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In this article we propose a novel strategy for choosing the Lagrange multipliers in the Levenberg–
Marquardt method for solving ill-posed problems modeled by nonlinear operators acting between Hilbert
spaces. Convergence analysis results are established for the proposed method, including monotonicity
of iteration error, geometrical decay of the residual, convergence for exact data, stability and semi-
convergence for noisy data. Numerical experiments are presented for an elliptic parameter identification
two-dimensional electrical impedance tomography problem. The performance of our strategy is compared
with standard implementations of the Levenberg–Marquardt method (using a priori choice of the
multipliers).
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1. Introduction

In this article we address the Levenberg–Marquardt (LM) method (Levenberg, 1944; Marquardt, 1963),
which is a well-established iterative method for obtaining stable approximate solutions of nonlinear ill-
posed operator equations (Hanke, 1997; Deuflhard et al., 1998) (see also the textbooks Engl et al., 1996;
Kaltenbacher et al., 2008 and the references therein).

The novelty of our approach consists in adopting a range-relaxed criteria for the choice of the
Lagrange multipliers in the LM method. Our approach is inspired in the recent paper (Boiger et al.,
2020), where a range-relaxed criteria was proposed for choosing the Lagrange multipliers in the iterated
Tikhonov method for linear ill-posed problems.

With our strategy the new iterate is obtained as the projection of the current one onto a level set
of the linearized residual function. This level belongs to an interval (or range), which is defined by
the current (nonlinear) residual and by the noise level. As a consequence, the admissible Lagrange
multipliers (in each iteration) shall belong to a nondegenerate interval instead of being a single value
(see (1.4)). This fact reduces the computational burden of evaluating the multipliers. Moreover, under
appropriate assumptions, the choice of the above-mentioned range enforces geometrical decay of the
residual (see (3.5)).
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The resulting method (see Section 2) proves, in the preliminary numerical experiments (see
Section 4), to be more efficient than the classical geometrical choice of the Lagrange multipliers,
typically used in implementations of LM-type methods.

1.1 The model problem

The exact case of the inverse problem we are interested in consists of determining an unknown quantity
x ∈ X from the set of data y ∈ Y , where X, Y are Hilbert spaces, and y is obtained by indirect
measurements of the parameter x, this process being described by the model

F(x) = y, (1.1)

with F : D(F) ⊆ X → Y being a nonlinear ill-posed operator. In practical situations one does not know
the data exactly. Instead, an approximate measured data yδ ∈ Y , satisfying

‖yδ − y‖ ≤ δ, (1.2)

is available, where δ > 0 is the (known) noise level.
Standard methods for finding a solution of (1.1) are based in the use of iterative type regularization

methods (Landweber, 1951; Hanke et al., 1995; Engl et al., 1996; Bakushinsky & Kokurin, 2004;
Kaltenbacher et al., 2008), which include the LM method or Tikhonov type regularization methods
(Tikhonov, 1963; Tikhonov & Arsenin, 1977; Seidman & Vogel, 1989; Morozov, 1993; Scherzer, 1993;
Engl et al., 1996).

1.2 The LM method

In what follows we briefly revise the LM method, which was proposed separately by Levenberg (1944)
and Marquardt (1963) for solving nonlinear optimization problems. The LM method for solving the
nonlinear ill-posed operator equation (1.1) was originally considered in Deuflhard et al. (1998); Hanke
(1997), and is defined by

xδ
k+1 = arg min

{‖yδ − F(xδ
k) − F′(xδ

k)(x − xδ
k)‖2 + αk‖x − xδ

k‖2}, k = 0, 1, . . .

Here F′(z) : X → Y is the Fréchet-derivative of F in z ∈ D(F), F′(z)∗ : Y → X is the corresponding
adjoint operator, and xδ

0 ∈ X is some initial guess (possibly incorporating a priori knowledge about
the exact solution(s) of F(x) = y). Moreover, {αk} is a sequence of positive relaxation parameters (or
Lagrange multipliers), aiming to guarantee convergence and stability of the iteration. This method can
be summarized as follows:

xδ
k+1 = xδ

k + hk, with hk := (
F′(xδ

k)
∗F′(xδ

k) + αkI
)−1

F′(xδ
k)

∗(yδ − F(xδ
k)). (1.3)

In the sequel we address some previous convergence analysis results:
(i) For exact data (i.e., δ = 0) convergence is proved in Hanke (1997, Theorem 2.2), provided the
operator F satisfies adequate regularity assumptions, and {αk} satisfies the ‘exact’ condition

‖yδ − F(xδ
k) − F′(xδ

k)hk,αk
‖2 = θ ‖yδ − F(xδ

k)‖2, (1.4)
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2964 A. LEITÃO ET AL.

where hk,αk
= hk(αk), is given by (1.3), and θ < 1 is an appropriately chosen constant.1 In the case of

inexact data (i.e., δ > 0) semi-convergence is proven if the iteration in (1.3) is stopped according to the
discrepancy principle. The analysis presented in Hanke (1997) depends on a nonlinearity assumption on
the operator F, namely the strong tangential cone condition (Kaltenbacher et al., 2008).
(ii) In Baumeister et al. (2010) a convergence analysis for a Kaczmarz version of the LM method, using
constant sequence {αk = α}, is presented. The convergence proofs depend once again on a nonlinearity
assumption on the operator F, namely the weak tangential cone condition (wTCC) (Hanke et al., 1995;
Engl et al., 1996; Kaltenbacher et al., 2008).
(iii) The algorithm REGINN is a Newton-like method for solving nonlinear inverse problems (Rieder,
1999). This iterative algorithm linearizes the forward operator around the current iterate, and subse-
quently applies a regularization technique in order to find an approximate solution to the linearized
system, which in turn is added to the current iterate to provide an update. If wTCC holds true and the
iteration is terminated by the discrepancy principle, then REGINN renders a regularization method in
the sense of Engl et al. (1996). If Tikhonov regularization is used for approximating the solution of the
linearized system, then REGINN becomes a variant of the LM method with a choice of the Lagrange
multipliers performed a posteriori. In this case the resulting method is very similar to the one presented
in Hanke (1997), but with the difference that the equality in (1.4) is replaced by an inequality.

1.3 Criticism on the available choices of the Lagrange multipliers

Although the proposed choice of {αk} in Hanke (1997) is performed a posteriori, there is a severe
drawback: the calculation of αk in (1.4) cannot be performed explicitly. Moreover, computation of
accurate numerical approximations for αk is highly expensive.

For larger choices of the discrepancy constant alternative parameter choice rules are discussed in
Hanke (1997), namely αk = α a positive constant or αk := ‖F′(xδ

k)‖2. However, the use of large values
for discrepancy principle implies that the computation of small stopping indexes, meaning that LM
iteration is interrupted before it can deliver the best possible approximate solution. On the other hand,
the constant choice {αk = α} also has an intrinsic disadvantage: although the calculation of α demands
no numerical effort, it does not lead to fast convergence of the sequence {xδ

k} (this is observed in the
numerical experiments presented in Baumeister et al., 2010).

The Newton-type method proposed in Rieder (1999) also chooses the Lagrange multiplier within
a range (see also Winkler & Rieder, 2015). However, differently from our criteria (2.5), this range
is defined by a single inequality (Rieder, 1999, Inequality (2.6)). As a consequence, a regularization
method (an inner iteration) is needed for the accurate computation of each multiplier.

In our method the computation of αk requires knowledge about the noise level δ > 0 and the wTCC
constant η ∈ [0, 1) (see Algorithm I). Other Newton-type methods (with a posteriori choice of αk) also
have this characteristic, e.g., see Rieder (1999, Lemma 3.2) and Hanke (1997, proof of Theorems 2.2
and 2.3).

1.4 Outline of the manuscript

In Section 2 we state the basic assumptions and introduce the range-relaxed criteria for choosing the
Lagrange multipliers. The algorithm for the corresponding LM-type method is presented, and we prove
some preliminary results, which guarantee that our method is well defined. In Section 3 we present the

1 It is well known (cf Groetsch, 1984) that αk is uniquely defined by (1.4).
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main convergence analysis results, namely: convergence for exact data, stability and semiconvergence
results. In Section 4 numerical experiments are presented for the EIT problem in a two-dimensional
domain. We compare the performance of our method with other implementations of the LM method
using classical (a priori) geometrical choices of the Lagrange multipliers. Section 5 is devoted to final
remarks and conclusions.

2. Range-relaxed LM method

In this section we introduce a range-relaxed criteria for choosing the Lagrange multipliers in the LM
method. Moreover, we present and discuss an algorithm for the resulting LM-type method, here called
the range-relaxed LM (rrLM) method.

We begin this section by introducing the main assumptions used in this manuscript. It is worth
mentioning that these assumptions are commonly used in the analysis of iterative regularization methods
for nonlinear ill-posed problems (Scherzer, 1993; Engl et al., 1996; Kaltenbacher et al., 2008).

2.1 Main assumptions

Throughout this article we assume that the domain of definition D(F) has nonempty interior and that
the initial guess x0 ∈ X satisfies Bρ(x0) ⊂ D(F) for some ρ > 0. Additionally,

(A1) The operator F and its Fréchet derivative F′ are continuous. Moreover, there exists C > 0 such that

‖F′(x)‖ ≤ C, x ∈ Bρ(x0). (2.1)

(A2) The wTCC holds at some ball Bρ(x0), with 0 ≤ η < 1 and ρ > 0, i.e.,

‖F(x̄) − F(x) − F′(x)(x̄ − x)‖Y ≤ η ‖F(x̄) − F(x)‖Y , ∀ x, x̄ ∈ Bρ(x0). (2.2)

(A3) There exists x� ∈ Bρ/2(x0) such that F(x�) = y, where y ∈ Rg(F) are the exact data satisfying
(1.2), i.e., x� is an arbitrary solution (non-necessarily unique).

2.2 An LM-type algorithm

In what follows we introduce an iterative method, which derives from the choice of Lagrange multipliers
proposed in this manuscript (see Step [3.1] of the Algorithm I).

Remark 2.1 Due to (A2) and (2.3) it follows τ > 1. Moreover,
[
τ(1 − η) − (1 + η)

]
(ητ)−1 > 0.

Consequently, the interval used to define ε in (2.3) is nondegenerate.

Remark 2.2 For linear operators F : X → Y , Assumption (A2) is trivially satisfied with η = 0. Thus,
ck = δ, dk = pδ + (1 − p)‖F(xδ

k) − yδ‖ and (2.5) reduces to

‖F xδ
k − yδ + F hδ

k‖ = ‖F xδ
k+1 − yδ‖ ∈ [ck, dk].

Consequently, the rrLM method in Algorithm I generalizes the range-relaxed nonstationary iterated
Tikhonov method for linear ill-posed operator equations proposed in Boiger et al. (2020).

From now on we assume that F′(x) �= 0 for x ∈ Bρ(x0). Notice that this fact follows from
Assumption (A2) provided F is nonconstant in Bρ(x0).
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2966 A. LEITÃO ET AL.

Algorithm I: Range-relaxed LM.

[0] Choose an initial guess x0 ∈ X; Set k = 0.

[1] Choose the positive constants τ , ε and p such that

τ >
1 + η

1 − η
, 0 < ε <

τ(1 − η) − (1 + η)

ητ
, 0 < p < 1. (2.3)

[2] If ‖F(x0) − yδ‖ ≤ τδ, then k∗ = 0; Stop!

[3] For k ≥ 0 do

[3.1] Compute αk > 0 and hk ∈ X, such that

hk = (
F′(xδ

k)
∗F′(xδ

k) + αkI
)−1

F′(xδ
k)

∗(yδ − F(xδ
k)) (2.4)

‖yδ − F(xδ
k) − F′(xδ

k)hk‖ ∈ [ck, dk] (2.5)

where

ck = (1 + ε)η‖F(xδ
k) − yδ‖ + (1 + η)δ (2.6)

dk = p ck + (1 − p) ‖F(xδ
k) − yδ‖. (2.7)

[3.2] Set

xδ
k+1 = xδ

k + hk. (2.8)

[3.3] If ‖F(xδ
k) − yδ‖ ≤ τδ, then k∗ = k; Stop!

[3.3] Else k = k + 1; Go to Step [3].

The remainder of this section is devoted to verify that, under assumptions (A1), (A2) and (A3),
Algorithm I is well defined (see Theorem 2.6). We open the discussion with Lemma 2.3, where a
collection of preliminary results in functional and convex analysis is presented.

Lemma 2.3 Suppose A : X → Y (A �= 0) is a continuous linear mapping, z̄ ∈ X, b ∈ Y has a nonzero
projection onto the closure of the range of A and define, for α > 0,

zα = arg minz∈X‖A(z − z̄) − b‖2 + α‖z − z̄‖2. (2.9)

The following assertions hold:

1. zα = z̄ + (A∗A + αI)−1A∗b;

2. α → ‖A(zα − z̄) − b‖ is a continuous, strictly increasing function on α > 0;

3. lim
α→0

‖A(zα − z̄) − b‖ = inf
z∈X

‖A(z − z̄) − b‖;
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4. lim
α→∞ ‖A(zα − z̄) − b‖ = ‖b‖;

5. ‖A(zα − z̄)‖ ≥ ‖b‖ − ‖A(zα − z̄) − b‖ ≥ 0;

6. α ≤ ‖A∗b‖2
[‖b‖(‖b‖ − ‖A(zα − z̄) − b‖)]−1;

7. For z ∈ X and α > 0

‖z − z̄‖2 −‖z − zα‖2 = ‖zα − z̄‖2 + 1

α

[‖A(zα − z̄)− b‖2 −‖A(z − z̄)− b‖2]+ 1

α
‖A(z − zα)‖2;

(2.10)

8. For z ∈ X, z �= z̄ and α > 0

α ≥ ‖A(zα − z̄) − b‖2 − ‖A(z − z̄) − b‖2

‖z − z̄‖2
. (2.11)

Proof. The proofs of items 1. and 5. are straightforward. For a proof of items 2. to 4. we refer the reader
to Groetsch (1984). The proofs of items 6. and 7. are adaptations of proofs presented in Boiger et al.
(2020) and item 8. follows from item 7. �

The next Lemma provides an auxiliary estimate, which is used in the proof of Proposition 2.5. This
proposition is fundamental for establishing that, as long as the discrepancy is not reached (see Step [3.3]
of Algorithm I), two key facts hold true: (i) it is possible to find a pair (αk ∈ R

+, hk ∈ X) solving (2.4),
(2.5) in Step [3.1] of Algorithm I; (ii) for any sequence {xδ

k} generated by Algorithm I, the iteration error
‖x� − xδ

k‖ is monotonically decreasing in k.

Lemma 2.4 Let Assumptions (A2) and (A3) hold. Then for x� as in (A3) it holds

‖F(x) − yδ + F′(x)(x� − x)‖ ≤ η‖F(x) − yδ‖ + (1 + η)δ, ∀x ∈ Bρ(x0).

Proof. Since x, x� ∈ Bρ(x0) it follows from (A2) that:

‖F(x) − yδ + F′(x)(x� − x)‖ = ‖F(x) − F(x�) + F′(x)(x� − x) + F(x�) − yδ‖
≤ η‖F(x) − F(x�)‖ + ‖F(x�) − yδ‖
≤ η

(‖F(x) − yδ‖ + ‖yδ − F(x�)‖) + ‖F(x�) − yδ‖.

The conclusion follows from this inequality, (A3) and (1.2). �
Proposition 2.5 Let Assumptions (A2) and (A3) hold. Given x ∈ Bρ(x0), define

(0, +∞) � α → ξα := arg minξ∈X‖F(x) − yδ + F′(x)(ξ − x)‖2 + α‖ξ − x‖2 ∈ X. (2.12)

1. For every α > 0 it holds

‖F′(x)‖ ‖ξα − x‖ ≥ ‖F(x) − yδ‖ − ‖F(x) − yδ + F′(x)(ξα − x)‖. (2.13)
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2968 A. LEITÃO ET AL.

Additionally, if ‖F(x) − yδ‖ > τδ, define the scalars

c := (1 + ε)η‖F(x) − yδ‖ + (1 + η)δ,

d := p[(1 + ε)η‖F(x) − yδ‖ + (1 + η)δ] + (1 − p)‖F(x) − yδ‖,

and the set J := {α > 0 : ‖F(x)− yδ + F′(x)(ξα − x)‖ ∈ [c, d]}. Then 2. J is a nonempty, nondegenerate
interval; 3. For α ∈ J and x� as in (A3) it holds

‖x� − x‖2 − ‖x� − ξα‖2 ≥ ‖ξα − x‖2. (2.14)

Proof. We adopt the notation: z = x�, zα = ξα , z̄ = x, b = yδ − F(x) and A = F′(x).
Add 1.: Equation (2.13) follows from Lemma 2.3 (item 5.).
Add 2.: From the definition of ε and τ in (2.3) it follows that:

c <
[
ητ + τ(1 − η) − (1 + η)

]
τ−1‖F(x) − yδ‖ + (1 + η)δ ≤ ‖F(x) − yδ‖

(the last inequality follows from δ ≤ τ−1‖F(x) − yδ‖). Since d is a proper convex combination of c and
‖F(x) − yδ‖, we have

c < d < ‖F(x) − yδ‖. (2.15)

On the other hand, it follows from Lemma 2.4 that

‖F(x) − yδ + F′(x)(x� − x)‖ ≤ η‖F(x) − yδ‖ + (1 + η)δ < c. (2.16)

From (2.15), (2.16) it follows that:

inf
z

‖F(x) − yδ + F′(x)(z − x)‖ < c < d < ‖F(x) − yδ‖.

Assertion 2. follows from this inequality and Lemma 2.3 (items 2., 3. and 4.).
Add 3.: From (2.16) and the assumption α ∈ J, we conclude that

‖F(x) − yδ + F′(x)(x� − x)‖ < c ≤ ‖F(x) − yδ + F′(x)(ξα − x)‖.

Assertion 3. follows from this inequality and Lemma 2.3 (item 7.). �
We are now ready to state and prove the main result of this section.

Theorem 2.6 Let Assumptions (A1), (A2) and (A3) hold. Then Algorithm I is well defined, i.e., for
k < k∗ (the stopping index defined in Step [3.3]) there exists a pair (αk ∈ R

+, hk ∈ X) solving (2.4),
(2.5). Moreover, k∗ is finite and any sequence {xδ

k} generated by this algorithm satisfies

‖x� − xδ
k‖2 − ‖x� − xδ

k+1‖2 ≥ ‖xδ
k − xδ

k+1‖2, 0 ≤ k < k∗. (2.17)
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Proof. Let step k = 0 of Algorithm I be its initialization. We may assume ‖F(x0)−yδ‖ > τδ (otherwise
the algorithm stops with k∗ = 0, and the theorem is trivial).

We use induction for proving this result. For k = 0 it follows from Proposition 2.5 (item 2.) with
x = x0, the existence of (α0 ∈ R

+, h0 ∈ X) solving (2.4), (2.5). Moreover, it follows from Proposition
2.5 (item 3.) with x = x0 that (2.17) holds for k = 0.

Assume by induction that Algorithm I is well defined up to step k0 > 0 and that (2.17) holds for
k = 0, . . . k0 − 1. There are two possible scenarios to consider:

• Case I: ‖F(xδ
k0

) − yδ‖ ≤ τδ.
In this case the algorithm terminates at iteration k∗ = k0 ≥ 1, concluding the proof.

• Case II: ‖F(xδ
k0

) − yδ‖ > τδ.

Due to the inductive assumption, ‖x� − xδ
k0

‖ ≤ ‖x� − xδ
k0−1‖ ≤ · · · ≤ ‖x� − xδ

0‖. From (A3)
follows:

‖xδ
k0

− xδ
0‖ ≤ ‖xδ

k0
− x�‖ + ‖x� − xδ

0‖ ≤ 2‖x� − xδ
0‖ < ρ.

Hence, xδ
k0

∈ Bρ(x0). Proposition 2.5 (item 2.) with x = xδ
k0

, guarantees the existence of a pair (αk0
∈

R
+, hk0

∈ X) solving (2.4), (2.5) as well as the existence of xδ
k0+1 ∈ X. The validity of (2.17) for k = k0

follows from Proposition 2.5 (item 3.) with x = xδ
k0

.
In order to verify the finiteness of the stopping index k∗ notice that, from Proposition 2.5 (item 1.)

with x = xδ
k, α = αk and ξα = xδ

k+1, it follows:

‖F′(xδ
k)‖ ‖xδ

k+1 − xδ
k‖ ≥ ‖F(xδ

k) − yδ‖ − ‖F(xδ
k) − yδ + F′(xδ

k)(x
δ
k+1 − xδ

k)‖, k = 0, . . . k∗ − 1.

From this inequality and the definition of ck and dk in Step [3.1], it follows that:

‖F′(xδ
k)‖ ‖xδ

k+1 − xδ
k‖ ≥ ‖F(xδ

k) − yδ‖ − dk = p
[‖F(xδ

k) − yδ‖ − ck

]
= p

[
(1 − (1 + ε)η) ‖F(xδ

k) − yδ‖ − (1 + η)δ
]
, k = 0, . . . k∗ − 1.

Since ‖F(xδ
k) − yδ‖ > τδ, 0 ≤ k < k∗ and ε < 1

η
− 1 (see (2.3)), we obtain from the last inequality

‖F′(xδ
k)‖ ‖xδ

k+1 − xδ
k‖ ≥ p

[
(1 − (1 + ε)η) τ − (1 + η)

]
δ = pδ ητ

[τ(1 − η) − (1 + η)

ητ
− ε

]
,

for k = 0, . . . k∗ − 1. Now, Assumption (A1) implies

‖xδ
k+1 − xδ

k‖ ≥ pδ ητ

C

[τ(1 − η) − (1 + η)

ητ
− ε

]
=: Ψ > 0, k = 0, . . . k∗ − 1. (2.18)

Adding up inequality (2.17) for k = 0, . . . k∗ − 1 and using (2.18), we finally obtain

‖x� − x0‖2 > ‖x� − x0‖2 − ‖x� − xδ
k∗‖2 >

∑k∗−1
k=0 ‖xδ

k − xδ
k+1‖2 > k∗Ψ 2,

from where the finiteness of the stopping index k∗ follows. �
Remark 2.7 Assumption (A1) is used only once in the proof of Theorem 2.6, namely in the derivation
of (2.18), which is used to prove finiteness of the stopping index k∗.
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Corollary 2.8 Let Assumptions (A1), (A2) and (A3) hold, and assume the data is exact, i.e., δ = 0.
Then any sequence {xk} generated by Algorithm I satisfies

∑∞
k=0 ‖xk − xk+1‖2 < ∞. (2.19)

Proof. Adding up inequality (2.17), we obtain

‖x� − x0‖2 − ‖x� − xn+1‖2 >
∑n

k=0 ‖xk − xk+1‖2, ∀n > 0

and the assertion follows. �
We conclude this section obtaining an estimate for the Lagrange multipliers {αk} defined in Step

[3.1] of Algorithm I.

Proposition 2.9 Let Assumptions (A2) and (A3) hold. Then the Lagrange multipliers {αk} in
Algorithm I satisfy

αk ≥ ρ−2εη ‖F(xδ
k) − yδ‖ [

(1 + ε)η‖F(xδ
k) − yδ‖ + (1 + η)δ

]
. (2.20)

Proof. Take α = αk, zα = xδ
k+1, z̄ = xδ

k, z = x�, b = yδ − F(xδ
k) and A = F′(xδ

k). Arguing as in the
proof of Lemma 2.4, we obtain

‖A(z − z̄) − b‖ ≤ η‖b‖ + (1 + η)δ. (2.21)

On the other hand, it follows from Step [3.1] that

‖A(zα − z̄) − b‖ ≥ (1 + ε)η‖b‖ + (1 + η)δ. (2.22)

From (2.21) and (2.22) we obtain ‖A(zα − z̄) − b‖ − ‖A(z − z̄) − b‖ ≥ εη‖b‖. This last inequality
together with (2.11) allow us to estimate

αk ≥ ρ−2[‖A(zα − z̄) − b‖2 − ‖A(z − z̄) − b‖2]
≥ ρ−2[‖A(zα − z̄) − b‖ + ‖A(z − z̄) − b‖] εη ‖b‖
≥ ρ−2εη ‖b‖ ‖A(zα − z̄) − b‖.

Estimate (2.20) follows from this inequality together with (2.22). �

3. Convergence analysis

We open this section obtaining an estimate, which is similar in spirit to Lemma 2.3 (item 7.).
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Lemma 3.1 Let Assumptions (A2) and (A3) hold. Then for x� as in (A3) it holds

‖x� − xδ
k‖2 − ‖x� − xδ

k+1‖2

≥ ‖xδ
k − xδ

k+1‖2 + 2εηα−1
k ‖F′(xk)(x

δ
k+1 − xδ

k) + F(xδ
k) − yδ‖ ‖F(xδ

k) − yδ‖, (3.1)

for k = 0, . . . , k∗ − 1.

Proof. The polarization identity yields

‖x� − xδ
k‖2 − ‖x� − xδ

k+1‖2 = ‖xδ
k − xδ

k+1‖2 − 2
〈
xδ

k+1 − xδ
k, xδ

k+1 − x�
〉
. (3.2)

Adopting the notation A := F′(xδ
k), b := yδ − F(xδ

k) it follows from (2.4) and (2.8):

−〈
xδ

k+1 − xδ
k, xδ

k+1 − x�
〉 = α−1

k

〈
A∗(Ahk − b), xδ

k+1 − x�
〉

= α−1
k

〈
Ahk − b, A[hk − (x� − xδ

k)]
〉

= α−1
k

[〈
Ahk − b, Ahk − b

〉 − 〈
Ahk − b, A(x� − xδ

k) − b
〉]

≥ α−1
k

[
‖Ahk − b‖2 − ‖Ahk − b‖ ‖A(x� − xδ

k) − b‖
]

= α−1
k ‖Ahk − b‖

[
‖Ahk − b‖ − ‖A(x� − xδ

k) − b‖
]
. (3.3)

However, from Lemma 2.4 (with x = xδ
k) and Algorithm I (see (2.6) and (2.5)), it follows:

‖A(x� − xδ
k) − b‖ ≤ η ‖b‖ + (1 + η) δ = ck − εη ‖b‖ ≤ ‖Ahk − b‖ − εη ‖b‖. (3.4)

Thus, inequality (1) follows substituting (3.3) and (3.4) in (3.2). �
The following results are devoted to the analysis of the residuals yδ − F(xδ

k) for a sequence {xδ
k}

generated by Algorithm I. In Proposition 3.2 we estimate the decay rate of the residuals. Moreover, in
Proposition 3.4 we prove the summability of the series of squared residuals.

Proposition 3.2 Let Assumptions (A2) and (A3) hold. Then for any sequence {xδ
k} generated by

Algorithm I, we have

‖yδ − F(xδ
k+1)‖ ≤ Λ ‖yδ − F(xδ

k)‖, (3.5)

for k = 0, . . . , k∗ − 1. Here Λ := (C1 + η)(1 − η)−1, C1 := p(C0 − 1) + 1 and C0 := (1 + ε)η +
(1 + η)τ−1 < 1. Additionally, if

η <
p + p

τ

2 + p(1 + ε) − p
τ

, (3.6)

then Λ < 1, from where it follows k∗ = O(|ln δ| + 1).2

2 Here k∗ is the stopping index defined in Step [3.3] of Algorithm I.
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Proof. From Algorithm I (see (2.7)) and (A2), it follows:

‖yδ − F(xδ
k+1)‖ ≤ ‖yδ − F(xδ

k) − F′(xδ
k)hk‖ + ‖F(xδ

k) + F′(xδ
k)hk − F(xδ

k+1)‖
≤ dk + η‖F(xδ

k) − F(xδ
k+1)‖

≤ dk + η
(‖yδ − F(xδ

k)‖ + ‖yδ − F(xδ
k+1)‖

)
, 0 ≤ k < k∗. (3.7)

On the other hand, Algorithm I (see (2.6)) implies ck ≤ C0‖yδ − F(xδ
k)‖, 0 ≤ k < k∗. Consequently,

dk ≤ C1‖yδ − F(xδ
k)‖, 0 ≤ k < k∗. Substituting this inequality in (3.7) we obtain the estimate (3.5).

To prove the last assertion observe that Λ < 1 iff (3.6) holds true. Moreover, from Algorithm I (see
Step [3.3]) and (3.5) follows τδ ≤ ‖yδ − F(xδ

k∗−1)‖ ≤ Λk∗−1‖yδ − F(x0)‖. Consequently, (3.6) implies
k∗ ≤ (ln Λ)−1 ln

(
τδ/‖yδ − F(x0)‖

) + 1, completing the proof. �
Remark 3.3 Inequality (3.6) holds true if η < 1/3, p is sufficiently close to 1, ε is sufficiently close
to zero and τ is large enough. Notice that the condition η < 1/3 is not necessary for the convergence
analysis devised in this manuscript.

Proposition 3.4 Let Assumptions (A1), (A2) and (A3) hold. Suppose that no noise is present in the
data (i.e., δ = 0). Then for any sequence {xk} generated by Algorithm I we have

∞∑
k=0

‖y − F(xk)‖2 < ∞. (3.8)

Proof. From Lemma 2.3 (item 6.) with α = αk, z̄ = xk, zα = xx+1, b = y − F(xk) and A = F′(xk),
follows:

1

αk
≥ ‖y − F(xk)‖

(‖y − F(xk)‖ − ‖F(xk) − y − F′(xk)hk‖
)

‖F′(xk)
∗(y − F(xk))‖2

≥ ‖y − F(xk)‖ − ‖F(xk) − y − F′(xk)hk‖
C2‖y − F(xk)‖

(3.9)

(the last inequality follows from (A1)). Moreover, it follows from Algorithm I (see (2.5))

‖y − F(xk)‖ − ‖F(xk) − y − F′(xk)hk‖ ≥ ‖y − F(xk)‖ − dk ≥ p
(
1 − (1 + ε)η

) ‖y − F(xk)‖

(notice that (1 − (1 + ε)η) > 0 due to (2.3)). From this inequality (3.9) and (1) follows:

‖x� − x0‖2 ≥
m∑

k=0

2η
αk

‖F′(xk)(xk+1 − xk) + F(xk) − y‖ ‖F(xk) − y‖

≥ 2ηp(1−(1+ε)η)

C2

m∑
k=0

‖F′(xk)(xk+1 − xk) + F(xk) − y‖ ‖F(xk) − y‖, (3.10)

for all m ∈ N. Finally, (3.8) follows from (3.10) and the inequality ‖F′(xk)(xk+1 − xk) + F(xk) − y‖ ≥
ck = (1 + ε)η‖F(xk) − y‖ (see Algorithm I, (2.5) and (2.6)). �
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Remark 3.5 An immediate consequence of Proposition 3.4 is the fact that ‖F(xk)−y‖ → 0 as k → ∞.
It is worth noticing that (3.10) and Algorithm I also imply the summability of the series

∞∑
k=0

‖F′(xk)(xk+1 − xk) + F(xk) − y‖2 and
∞∑

k=0

‖F′(xk)(xk+1 − xk) + F(xk) − y‖‖F(xk) − y‖

(compare with Baumeister et al., 2010, inequalities (18a), (18b), (18c)).

In the sequel we address the first main result of this section (see Theorem 3.7), namely convergence
of Algorithm I in the exact data case (i.e., δ = 0). To state this theorem we need the concept of
x0−minimal-norm solution of (1.1), i.e., the unique x† ∈ X satisfying ‖x† − x0‖ := inf {‖x∗ − x0‖ :
F(x∗) = y and x∗ ∈ Bρ(x0)}.
Remark 3.6 Due to (A2), given x∗ ∈ Bρ/2(x0) a solution of (1.1) and z ∈ N(F′(x∗)), the element

x∗ + tz ∈ Bρ(x0) is also a solution of (1.1) for all t ∈ (−ρ
2 , ρ

2 ).3

Due to (A3), x† ∈ Bρ/2(x0). Thus, the inequality ‖x† − x0‖2 ≤ ‖(x† + tz) − x0‖2 holds for all

t ∈ (−ρ
2 , ρ

2 ) and all z ∈ N(F′(x†)), from where we conclude4

x† − x0 ∈ N(F′(x†))⊥. (3.11)

Theorem 3.7 Let Assumptions (A1), (A2) and (A3) hold. Suppose that no noise is present in the data
(i.e., δ = 0). Then any sequence {xk} generated by Algorithm I either terminates after finitely many
iterations with a solution of (1.1) or it converges to a solution of this equation as k → ∞. Moreover, if

N(F′(x†)) ⊂ N(F′(x)), ∀x ∈ Bρ(x0) (3.12)

holds, then xk → x† as k → ∞.

Proof. In what follows we adopt the notation Ak := F′(xk), bk := y − F(xk). If for some k ∈ N,
‖y − F(xk)‖ = 0, then xk is a solution and Algorithm I stops with k∗ = k. Otherwise, {xk}k∈N is a
Cauchy sequence. Indeed, fix m < n and choose k ∈ {m, . . . , n} s.t.

‖bk‖ ≤ ‖bk‖ for all k ∈ {m, . . . , n}. (3.13)

3 Indeed, due to (A2) we have

‖F(x∗ + tz) − y‖ = ‖F(x∗ + tz) − F(x∗)‖ ≤ 1

1 − η
‖F′(x∗)(x∗ + tz − x∗)‖ = |t|

1 − η
‖F′(x∗) z‖ = 0.

4 The conclusion follows from the fact that ‖x† − x0‖2 ≤ ‖(x† + tz) − x0‖2, ∀t ∈ (−ε, ε), implies 〈x† − x0, z〉 = 0.
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From the triangle inequality and the polarization identity, it follows that for any x� as in (A3):

1
2 ‖xn − xm‖2 ≤ ‖xn − xk‖2 + ‖xm − xk‖2

= (‖x� − xn‖2 − ‖x� − xk‖2 + 2〈xn − xk xk − x�〉)
+ (‖x� − xm‖2 − ‖x� − xk‖2 + 2〈xm − xk xk − x�〉). (3.14)

Since the sequence {‖x� − xn‖}n∈N is non-negative and nonincreasing (see (2.17)) it converges.
Therefore, the difference ‖x� − xn‖2 − ‖x� − xk‖2 as well as ‖x� − xm‖2 − ‖x� − xk‖2 both converge to
zero as m → ∞. It remains to estimate the inner products in (3.14). Notice that∣∣〈xn − xk xk − x�〉 + 〈xm − xk xk − x�〉∣∣ ≤ ∣∣〈xn − xm xk − x�〉∣∣

≤
n−1∑
k=m

∣∣〈xk+1 − xk xk − x�〉∣∣
=

n−1∑
k=m

1
αk

∣∣〈A∗
k(Akhk − bk) xk − x�〉∣∣

≤
n−1∑
k=m

1
αk

‖Akhk − bk‖ ‖Ak(xk − x�)‖, (3.15)

with hk as in (2.4). However, from (3.13) and (A2) follows:

‖Ak(xk − x�)‖ ≤ ‖Ak(xk − xk)‖ + ‖Ak(x
� − xk)‖

≤ ‖F(xk) − F(xk) − Ak(xk − xk)‖ + ‖F(xk) − F(xk)‖
+ ‖F(x�) − F(xk) − Ak(x

� − xk)‖ + ‖F(x�) − F(xk)‖
≤ (η + 1) ‖F(xk) − F(xk)‖ + (η + 1) ‖y − F(xk)‖
≤ 2(η + 1) ‖y − F(xk)‖ + (η + 1)‖y − F(xk)‖
≤ 3(η + 1) ‖y − F(xk)‖.

Substituting this last inequality in (3.15) and using (1) (with xδ
k = xk, yδ = y), we obtain

∣∣〈xn − xk xk − x�〉 + 〈xm − xk xk − x�〉∣∣ ≤ 3(η + 1)
n−1∑
k=m

1
αk

‖Akhk − bk‖ ‖bk‖

≤ 3(η + 1)

2εη

n−1∑
k=m

(‖x� − xk‖2 − ‖x∗ − xk+1‖2
)

= 3(η + 1)

2εη

[‖x� − xm‖2 − ‖x� − xn‖2] → 0

as m → ∞. Thus, it follows from (3.14) that ‖xn − xm‖ → 0 as m → ∞, proving that {xk}k∈N is indeed
a Cauchy sequence.
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Since X is complete {xk} converges to some x∞ ∈ X as k → ∞. On the other hand, ‖y−F(xk)‖ → 0
as k → ∞ (see Remark 3.5). Consequently, x∞ is a solution of (1.1) proving the first assertion.

In order to prove the last assertion notice that, if (3.12) hold, then

xk+1 − xk = α−1
k A∗

k(Akhk − bk) ∈ R(F′(xk)
∗) ⊂ N(F′(xk))

⊥ ⊂ N(F′(x†))⊥, k = 0, 1, . . . ,

from where we conclude that xk − x0 ∈ N(F′(x†))⊥, k ∈ N. Since x† − x0 ∈ N(F′(x†))⊥ (see (3.11)) it
follows that xk−x† ∈ N(F′(x†))⊥, k ∈ N. Consequently, x∞−x† = limk xk−x† ∈ N(F′(x†))⊥. However,
(A2) implies ‖F′(x†)(x∞−x†)‖ ≤ (1+η)‖F(x∞)−F(x†)‖ = 0, from what follows x∞−x† ∈ N(F′(x†)).
Thus, x∞ − x† = 0. �

We conclude this section addressing the last two main results, namely: stability (Theorem 3.9) and
semi-convergence (Theorem 3.10). The following definition is quintessential for the discussion of these
results.

Definition 3.8 A vector z ∈ X is a successor of xδ
k if

• k < k∗.

• There exists (αk > 0, hk ∈ X) satisfying (2.4), (2.5), such that z = xδ
k + hk.

Notice that Theorem 3.7 guarantees that the sequence {xk}k∈N converges to a solution of F(x) = y
whenever xk+1 is a successor of xk for every k ∈ N. In this situation we call {xk}k∈N a noiseless sequence.

Theorem 3.9 (Stability). Let Assumptions (A1), (A2) and (A3) hold, and {δj}j∈N be a positive zero-

sequence. Assume that the (finite) sequences {xδj
k }0≤k≤k∗(δj)

, j ∈ N, are fixed,5 where x
δj
k+1 is a successor

of x
δj
k . Then there exists a noiseless sequence {xk}k∈N such that, for every fixed k ∈ N, there exists a

subsequence {δjm}m∈N (depending on k), satisfying

x
δjm
� → x� as m → ∞, for � = 0, . . . , k.

Proof. We use an inductive argument. Since xδ
0 = x0 for every δ ≥ 0 the assertion is clear for k = 0.

Our main argument consists of repeatedly choosing a subsequence of the current subsequence. In order
to avoid a notational overload we denote a subsequence of {δj}j again by {δj}j.

Suppose by induction that the assertion holds true for some k ∈ N, i.e., that there exists a
subsequence {δj}j and {x�}k

�=0, satisfying

x
δj
� → x� as j → ∞, for � = 0, . . . , k,

where k < k∗(δj) and x�+1 is a successor of x�, for � = 0, . . . , k − 1. Since x
δj
k+1 is a successor of x

δj
k (for

each δj) there exists (for each δj) a positive number α
δj
k such that x

δj
k+1 = x

δj
k + h

δj
k , with h

δj
k as in (2.4)

and ∥∥∥F(x
δj
k ) − yδj + F′(xδj

k )h
δj
k

∥∥∥ ∈ [c
δj
k , d

δj
k ]. (3.16)

5 Notice that the stopping index k∗ in Step [3.3] depends on δ, i.e., k∗ = k∗(δ).
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Our next goal is to prove the existence of a successor xk+1 of xk and of a subsequence {δj}j of the current

subsequence such that x
δj
k+1 → xk+1 as j → ∞, ensuring that

x
δj
� → x� as j → ∞, for � = 0, . . . , k + 1, (3.17)

and completing the inductive argument. We divide this proof in four steps as follows:

Step 1. We find a vector z ∈ X such that, for some subsequence {δj}j

h
δj
k ⇀ z as j → ∞. (3.18)

Step 2. We define

αk := lim inf
j→∞ α

δj
k (3.19)

and prove that αk > 0, which permit us to define hk as in (2.4) as well as xk+1 := xk + hk.

Step 3. We show that hk = z, which ensures that h
δj
k ⇀ hk.

Step 4. We validate that

‖h
δj
k ‖ → ‖hk‖, as j → ∞, (3.20)

which together with h
δj
k ⇀ hk proves that h

δj
k → hk and, consequently, x

δj
k+1 → xk+1.

Finally, we prove that xk+1 is a successor of xk, which validates (3.17).

Proof of Step 1. Since the sequence {hδj
k }j∈N is bounded (see (2.17)) there exists a subsequence {δj} of

the current subsequence and a vector z ∈ X such that (3.18) holds. Consequently,

A
δj
k h

δj
k − b

δj
k ⇀ Akz − bk, as j → ∞ (3.21)

(here A
δj
k = F′(xδj

k ), Ak = F′(xk), b
δj
k = yδj − F(x

δj
k ), bk = y − F(xk)).

Proof of Step 2. If αk in (3.19) is not positive, we conclude from (A2)

lim inf
j

‖A
δj
k h

δj
k − b

δj
k ‖2 ≤ lim inf

j
T

k,δj,α
δj
k

(h
δj
k ) ≤ lim inf

j
T

k,δj,α
δj
k

(x† − xk)

= lim inf
j

(‖A
δj
k (x† − xk) − b

δj
k ‖2 + α

δj
k ‖x† − xk‖2)

= ‖Ak(x
† − xk) − bk‖2 ≤ η2‖bk‖2

(here Tk,δ,α(h) := ‖F′(xδ
k)h − yδ + F(xδ

k)‖2 + α‖h‖2). This leads to the contradiction

ck = lim
j

c
δj
k ≤ lim inf

j
‖A

δj
k h

δj
k − b

δj
k ‖ ≤ η‖bk‖ < ck.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/41/4/2962/5906072 by U
niversidade Federal de Santa C

atarina user on 05 Septem
ber 2023



RANGE-RELAXED CRITERIA FOR CHOOSING THE LAGRANGE MULTIPLIERS IN THE LM METHOD 2977

Thus, αk > 0 holds. We define Tk,α(h) := Tk,δ,α(h) with δ = 0, hk := arg minh∈X Tk,αk
(h) and xk+1 :=

xk + hk. In order to prove that xk+1 is a successor of xk it is necessary to prove that

ck ≤ ‖Akhk − bk‖ ≤ dk. (3.22)

We first prove that hk = z (see Step 3).
Proof of Step 3. From (3.18), (3.21) and (3.19), it follows:

Tk,αk
(z) = ‖Akz − bk‖2 + αk‖z‖2 ≤ lim inf

j

(∥∥∥A
δj
k h

δj
k − b

δj
k

∥∥∥2 + α
δj
k

∥∥∥h
δj
k

∥∥∥2
)

= lim inf
j

T
k,δj,α

δj
k

(h
δj
k ) ≤ lim inf

j
T

k,δj,α
δj
k

(hk) = Tk,αk
(hk).

Since hk is the unique minimizer of Tk,αk
we conclude that hk = z. Thus, h

δj
k ⇀ hk as j → ∞. The

last inequalities also ensure that lim infj T
k,δj,α

δj
k

(h
δj
k ) = Tk,αk

(hk). This guarantees the existence of a

subsequence, satisfying

lim
j→∞ T

k,δj,α
δj
k

(h
δj
k ) = Tk,αk

(hk). (3.23)

Proof of Step 4. The goal is to validate (3.20), which, together with h
δj
k ⇀ hk, imply h

δj
k → hk.

Consequently, (3.22) follows from (3.16). This ensures that xk+1 is a successor of xk and validates
(3.17), completing the proof of the theorem.

We first prove the existence of a constant αmax,k such that

α
δj
k ≤ αmax,k for all j ∈ N.

Indeed, if such a constant did not exist, we could find a subsequence satisfying α
δj
k → ∞ as j → ∞.

Thus, since

α
δj
k ‖h

δj
k ‖2 ≤ T

k,δk ,α
δj
k

(h
δj
k ) ≤ T

k,δk ,α
δj
k

(0) = ‖b
δj
k ‖2,

we would have,

lim
j→∞ α

δj
k ‖h

δj
k ‖2 ≤ ‖bk‖2 < ∞,

which would imply h
δj
k → 0. Consequently,

lim
j→∞ ‖A

δj
k h

δj
k − b

δj
k ‖ = ‖bk‖ dk = lim

j→∞ d
δj
k ,

which would imply the contradiction ‖A
δj
k h

δj
k − b

δj
k ‖ d

δj
k , for j large enough.

Now we validate (3.20). This proof follows the lines of Margotti & Rieder (2015, Lemma 5.2).
Define

aj := ‖h
δj
k ‖2, a := lim sup aj, c := ‖hk‖2, rej := ‖A

δj
k h

δj
k − b

δj
k ‖2, re := lim inf rej.
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As ‖hk‖ ≤ lim inf ‖h
δj
k ‖ it suffices to prove that a ≤ c. Assume the contrary. From (3.23) there exists a

number N1 ∈ N such that

j ≥ N1 �⇒ T
k,δj,α

δj
k

(h
δj
k ) < Tk,αk

(hk) + αk
a − c

2
. (3.24)

From definition of lim inf there exist constants N2, N3 ∈ N such that

j ≥ N2 �⇒ rej ≥ re − αk(a − c)/6 (3.25)

and

j ≥ N3 �⇒ α
δj
k ≥ αk − αk(a − c)/6a. (3.26)

Moreover, from definition of lim sup, we conclude that for each M ∈ N fixed, there exists an index
j ≥ M such that

aj ≥ a − αk(a − c)/(6αmax,k). (3.27)

Therefore, for M := max{N1, N2, N3}, there exists an index j ≥ M such that

Tk,αk
(hk) ≤ re + αkc = re + (αk − α

δj
k )a + α

δj
k (a − aj) + α

δj
k aj − αk(a − c)

≤ (rej + αk
1
6 (a − c)) + αk

1
6 (a − c) + αk

1
6 (a − c) + α

δj
k aj − αk(a − c)

= rej + α
δj
k aj − αk

1
2 (a − c) = T

k,δj,α
δj
k

(h
δj
k ) − αk

1
2 (a − c) < Tk,αk

(hk),

where the second inequality follows from (3.25), (3.26), (3.27), while the last inequality follows from
(3.24). This leads to the obvious contradiction Tk,αk

(hk) < Tk,αk
(hk), proving that a ≤ c as desired.

Thus, (3.20) holds and the proof is complete. �
Theorem 3.10 (Regularization). Let Assumptions (A1), (A2) and (A3) hold, and {δj}j∈N be a positive

zero-sequence. Assume that the (finite) sequences {xδj
k }0≤k≤k∗(δj)

, j ∈ N, are fixed, where x
δj
k+1 is a

successor of x
δj
k . Then every subsequence of {xδj

k∗(δj)
}j∈N has itself a subsequence converging strongly to

a solution of (1.1).

Proof. Since any subsequence of {δj}j∈N is itself a positive zero-sequence, it suffices to prove that

{xδj

k∗(δj)
}j∈N has a subsequence converging to a solution. We consider two cases:

Case 1. The sequence {k∗(δj)}j∈N is bounded. Thus, there exists a constant M ∈ N such that k∗(δj) ≤ M

for all j ∈ N. Thus, the sequence {xδj

k∗(δj)
}j∈N splits into at most M + 1 subsequences having the form

{xδjn
m }n∈N, with fixed m ≤ M. Pick one of these subsequences. From Theorem 3.9 this subsequence has

itself a subsequence (again denoted by {xδjn
m }n∈N) converging to some xm ∈ X, i.e.,

lim
n→∞ x

δjn
k∗(δjn ) = lim

n→∞ x
δjn
m = xm.
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Notice that xm is a solution of (1.1). Indeed,

‖y − F(xm)‖ = lim
n→∞ ‖y − F(x

δjn
k∗(δjn ))‖

≤ lim
n→∞

(‖y − yδjn ‖ + ‖yδjn − F(x
δjn
k∗(δjn ))‖

)
≤ lim

n→∞(τ + 1) δjn = 0.

Case 2. The sequence {k∗(δj)}j∈N is not bounded. Thus, there is a subsequence such k∗(δj) → ∞ as
j → ∞. Let ε > 0 be given and consider the noiseless sequence {xk}k∈N constructed in last theorem.
Since xk+1 is a sucessor of xk for all k ∈ N, {xk}k∈N converges to some solution x∗ of (1.1) (see Theorem
3.7). Then there exists M = M(ε) ∈ N such that

‖xM − x∗‖ < 1
2 ε.

On the other hand, there exists J ∈ N such that k∗(δj) ≥ M, for j ≥ J. Consequently, it follows from the
monotonicity of the iteration error (see Theorem 2.6) that:

j ≥ J �⇒ ‖x
δj

k∗(δj)
− x∗‖ ≤ ‖x

δj
M − x∗‖.

Moreover, it follows from Theorem 3.9, the existence of a subsequence {δjm} (depending on M(ε)) and
the existence of N ∈ N such that

m ≥ N �⇒ ‖x
δjm
M − xM‖ < 1

2ε.

Consequently, for m ≥ max{J, N} (which simultaneously guarantees jm ≥ m ≥ J and m ≥ N), it holds

‖x
δjm
k∗(δjm ) − x∗‖ ≤ ‖x

δjm
M − x∗‖ ≤ ‖x

δjm
M − xM‖ + ‖xM − x∗‖ < ε. (3.28)

Notice that the subsequence {δjm} depends on ε. We now construct an ε-independent subsequence
using a diagonal argument: for ε = 1 in (3.28), there is a subsequence of {δj} (called again {δj}) and
j1 ∈ N such that

‖x
δj1
k∗(δj1 ) − x∗‖ < 1.

Now, for ε = 1/2, there exists a subsequence {δj} of the previous one, and j2 > j1 such that

‖x
δj2
k∗(δj2 ) − x∗‖ < 2−1.

Arguing in this way we construct a subsequence {δjn}n∈N, satisfying

‖x
δjn
k∗(δjn ) − x∗‖ < n−1,

from what follows lim x
δjn
k∗(δjn ) = x∗. �
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Remark 3.11 If the solution of (1.1) referred to in Theorem 3.9 were independent of the chosen

subsequence, then any subsequence of {xδj

k∗(δj)
}j∈N would have itself a subsequence converging to the

same solution. This would be enough to ensure that the whole sequence {xδj

k∗(δj)
}j∈N converges to x∗.

However, x∗ in the above proof depends on the noiseless sequence {xn}n∈N (whose existence is

guaranteed by Theorem 3.9), which in turn depends on the fixed sequences {xδj
k }0≤k≤k∗(δj)

, j ∈ N.
Consequently, if different subsequences of {δj}j∈N are chosen, the solution of (1.1) referred to in
Theorem 3.9 can be different.

Corollary 3.12 Under the assumptions of Theorem 3.9 the following assertions hold true:

1. The sequence {xδj

k∗(δj)
}j∈N splits into convergent subsequences, each one converges to a solution of

(1.1).

2. If x� in (A3) is the unique solution of (1.1) in Bρ(x0), then x
δj

k∗(δj)
→ x� as j → ∞.

3. If the null-space condition (3.12) holds, then {xδj

k∗(δj)
} converges to the x0-minimal-norm solution

x† as j → ∞.

Proof. The proof of Assertion 1. is straightforward. Assertion 2. follows from the fact that if x� is

the unique solution of (1.1) in Bρ(x0), then any subsequence of {xδj

k∗(δj)
}j∈N has itself a subsequence

converging to x�. To prove Assertion 3. notice that if (3.12) holds, then any noiseless sequence {xn}n∈N
converges to x† (Theorem 3.7). Thus, any subsequence of {xδj

k∗(δj)
}j∈N has itself a subsequence converging

to x† and the proof follows. �

4. Numerical experiments

4.1 The model problem and its discretization

We test the performance of our method applying it to the nonlinear and ill-posed inverse problem of EIT
introduced by Calderón (1980). A survey article concerning this problem is Borcea (2002).

Let Ω ⊂ R
2 be a bounded and simply connected Lipschitz domain. The EIT problem consists in

applying different configurations of electric currents on the boundary of Ω and then reading the resulting
voltages on the boundary of Ω as well. The objective is recovering the electric conductivity in the whole
of set Ω . This problem is governed by the variational equation∫

Ω

γ∇u∇ϕ =
∫

∂Ω

gϕ for all ϕ ∈ H1♦(Ω), (4.1)

where g : ∂Ω → R represents the electric current, γ : Ω → R is the electric conductivity and u : Ω →
R represents the electric potential. Employing the Lax–Milgram lemma one can prove that for each
g ∈ L2♦(∂Ω) := {v ∈ L2(∂Ω) :

∫
∂Ω

v = 0} and γ ∈ L∞+ (Ω) := {v ∈ L∞(Ω) : v ≥ c > 0 a.e. in Ω}
fixed, there exists a unique u ∈ H1♦(Ω) := {v ∈ H1(Ω) :

∫
∂Ω

v = 0} satisfying (4.1). The voltage

f : ∂Ω → R is the trace of the potential u (f = u|∂Ω ), which belongs to L2♦(∂Ω).

For a fixed conductivity γ ∈ L∞+ (Ω) the bounded linear operator Λγ : L2♦(∂Ω) → L2♦(∂Ω), g → f ,
which associates the electric current with the resulting voltage, the so-called Neumann-to-Dirichlet map
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Fig. 1. Left: sought solution. Middle: mesh used to generate the data. Right: mesh used to solve the inverse problem.

(in short NtD). The forward operator associated with EIT is defined by

F(γ ) = Λγ , (4.2)

with F : L∞+ (Ω) ⊂ L∞(Ω) → L(L2♦(∂Ω), L2♦(∂Ω)). The EIT inverse problem consists in finding γ in
above equation for a given Λγ . However, in practical situations, only a part of the data can be observed

and therefore the NtD map is not completely available. One has to apply d ∈ N currents gj ∈ L2♦(∂Ω),
j = 1, . . . , d and then record the resulting voltages fj = Λγ gj. We thus fix the vector (g1, . . . , gd) ∈
(L2♦(∂Ω))d and introduce the operator F : L∞+ (Ω) ⊂ L∞(Ω) → (L2♦(∂Ω))d, γ → (Λγ g1, . . . , Λγ gd),

which is Fréchet-differentiable6 (see, e.g., Lechleiter & Rieder, 2008).
Since an analytical solution of (4.1) is not available, in general, the inverse problem needs to be

solved with help of a computer. For this reason we construct a triangulation for Ω , T = {Ti : i =
1, . . . , M}, with M = 1476 triangles (see the third picture in Fig. 1) and approximate γ by piecewise
constant conductivities: define the finite dimensional space V := (span{χT1

, . . . , χTM
}, ‖ · ‖L2(Ω)).

7

We now search the conductivity in V , which means that our reconstructions always have the form∑M
i=1 θiχTi

, with (θ1, . . . , θM) ∈ R
M . With this new framework our forward operator reads

F : Ṽ ⊂ V → (L2(∂Ω))d, γ → (Λγ g1, . . . , Λγ gd), (4.3)

where Ṽ = L∞+ (Ω) ∩ V .
It is still unclear whether the forward operator associated with the continuous model of EIT, defined

in (4.2), satisfies the tangential cone condition (2.2), but the version presented in the restricted set (4.3)
guarantees this result, at least in a small ball around a solution, see Lechleiter & Rieder (2008). The
Fréchet derivative of F, F′ : int(Ṽ) → L(V , (L2(∂Ω))d), satisfies F′(γ )h = (w1|∂Ω , . . . , wd|∂Ω), where
wj ∈ H1♦(Ω) is the unique solution of∫

Ω

γ∇wj∇ϕ = −
∫

Ω

h∇uj∇ϕ for all ϕ ∈ H1♦(Ω), (4.4)

6 Equipped with an inner product defined in a very natural way, induced by the inner product in L2(∂Ω), the space (L2♦(∂Ω))d

is a Hilbert space.
7 Notice that span{χT1 , . . . , χTM } ⊂ L∞(Ω).
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with uj solving (4.1) for g = gj. The adjoint operator F′(γ )∗ : (L2(∂Ω))d → V is given by

F′(γ )∗z = −
d∑

j=1

∇uj∇ψzj
, (4.5)

where z := (z1, . . . , zd) ∈ (L2(∂Ω))d and for each j = 1, . . . , d, the vectors uj and ψzj
are the unique

solutions of (4.1) for g = gj and g = zj, respectively.
In our numerical simulations we define Ω := (0, 1) × (0, 1) and supply the current vector

(g1, . . . , gd) with d = 8 independent currents: identifying the faces of Ω with the numbers m = 0, 1, 2, 3,
we apply the currents

g2m+k(x) =
{

cos(2kπx) : on the face m

0 : elsewhere on ∂Ω

for k = 1, 2. The exact solution γ + consists of a constant background conductivity 1 and an inclusion
B ⊂ Ω with conductivity 2:

γ +(x) :=
{

2 : x ∈ B

1 : otherwise.

The set B models two balls with radii equal 0.15 and center at the points (0.35, 0.35) and (0.65, 0.65).
The data,

y := (Λγ +g1, . . . , Λγ +gd), (4.6)

corresponding to the exact solution γ + are computed using the finite element method (FEM). The
problems (4.1) and (4.4) have been solved by FEM as well, but using a much coarser discretization
mesh than the one used to generate the data for avoiding inverse crimes, see Fig. 1.

It is well known that in this specific problem undesirable instability effects may arise from an
unfavorable selection of the geometry of the mesh. For avoiding this problem we employ a strategy using
a weight-function ω : Ω → R to define the weighted-space L2

ω(Ω) := {f : Ω → R :
∫
Ω

|f |2ω < ∞}.
This alteration changes the evaluation of the adjoint operator (4.5) in the discretized setting, see Winkler
& Rieder (2015) and Margotti (2015, Subsection 5.1.2) for details. In the mentioned references the
authors use the weight-function

ω :=
M∑

i=1

βiχTi
with βi :=

∥∥F′(γ0)χTi

∥∥
(L2(∂Ω))d

|Ti|
,

where |Ti| is the area of triangle Ti, and the initial iterate γ0 is the constant 1 function.
In the notation of Section 1 we have F : D(F) ⊂ X := (span{χT1

, . . . , χTM
}, ‖ · ‖L2

ω(Ω)) →
(L2(∂Ω))d =: Y , where D(F) = X ∩ L∞+ (Ω). We define the relative error in the kth iterate γk as

Ek := 100
‖γk − γ +‖X

‖γ +‖X
, (4.7)
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Fig. 2. Geometric choice of the parameters αk for r = 0.1 and r = 0.9, with α0 = 2. Noise level δ = 0.1%, η = 0.4 and
τ = 1.3(1 + η)/(1 − η). Left: residual, right: iteration error.

and use it to compare the quality of the reconstructions. Finally, we corrupt the simulated data y in (4.6)
by adding artificially generated random noise with a relative noise level δ > 0,

yδ = y + δ noi ‖y‖ Y , (4.8)

where noi ∈ Y is a uniformly distributed random variable such that ‖noi‖ Y = 1.

4.2 Implementation of the range-relaxed LM method

Now, we turn to the problem of finding a pair (αk > 0, hk ∈ X) in accordance to Step [3.1] of
Algorithm I.

An usual choice for the parameters αk is of geometric type, i.e., the parameters are defined a priori
by the rule αk = rαk−1, where α0 > 0 and 0 < r < 1 (the decreasing ratio) are given. This method is
usually very efficient if a good guess for the constant r is available. However, big troubles may arise if
the decreasing ratio r is chosen either too large or too small. Indeed, on the one hand, if the constant r
is too large (r ≈ 1), then the method becomes slow and the computational costs increase considerably;
on the other hand, the LM method becomes unstable in case r is chosen too small (r ≈ 0), see Fig. 2
above.

Notice that the αk defined by the geometric choice does not necessarily satisfy the problem in
Step [3.1]. We propose a strategy for choosing the decreasing ratio r in each step, so that the resulting
parameter αk (and the corresponding hk) are in agreement with Step [3.1]. For the actual computation
of the ratio r in the current step we use information on the current iteration and past iterations as well.
This is described in the sequel.

We adopt the notation

Hk(α) = ‖yδ − F(γk) − F′(γk)hα‖, α > 0,

where hα is given by

hα = (
F′(γk)

∗F′(γk) + αI
)−1

F′(γk)
∗(yδ − F(γk)). (4.9)

According to Step [3.1] in Algorithm I we need to determine αk > 0 such that Hk(αk) ∈ [ck, dk], where
ck and dk are defined in (2.6) and (2.7), respectively. For doing that we have employed the adaptive
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strategy introduced in Machado et al. (2020). This algorithm is based on the geometric method, but
allows adaptation of the decreasing ratio using a posteriori information. First, we define the constants

ĉk = p1ck + (1 − p1)dk and d̂k = p2ck + (1 − p2)dk, (4.10)

where 0 < p1 < p2 < 1. Notice that [̂ck, d̂k] ⊂ [ck, dk].
Choose the initial parameter α0 > 0; compute h0 := hα0

and γ1 according to Algorithm I.
Choose the initial decreasing ratio 0 < r0 < 1, define α1 = r0 α0; compute h1 := hα1

and γ2
according to Algorithm I.

For k ≥ 1 we define αk+1 = rkαk, where

rk =
⎧⎨⎩

a1rk−1, if ck−1 ≤ Hk−1(αk−1) < ĉk−1
a2rk−1, if d̂k−1 < Hk−1(αk−1) ≤ dk−1
rk−1, if Hk−1(αk−1) ∈ [̂ck−1, d̂k−1].

(4.11)

Here the constants 0 < a2 < 1 < a1 play the role of correction factors and are chosen a priori.
The idea of the adaptive strategy is to observe the behavior of the function Hk and try to determine

how much the parameter αk should be decreased in the next iteration. For example the number Hk(αk)

lying to the left of the smaller interval [̂ck, d̂k] means that αk was too small. We thus multiply the
decreasing ratio rk−1 by the number a1 > 1, in order to increase it, and, consequently, to decrease
the parameter αk slower than in the previous step, trying to hit [̂ck, d̂k] in the next iteration. This
algorithm is efficient in terms of computational cost: like the geometric choice for αk, it requires only
one minimization of a Tikhonov functional in each iteration. Further, the adaptive strategy has the
additional advantage of correcting the decreasing ratio if this ratio is either too large or too small.

An attentive reader could object that, in some iterations, the evaluated parameter αk may lead to a
number Hk(αk) that does not belong to the interval [ck, dk] defined in Step [3.1]. This is indeed possible!
In this situation we apply the secant method in order to recalculate αk such that Hk(αk) ∈ [ck, dk],
before starting the next iteration. This is however an expensive task since each step of the secant method
demands the additional minimizations of Tikhonov functionals.

It is worth noticing that this situation has been barely observed in our numerical experiments,
occurring only in the cases when either the initial decreasing ratio r0 or the initial guess α0 are poorly
chosen.

4.3 Numerical realizations

For the constant τ in (2.3) we use τ = 1.3(1 + η)/(1 − η), where η = 0.4 is the constant in (A2).
Moreover, we choose p = 0.1 and ε = 0.1[τ(1 − η) − (1 + η)]/ητ in (2.3). The constants in (4.10) are
p1 = 1/3 and p2 = 2/3, while the constants in (4.11) are a1 = 2 and a2 = 1/2.
First test (one level of noise): The goal of this test is to investigate the performance of our rrLM method
with adaptive strategy (a posteriori) for computing the parameters, with respect of different choices of
initial decreasing ratio r0.

As observed in Fig. 2 the performance of the LM method with geometric choice (a priori) of
parameters is very sensitive to the choice of the (constant) decreasing ratio r < 1.

We implement the rrLM method (using adaptive strategy) with r0 = 0.1 and r0 = 0.9. In Fig. 3 the
results of the rrLM method are compared with the LM method using geometric choice of parameters
(see top-left, top-right and bottom-left pictures).
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Fig. 3. First test: noisy data, δ = 0.1%. Top-left: residual. Top-right: relative iteration error. Bottom-left: parameter αk . Bottom-
right: linearized residual Hk(αk) and the numbers ck and dk for the rrLM with r0 = 0.9.

— [GREEN] rrLM with r0 = 0.1, reaches discrepancy with k∗ = 11 steps;

— [MAGENTA] rrLM with r0 = 0.9, reaches discrepancy with k∗ = 11 steps;

— [RED] LM with r = 0.9, reaches discrepancy with k∗ = 36 steps;

— [BLUE] LM with r = 0.1, does not reach discrepancy.

The noise level is δ = 0.1%. All methods are started with α0 = 2. The last picture in Fig. 3 (bottom-
right) shows the values of the linearized residual Hk(αk) as well as the intervals [ck, dk] (see (2.6) and
(2.7)) for the rrLM with r0 = 0.9.

From this first test we draw the following conclusions: • The rrLM method (using adaptive strategy)
is robust with respect of the choice of the (initial) decreasing ratio. We tested two poor choices of initial
decreasing ratios (namely r0 = 0.1 and r0 = 0.9); nevertheless, the performance of the rrLM method in
both cases is stable and numerically efficient. For rrLM method the relative error obtained for r0 = 0.1
is comparable to that obtained for r0 = 0.9 (see top-right picture in Fig. 3).

• We also tested the rrLM method (using adaptive strategy) and the LM method (using geometric
choice of parameters) for r = r0 = 0.5, which seems to be the ‘optimal’ choice of constant
decreasing ratio. In this case both methods performed similarly. Moreover, the performance of
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Table 1 Comparison between rrLM and LM methods: computational effort

k∗(Nk∗)

(r0 = 0.9) (r0 = 0.5) (r0 = 0.1)

δ(%) rrLM LM rrLM LM rrLM LM

0.8 5(6) 3(3) 4(5) 3(3) 5(8) 3(3)
0.4 8(8) 8(8) 6(6) 4(4) 8(12) 4(4)
0.2 9(9) 18(18) 7(7) 7(7) 8(11) Fails
0.1 11(11) 35(35) 10(10) 10(10) 11(14) Fails

the rrLM method (number of iterations and numerical effort) was similar to the ones depicted in
Fig. 3 using r0 = 0.1 and r0 = 0.9.

• The rrLM method (using adaptive strategy) ‘corrects’ eventual poor choices of the decreasing
ratio. If r0 is too small the adaptive strategy increases this ratio during the first iterations (GREEN
curve in Fig. 3) preventing instabilities (compare with the LM method using geometric choice of
parameters — BLUE curve in Fig. 3). On the other hand, if r0 is large (close to one), the adaptive
strategy decreases this ratio during the first iterations (MAGENTA curve in Fig. 3), preventing
slow convergence (compare with the LM method using geometric choice of parameters — RED
curve in Fig. 3).

• The last picture in Fig. 3 (bottom-right) shows that the linearized residual Hk(αk), computed using
the adaptive strategy, satisfies (2.5) in Step [3.1] of Algorithm I. Consequently, this strategy
provides a numerical realization of Algorithm I, which is in agreement with the theory devised in
this article.

Second test (several levels of noise): The goal of this test is twofold: (first) we validate the
regularization property (see Theorem 3.10 and Corollary 3.12) by choosing different levels of noise
δ > 0 and observing what happens when the noise level decreases; (second) we compare the numerical
effort of the rrLM method (with adaptive strategy) with the LM method (with geometric choice of
parameters).

In what follows we present a set of experiments with four different levels of noise δ > 0 namely,
δ = 0.8%, δ = 0.4%, δ = 0.2%, δ = 0.1%. In each scenario above we implemented the rrLM method
(with adaptive strategy) as well as the LM method (with geometric choice of parameters).

For the implementation of the LM method with geometric choice of parameters we use the constant
decreasing ratios: r0 = 0.9, r0 = 0.5 and r0 = 0.1. For the implementation of the rrLM method we used
the same choices of r0 as starting value for r together with the adaptive strategy. In all implementations
α0 = 2 is used. Comparisons of these methods are presented in Tables 1 and 2. Three distinct indicators
are used, namely:

– Number of iterations to reach discrepancy k∗ = k∗(δ) (see Step [3.3]);

– Total number of Tikhonov functionals minimized for k = 0, . . . k∗ − 1, denoted by Nk∗ ;8

8 The numbers k∗ and Nk∗ are always the same in the geometric choice (LM method), but Nk∗ may be larger than k∗ in the
adaptive strategy (rrLM method).
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Table 2 Comparison between rrLM and LM methods: relative iterative error at the final iteration

Ek∗
(r0 = 0.9) (r0 = 0.5) (r0 = 0.1)

δ(%) rrLM LM rrLM LM rrLM LM

0.8 82.6 82.7 82.8 81.5 82.8 80.9
0.4 79.7 79.7 79.5 79.7 79.6 79.5
0.2 76.5 76.5 76.3 76.6 76.4 Fails
0.1 71.5 72.9 71.6 71.7 72.1 Fails

– Relative iteration error at step k = k∗, denoted by Ek∗ (see (4.7)).9

From this second test we draw the following conclusions:

• For both methods k∗ increases and Ek∗ decreases as δ becomes smaller (validating the regulariza-
tion property).

• For each fixed noise level δ the values of Ek∗ are similar for both methods.

• If the noise level is small (δ = 0.1% and δ = 0.2%) the rrLM method is more efficient than the
LM method for r0 = 0.9. Both methods perform similarly for r0 = 0.5. For r0 = 0.1 the LM
method fails to converge, while the rrLM method succeeds in reaching the stopping criterium.

• For higher levels of noise (δ = 0.4% and δ = 0.8%) both methods perform similarly for r0 = 0.9
and r0 = 0.5. For r0 = 0.1 the LM method converges faster than the rrLM method. This is due to
the fact that rrLM needs to correct the initial guess for α0 = 2.

• For levels of noise higher than 0.8% the rrLM stops after two or less iterations (for different
choices of r0). Consequently, these experiments do not give relevant information about the
performance of our method.

• For the rrLM method the values of k∗ and Nk∗ are identical in most of the scenarios of Table 1,
i.e., only one Tikhonov functional is minimized in each step (this is the same numerical cost for
one step of the LM method with geometric choice of parameters).

The last conclusion validates the adaptive strategy for computing the parameters αk as an efficient
alternative for the numerical implementation of Step [3.1] in Algorithm I.

5. Final remarks and conclusions

In this article we address the LM method for solving nonlinear ill-posed problems, and propose a novel
range-relaxed criteria for choosing the Lagrange multipliers, namely: the new iterate is obtained as the
projection of the current one onto a level set of the linearized residual function; this level belongs to an
interval (or range), which is defined by the current nonlinear residual and by the noise level (see Step
[3.1] of Algorithm I).

The main contributions in this article are:

9 It is worth noticing that the initial iteration error is E0 = 87.39% in all four scenarios above.
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• We derive a complete convergence analysis: convergence (Theorem 3.7), stability (Theorem 3.9),
semi-convergence (Theorem 3.10). We also prove monotonicity of iteration error (Theorem 2.6)
and geometric decay of residual (Proposition 3.2). Moreover, we prove convergence to minimal-
norm solution under additional null-space condition (3.12), in both exact and noisy data cases.

• We give a novel proof for the stability result, which uses nonstandard arguments. In the classical
stability proof, since each Lagrange multiplier is uniquely defined by an (implicit) equation, the
set of successors (Definition 3.8) of each xδ

k is singleton. However, due to our range-relaxed
criteria (2.5), each set of successors may contain infinitely many elements; consequently, the
subsequences {δjm}m∈N obtained in Theorem 3.9 do depend on the iteration index k.

• We devise a numerical algorithm, based on the adaptive strategy (see Subsection 4.2), for
implementing the range-relaxed criteria proposed in this article. Its main features are:

– Efficiency in terms of computational cost: like the LM with geometric (a priori) choice of
parameters it (almost always) requires only one minimization of a Tikhonov functional in each
iteration.

– Correction of the decreasing ratio if this ratio is either too large or too small.

– The computed pairs (αk, hk) satisfy (2.5) for all k > 0, i.e., this algorithm provides a numerical
realization of Algorithm I.
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