1%. (TOP) Iteration error; (CENTER)
number of equations solved per cycle; (BOTTOM) verification of the inequalities Φ̄ �
‖bδk‖ � ¯̄Φ in step [3.2].

A more detailed comparison is presented in figure 2 for the noise level of δi = 1%: (GRAY)
LWK method; (BLACK) siTK with λk = 2; (BLACK) giTK with λk = 2k; (RED) rriTK
method (with p̄ = 0.1 and ¯̄p = 0.5).

The pictures in figure 2 show: (TOP) relative error ‖x� − xδk‖/‖x�‖; (CENTER) number of
equations solved in each cycle; (BOTTOM) verification of the inequalities Φ̄ � ‖bδ

k‖ � ¯̄Φ in
step [3.2] of algorithm 1.

The x-axis in the (TOP) and (CENTER) pictures is scaled by the number of cycles. In the
(BOTTOM) picture, the x-axis shows the number of steps (notice that each cycle consists of
16 iterative steps).

5.2. Inverse potential problem

The IPP is a parameter identification problem for elliptic PDE’s [8, 15, 22, 34]. Generalizations
of this inverse problem appear in many relevant applications including inverse gravimetry [24,
34], EEG [12], and EMG [35].
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Figure 3. IPP: second noise scenario δ = 0.1%. (a) Exact solution x�; (b) approximate
solution xδ72 (rriTK method); (c) iteration error |x� − xδ72| (absolute error pixel-wise).

Table 2. IPP: number of computed cycles; in parentheses the number of computed steps.

δ rriTK giTK siTK LWK

1% 2 (10) 3 (21) 6 (32) 10 (56)
0.1% 6 (43) 5 (55) 20 (165) 35 (298)
0.025% 7 (64) 7 (73) 44 (358) 88 (669)

The forward problem consists in solving on a Lipschitz domain Ω ⊂ R
d , for a given source

function x ∈ L2(Ω), the boundary value problem

−Δu = x, in Ω, u = 0 on ∂Ω. (30)

The corresponding inverse problem is the so called IPP, which consists of recovering an L2-
function x, from measurements of the Neumann data of its corresponding H1-potential u on
the boundary of Ω, i.e., y := uν |∂Ω ∈ L2(∂Ω).

The IPP problem is modeled by the linear operator A : L2(Ω) → L2(∂Ω) defined by
Ax := uν |∂Ω, where u ∈ H1

0(Ω) is the unique solution of (30) (see [22]). Using this notation,
the IPP can be written in the abbreviated form Ax = y.

In our experiments we follow [5] in the experimental setup, selecting Ω = (0, 1) × (0, 1)
and assuming that the unknown parameter x� is an H1-function with sharp gradients (see
figure 3(a)). In the discrete setting, the solution of the involved elliptic BVP’s is computed
using finite differences on a uniform mesh with 502 nodes. Thus the operator A is approxi-
mated by a matrix Ad : R2500 → R

192. The boundary of Ω is divided in N = 12 segments, i.e.
∂Ω = ∪11

i=0Γi, and each Γi is discretized using 16 boundary nodes. Thus, the linear operators
in (2) are defined by Ai := γ i ◦ Ad, where γi : R192 → R

16 is the corresponding discretization of
the projection operator from ∂Ω to Γi. The (discretized) boundary data yi = γi(y) are defined
accordingly.

Perturbed data yδi are generated by adding to the exact Neuman data yi a normally distributed
noise with zero mean and suitable variance for achieving a prescribed relative noise level. In
the numerical implementations we set p̄ = 0.1, ¯̄p = 0.5, τ = 2 (discrepancy principle constant)
and use the initial guess x0 ≡ 1.5 (constant function in Ω).

As in section 5.1, three distinct scenarios are considered, where the relative noise level
‖y − yδ‖/‖y‖ corresponds to 1.0%, 0.1% and 0.025% respectively. The results are summarized
in table 2.
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Figure 4. Inverse Potential Problem: noisy data case δ = 0.1%. (TOP) Iteration error;
(CENTER) number of equations solved per cycle; (BOTTOM) verification of the
inequalities Φ̄ � ‖bδk‖ � ¯̄Φ.

In figure 4 the following methods are compared for the second noise scenario δ = 0.1%:
(GRAY) LWK method; (BLACK) siTK with λk = 2; (BLACK) giTK with λk = 2k; (RED)
rriTK method (with p̄ = 0.1 and ¯̄p = 0.5). The pictures in this figure show: (TOP) relative
error ‖x� − xδk‖/‖x�‖; (CENTER) number of equations solved in each cycle; (BOTTOM)
verification of the inequalities Φ̄ � ‖bδ

k‖ � ¯̄Φ in step [3.2] of algorithm 1.
For the noise scenario δ = 0.1%, the iterate xδ72 (computed by rriTK after 6 cycles) and the

corresponding iteration error |x� − xδ72| are shown in figures 3(b) and (c) respectively.

5.3. Remarks on the numerical experiments

The computation of our numerical experiments were conducted using MATLAB 2012a. Direct
and inverse problems were solved using different levels of discretization in order to avoid
inverse crimes.

For the IPPs, in all noise scenarios, both rriTK and giTK require similar number of cycles
to reach the same stop criteria6. On the other hand, for the Deblurring problem, rriTK requires

6 In the giTK we chose λk constant within the cycles, i.e., λk = 2κ+1 with κ = k\N (integer division).
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less cycles than giTK. It is worth noticing that, for both inverse problems and all noise sce-
narios rriTK computes less steps than the giTK (compare the numbers in parentheses in
tables 1 and 2).

In the numerical implementations of algorithm 1 for both inverse problems above, we con-
trolled the inequalities in step [3.2] for all computed steps. This can be verified in the (BOT-
TOM) pictures of figures 2 and 4. In these pictures one can also recognize which steps were
actually computed (i.e., hk �= 0) in each of the cycles of the rriTK method.

6. Conclusions and future work

We investigate nonstationary iTK type methods for computing stable approximate solutions
to systems of linear ill-posed operator equations. The main contribution of this article is to
extend the strategy for choosing the Lagrange multipliers for the iT method in [5] in order
to couple the iT method with the Kaczmarz strategy (we propose a different range as the one
in [5]). This modification allows us to prove convergence for exact data (section 3) using a
technique completely different from the one applied in [5]. Moreover, we also prove stability
and semi-convergence results (section 4), which are not considered in [5].

The range-relaxed strategy is very advantageous, since it allows each of the multipliers to
belong to a non-degenerate interval. Consequently, the actual computation of the Lagrange
multipliers (satisfying the theoretical requirements needed for the convergence analysis) is
simplified.

An algorithmic implementation of the rriTK method is discussed (algorithm 1), and it is
tested for solving two well known ill-posed problems (Image Deblurring and IPP) using three
different levels of noise.

The numerical experiments in section 5 show that the rriTK method is competitive with
other Kaczmarz type methods, including the giTK method, where the Lagrange multipliers are
computed a priori in geometric progression (a commonly used strategy).

The careful reader observes that many of the references cited in this manuscript relate to
methods for solving non-linear systems of equations. A natural question arises: what are the
difficulties to extend the approach presented in this paper to this non-linear framework? So far,
we have only a partial answer to that question. Using a nonlinear assumption called tangential
cone condition we are able to extend the ‘gain inequality’ for a nonlinear version of the rriTK
method (namely, the rrLMK or range-relaxed Levenberg Marquardt Kaczmarz method). In a
future work, we aim to extend the convergence analysis derived in this paper to the rrLMK
method for solving systems of nonlinear ill-posed equations.
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