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Abstract
In this article we investigate a family of stochastic gradient type methods for
solving systems of linear ill-posed equations. The method under consideration
is a stochastic version of the projective Landweber–Kaczmarz method in Leitão
and Svaiter (2016 Inverse Problems 32 025004) (see also Leitão and Svaiter
(2018 Numer. Funct. Anal. Optim. 39 1153–80)). In the case of exact data, mean
square convergence to zero of the iteration error is proven. In the noisy data case,
we couple our method with an a priori stopping rule and characterize it as a reg-
ularization method for solving systems of linear ill-posed operator equations.
Numerical tests are presented for two linear ill-posed problems: (i) a Hilbert
matrix type system with over 108 equations; (ii) a big data linear regression
problem with real data. The obtained results indicate superior performance of
the proposed method when compared with other well-established random iter-
ations. Our preliminary investigation indicates that the proposed iteration is a
promising alternative for computing stable approximate solutions of large scale
systems of linear ill-posed equations.
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1. Introduction

The classical Kaczmarz iteration, consisting of cyclic orthogonal projections, was devised in
1937 by the Polish mathematician Stefan Kaczmarz for solving systems of linear equations
[20]. This method is simple to implement, and the iterative step can be evaluated with low
computational coast. It was successfully used for solving ill-posed linear systems related to
several relevant applications, e.g., x-ray tomography [18, 19, 27–30] and signal processing
[6, 31, 37].

The starting point of our approach are two Kaczmarz type methods, namely the projec-
tive Landweber (PLW) method [24] and its corresponding Kaczmarz version, the projective
Landweber–Kaczmarz (PLWK) method [23]. Our main goal is to analyze a stochastic ver-
sion of the PLWK, aiming to obtain a numerically efficient method for computing stable
approximate solutions to large scale systems of linear ill-posed equations.

It is worth noticing that the here proposed stochastic PLWK method can be interpreted as a
stochastic gradient descent type method [39–43] for the least-squares problem with a particular
choice of the stepsize.

1.1. Problems under consideration

The inverse problem we are interested in consists of determining an unknown quantity x ∈ X
from the set of data (y0, . . . , yN−1) ∈ YN , where X, Y are Hilbert spaces and N � 1 is large4.
In practical situations, the exact data are not known. Instead, only approximate measured data
yδi ∈ Y are available such that

‖yδi − yi‖ � δi, i = 0, . . . , N − 1, (1)

with δi > 0 (noise level). We use the notation δ := (δ0, . . . , δN−1).
The finite set of data above is obtained by indirect measurements of the parameter x, this

process being described by the model yi = Aix, for i = 0, . . . , N − 1. Here Ai : X → Y are linear
ill-posed operators [13]. Summarizing, the abstract formulation of the inverse problems under
consideration reads: given the data yδi and the levels of noise δi as in (1), find an approximate
solution to the large scale linear system

Aix = yi, i = 0, . . . , N − 1. (2)

Standard methods for the solution of (1) and (2) are based in the use of iterative type regular-
ization [1, 9, 17, 21, 22] or Tikhonov type regularization [9, 26, 32, 33, 35, 36] after rewriting
(2) as a single equation

Ax = yδ , with A := (A0, . . . , AN−1) : X → YN , yδ :=
(
yδ0, . . . , yδN−1

)
. (3)

If one resorts to the functional analytical formulation (3), one has to face the numerical chal-
lenges of solving a large scale system of ill-posed equations [7]. When applied to (3), the above
mentioned solution methods may become inefficient if N is large.

An alternative technique for solving system (2) in a stable way is to use Kaczmarz (cyclic)
type regularization methods. This technique was introduced in [2, 5, 8, 14–16, 25] for the
Landweber iteration, the Steepest-Descent iteration, the expectation–maximization iteration,
the Levenberg–Marquardt iteration, the REGINN-Landweber iteration, and the iteratively
regularized Gauss–Newton iteration, respectively.

4 The case yi ∈ Yi with possibly different spaces Y0, . . . , YN−1 can be treated analogously.
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1.2. Starting point of our approach: PLW and PLWK methods

The PLW method was originally proposed in [24] for solving nonlinear operator equations
(it can be applied for solving (1) and (2) with N = 1, i.e., A0x = y0 and ‖y0 − yδ0‖ � δ). A
sequence (xδk) is generated as follows: at each iteration k, a half space

Hxδk
:=

{
z ∈ X|〈z − xδk, A∗

0(yδ0 − A0xδk)〉 � ‖yδ0 − A0xδk‖
(
‖yδ0 − A0xδk‖ − δ

)}
separating the current iterate xδk from the solution set A−1

0 (y0) is defined; 5 thus, the next iterate
xδk+1 is defined as a (relaxed) orthogonal projection of xδk onto this set. This iterative method
can be summarized as follows

xδk+1 := xδk − θk λk A∗
0

(
A0xδk − yδ0

)
, (4)

where θk ∈ (0, 2) is a relaxation parameter and λk � 0 gives the exact orthogonal projection
of xδk onto Hxδk

(see [24, equation (8)] for details). This method corresponds to a Landweber
iteration with stepsize defined by (relaxed) orthogonal projections onto the separating sets Hxδk

.
The PLWK method was originally proposed in [23] for solving systems of nonlinear ill-

posed equations as in (1) and (2) when N > 1. It consists in coupling the PLW method (4) with
the Kaczmarz (cyclic) strategy and incorporating a bang-bang parameter, i.e.,

xδk+1 := xδk − θk λk ωk A∗
[k]

(
A[k]x

δ
k − yδ[k]

)
. (5a)

Here the parameters θk, λk have the same meaning as in (4), while

ωk = ωk(δ[k], yδ[k]) :=

{
1 ‖A[k]x

δ
k − yδ[k]‖ > τδ[k]

0 otherwise,
(5b)

where τ > 1 is an appropriate chosen positive constant and [k] := (k mod N) ∈ {0, . . . , N − 1}.
As usual in Kaczmarz type algorithms, a group of N subsequent steps (starting at some

integer multiple of N) is called a cycle. In the case of noisy data, the iteration terminates if
all ωk become zero within a cycle, i.e., if ‖Aixδk+i − yδi ‖ � τδi, i ∈ {0, . . . , N − 1}, for some
integer multiple k of N.

In [23] the authors also consider the PLWKr method, namely a randomized version of the
PLWK method (in the spirit of [3]) where [k] is randomly chosen in {0, . . . , N − 1} (the cyclic
structure of PLWK is preserved, i.e., within a cycle each equation is chosen exactly once).

The PLWK iteration (5) exhibits the following characteristic: for noise-free data, ωk = 1 for
all k and each cycle consist of exactly N steps of type (4). Thus, the numerical effort required
for the computation of one cycle of PLWK rivals the effort needed to compute one step of PLW
(or Landweber) for (3). However, in the noisy data case, the computational effort for computing
a cycle is reduced due to the introduction of the bang-bang parameter ωk; indeed, the iterative
step is not computed if the residual w.r.t. the [k]th equation is smaller than τδ[k].

1.3. Main goals

In this manuscript we propose and analyze a stochastic version of the PLWK method, namely
the stochastic projective Landweber–Kaczmarz (sPLWK) method. Our main goal is to modify

5 By saying that Hxδk
separates xδ

k from A−1
0 (y0) we mean that A−1

0 (y0) ⊂ Hxδk
, while xδ

k /∈ Hxδk
.
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the PLWK, in order to obtain an efficient method for computing stable approximate solutions
to large scale systems of ill-posed operator equations (1) and (2). Differently from [23] we
propose here a stochastic (noncyclic) method based on the iteration (5), which uses an a priori
stopping rule in the case of noisy data.

1.4. Outline of the manuscript

In section 2 we state the main assumptions and introduce the sPLWK method. Section 3 is
devoted to the analysis of sPLWK in the exact data case. We estimate the average gain (lemma
3.2), prove monotonicity of average iteration error (proposition 3.3) as well as square summa-
bility of the average residuals (proposition3.4). Moreover, convergencefor exact data is proven
(theorem 3.6). Section 4 is dedicated to regularization properties of sPLWK. The main results
are a stochastic stability result (theorem 4.3) and a semi-convergence result (theorem 4.4).
In section 5 we present numerical experiments. Two distinct applications are considered: in
section 5.1 a linear ill-posed problem modeled by a Hilbert type matrix with 108 lines; in
section 5.2 a big data linear regression problem with real data. Section 6 is devoted to final
remarks and conclusions.

2. The stochastic PLWK method

In what follows we introduce the sPLWK method for solving the linear ill-posed problem (1)
and (2). We start this section by presenting the main assumptions, which are required for the
analysis derived in this paper.

2.1. Main assumptions

We assume that some guess x0 ∈ X for the solution of (7) is given (e.g., x0 = 0) as well as a
sequence (θk) ∈ R of relaxation parameters, and a positive constant γ. For the remaining of
this article, we suppose that the following assumptions hold true:

(A1) There exists x� ∈ X s.t. Aix� = yi, i = 0, . . . , N − 1; here yi ∈ R(Ai) are exact data;
(A2) Ai : X → Y are linear, bounded and ill-posed operators, i.e., even if the operator

A−1
i : R(Ai) → X (the left inverse of Ai) exists, it is not continuous;

(A3) The sequence (θk) satisfies 0 < infk θk and supk θk < 2;
(A4) We choose γ > C := maxi ‖Ai‖ (assumption (A2) implies maxi ‖Ai‖ < ∞);
(A5) The stopping index k∗δ = k∗(δ), satisfies limδ→0 k∗δ = ∞ and limδ→0 ‖δ‖2k∗δ = 0;
(A6) We denote pi = P(Ik = i) and assume pi ∈ (0, 1), for i = 0, . . . , N − 1

(with
∑

i pi = 1).

Here, in a fixed probability space (Ω,F ,P), (Ik) is an independent and identically distributed
sequence of random indexes taking values in {0, . . . , N − 1}. Notice that, in (A5) the stopping
index is a function k∗ : RN � δ → k∗δ ∈ N.

2.2. Description of the method

In the sequel we introduce the sPLWK method for solving (1) and (2). Given x0, (θk) and γ as
in section 2.1, we consider the sequence (xδk) ∈ X generated by the iteration formula

xδk+1 = xδk − θkλIk A∗
Ik

(AIk xδk − yδIk
), k = 0, . . . , k∗δ − 1, (6a)
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where the stepsize λIk :=λIk (xδk) is given by

λIk (xδk) :=

⎧⎨
⎩

‖AIk xδk − yδIk
‖
(
‖AIk xδk − yδIk

‖ − δIk

)
‖A∗

Ik
(AIk xδk − yδIk

)‖2
, if ‖A∗

Ik
(AIk xδk − yδIk

)‖ > γδIk

0, otherwise.
(6b)

Observe that, additionally to depending on Ik, λIk = λIk (xδk) also depends on the realiza-
tion of I0, . . . , Ik−1 through the random variable xδk . In particular, given Ik, λIk is still
random.

The careful reader observes that, differently from deterministic Kaczmarz type methods
(e.g., Kaczmarz/ART [20], LWK [14, 16], PLW [24], PLWK [23], LMK [2, 10], EMK [15],
iTK [11]), the sPLWK method exhibits no cyclic structure since the choice of the index Ik is
independent of the previously chosen indexes I j for j = 0, . . . , k − 1.

The stochastic structure of the sPLWK method is motivated by the ideas discussed in [34],
where the operator A in (3) is considered to be of the form A = (Ai)N−1

i=0 ∈ R
N×M , i.e., a matrix

with lines Ai ∈ R
1,M , X = R

M,1, Y = R and N � M. Aiming to solve (1) and (2) with exact
data, the authors propose a non-cyclic method with an iterative step analog to the step of the
original Kaczmarz method6. It is worth mentioning that, in [34], the index Ik is chosen from
the set {0, . . . , N − 1} at random, with probability pi proportional to ‖Ai‖2.

Remark 2.1 (Exact projections). The sPLWK method with exact projections is
obtained by taking θk = 1 in (6a), which amounts to define xδk+1 as the orthogonal projection
of xδk onto HIk ,xδk

, where

Hi,x :=
{

z ∈ X|〈z − x, A∗
i (yδi − Aix)〉 � ‖yδi − Aix‖

(
‖yδi − Aix‖ − δi

)}
(compare with the iterative step of the PLW method in [24]). A relaxed variant of the
sPLWK method uses θk ∈ (0, 2), so that xδk+1 can be interpreted as a relaxed projection of xδk
onto HIk ,xδk

.

Remark 2.2 (Separation property). The solution set A−1
i (yi) of the ith-equation is con-

tained in Hi,x for i = 0, . . . , N − 1 and all x ∈ X. Indeed, for each x∗ ∈ A−1
i (yi) we have

〈x∗ − x, A∗
i (yδi − Aix)〉 = 〈yi − yδi + yδi − Aix, yδi − Aix〉 � ‖yδi − Aix‖

(
‖yδi − Aix‖ − δi

)
.

Moreover, from the definition of Hi,x follows that x ∈ Hi,x if and only if ‖yδi − Aix‖ � δi.
These two facts allow us to conclude that the convex set Hi,x separates A−1

i (yi) from x ∈ X
whenever ‖yδi − Aix‖ > δi.

Remark 2.3 (Exact data case). Notice that A∗
i (Aix − yi) = 0 iff Aix = yi.

7 Therefore,
(6b) can be written in the form

λIk (xk) :=

⎧⎨
⎩

‖AIk xk − yIk‖2

‖A∗
Ik

(AIk xk − yIk )‖2
, if ‖AIk xk − yIk‖ > 0

0, otherwise

6 Namely, xk+1 = xk − (yIk − AIk xk)‖AIk‖−2A∗
Ik

, k = 0, 1, . . .
7 Indeed, notice that Aix − yi ∈ R(Ai). Moreover, A∗

i (Aix − yi) = 0 implies Aix − yi ∈ N(A∗
i ) = R(Ai)⊥. Consequently,

Aix − yi ∈ R(Ai) ∩ R(Ai)⊥ = {0}.
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(here (xk) denotes the sequence generated by (6) using exact data). Consequently, the sPLWK
method in (6) can be interpreted as follows:

• If AIk xk �= yIk , then xk+1 is given by (6a) with λIk = ‖AIk xk − yIk‖2‖A∗
Ik

(AIk xk − yIk )‖−2;
• If AIk xk = yIk , then xk+1 = xk and λIk = 0.

Notice that ‖yIk − AIk xk‖ > 0 is sufficient to guarantee that the convex set HIk ,xk separates
A−1

Ik
(yIk ) from xk (see remark 2.2). Thus, for any θk ∈ (0, 2), xk+1 given by (6a) is closer to the

solution set A−1
Ik

(yIk ) than xk.

Remark 2.4 (Noisy data case). The sPLWK method in (6) can be interpreted as follows:

• If ‖A∗
Ik

(AIk xδk − yδIk
)‖ > γδIk , then xδk+1 is given by (6a) with λIk as in (6b);

• If ‖A∗
Ik

(AIk xδk − yδIk
)‖ � γδIk , then xδk+1 = xδk and λIk = 0.

Due to Assumption (A4), inequality ‖A∗
Ik

(AIk xδk − yδIk
)‖ > γδIk in (6b) implies ‖yδIk

−
AIk xδk‖ > C−1γδIk > δIk . From remark 2.2 we conclude that, in this case, HIk ,xδk

separates

A−1
Ik

(yIk ) from xδk . Thus, for any θk ∈ (0, 2), xδk+1 given by (6a) is closer to the solution set
A−1

Ik
(yIk ) than xδk .

Remark 2.5 (Lower bound for the stepsizes λIk ).

• In the exact data case, assumption (A2) imply λIk � C−2 whenever ‖AIk xk − yIk‖ > 0 (see
also remark 2.2). In other words, C−2 is a natural lower bound for the stepsizes defined in
(6b), whenever xk is not a solution of AIk x = yIk .

• In the noisy data case, assumptions (A2) and (A4) imply λIk (xδk) � (γ −
C)(γC2)−1 =:λmin, whenever ‖A∗

Ik
(AIk xδk − yδIk

)‖ > γδIk .

3. Exact data case

In this section we analyze the sPLWK method for solving the linear ill-posed problem (1) and
(2) in the case of exact data, i.e., δi = 0. In this case, the inverse problem can be written in the
form

Aix = yi, i = 0, . . . , N − 1, (7)

or simply Ax = y (compare with (3)).

Remark 3.1 (a word on notation). For the remaining of the manuscript we use the
notation:

(a) Given x∗ ∈ X a solution of (7), the mean square iteration error E[‖x∗ − xk‖2] is defined
by the average error over all possible realizations of I0, . . . , Ik−1 that define xk. In other
words, for k = 0 and k = 1, we find

E
[
‖x∗ − x0‖2

]
= ‖x∗ − x0‖2,E

[
‖x∗ − x1‖2

]
=

N−1∑
i=0

pi ‖x∗ −
[
x0 − θ1λiA

∗
i (Aix0 −yi)

]
‖2.

6



Inverse Problems 38 (2022) 025003 J C Rabelo et al

(b) Let k ∈ N be fixed. Denote by Fk the σ-algebra generated by I0, . . . , Ik−1. Then

E
[
λI‖AI xk − yI‖2|Fk

]
=

N−1∑
i=0

pi λi ‖Aixk − yi‖2 and

E
[
‖x∗ − xk‖2|Fk

]
= ‖x∗ − xk‖2.

Here λi = λi(xk) := ‖Aixk − yi‖2‖A∗
i (Aixk − yi)‖−2, for i = 0, . . . , N − 1 (see remark

2.3). I.e., λi is a random variable depending on the realization of xk.
(c) By the law of iterated expectation, we find E

[
‖x∗ − xk+1‖2|

]
= E

[
E
[
‖x∗ − xk+1‖2|Fk

]]
and

E
[
λI‖AI xk − yI‖2

]
= E

[
E
[
λI‖AI xk − yI‖2|Fk

]]
=

N−1∑
i=0

pi E
[
λi‖Aixk − yi‖2

]
;

the last expectation averages the residual of equation i times λi over all possible realiza-
tions of xk.

Moreover,E
[
‖x∗ − xk+1‖2 − ‖x∗ − xk‖2

]
= E

[
E
[
‖x∗ − xk+1‖2 − ‖x∗ − xk‖2|Fk

]]
,

where

E
[
‖x∗ − xk+1‖2 − ‖x∗ − xk‖2|Fk

]
=

N−1∑
i=0

pi

(
‖x∗ − [xk − θkλiA

∗
i (Aixk − yi)]‖2 − ‖x∗ − xk‖2

)

=

N−1∑
i=0

pi ‖x∗ − [xk − θkλiA
∗
i (Aixk − yi)]‖2 −

N−1∑
i=0

pi ‖x∗ − xk‖2

= E
[
‖x∗ − xk+1‖2|Fk

]
− ‖x∗ − xk‖2.

(d) For each k ∈ N it holds, by linearity of expectation,

E
[
‖x∗ − xk+1‖2 − ‖x∗ − xk‖2

]
= E

[
‖x∗ − xk+1‖2

]
− E

[
‖x∗ − xk‖2

]
.

Indeed, it follows from (b) E [‖x∗ − xk+1‖2 − ‖x∗ − xk‖2 ] = E [E [‖x∗ − xk+1‖2 −
‖x∗ − xk‖2|Fk ] ] = E [E [‖x∗− xk+1‖2|Fk ] − E [‖x∗ − xk‖2|Fk ] ]= E [E [‖x∗ − xk+1‖2|
Fk ] ] − E [E [‖x∗ − xk‖2|Fk ] ] = E [‖x∗ − xk+1‖2 ] − E [‖x∗ − xk‖2 ].

In what follows we estimate the average gain E[‖x∗ − xk+1‖2] − E[‖x∗ − xk‖2], where
x∗ ∈ X is a solution of (7). This is a fundamental result for the forthcoming analysis.

Lemma 3.2. Let assumptions (A1) and (A2) hold true and (xk) be a sequence generated by
the sPLWK method (6). Then, for any x∗ solution of (7) we have

E
[
‖x∗ − xk+1‖2

]
− E

[
‖x∗ − xk‖2

]
= θk(θk − 2)E

[
λI‖AI xk − yI‖2

]
, k = 0, 1, . . .

(8)

(note that λI = λI(xk) and expectation in (8) should be understood as in (c) of remark 3.1).
Moreover, it holds

E
[
‖x∗ − xk+1‖2

]
− E

[
‖x∗ − xk‖2

]
� C−2θk(θk − 2)E

[
‖AI xk − yI‖2

]
, k = 0, 1, . . .

7
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Proof. If A∗
Ik

(AIk xk − yIk ) �= 0, then it follows from (A1) that
⋂

i A−1
i (yi) �= ∅. Thus, for any

x∗ solution of (7) we have

‖x∗ − xk+1‖2 − ‖x∗ − xk‖2

= 2〈x∗ − xk, xk − xk+1〉+ ‖xk − xk+1‖2

= −2θkλIk 〈xk − x∗, A∗
Ik

(AIk xk − yIk )〉+ θ2
kλ

2
Ik
‖A∗

Ik
(AIk xk − yIk )‖2

= −2θk
‖AIk xk − yIk‖4

‖A∗
Ik

(AIk xk − yIk )‖2
+ θ2

k
‖AIk xk − yIk‖4

‖A∗
Ik

(AIk xk − yIk )‖2

= θk(θk − 2)
‖AIk xk − yIk‖4

‖A∗
Ik

(AIk xk − yIk )‖2

= θk(θk − 2)λIk‖AIk xk − yIk‖2. (9)

Otherwise, if A∗
Ik

(AIk xk − yIk ) = 0, then xk+1 = xk and AIk xk = yIk . Consequently, (9) holds in
this case a well.

Denoting by Fk the σ-algebra generated by (I0, . . . , Ik−1), we notice that xk is measurable
with respect to Fk, and Ik is independent of it. Thus, it follows from (9) that

E
[
‖x∗ − xk+1‖2 − ‖x∗ − xk‖2|Fk

]
= θk(θk − 2)E

[
λI‖AI xk − yI‖2|Fk

]
.

Now, taking full expectation yields (8) (see remark 3.1 (c) and (d)). To conclude the proof,
notice that the second assertion follows from (8) together with remark 2.5. �

A direct consequence of lemma 3.2 is the monotonicity of the mean square iteration error:

Proposition 3.3. Let the assumptions of lemma 3.2 hold. Additionally, let assumption (A3)
hold. Then, for any x∗ solution of (7) we have

E[‖x∗ − xk+1‖2] � E[‖x∗ − xk‖2], k = 0, 1, . . . (10)

Another consequence of lemma 3.2 is discussed in the next proposition. This result is needed
for the proof of theorem 3.6 (convergence for exact data).

Proposition 3.4. Let the assumptions of lemma 3.2 hold. Additionally, let assumption (A3)
hold. Then, the series

∞∑
k=0

θk(2 − θk)E[λI‖AI xk − yI‖2] ,
∞∑

k=0

θk E[λI‖AI xk − yI‖2] and

∞∑
k=0

E[‖AI xk − yI‖2]

are all summable.

8
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Proof. The summability of the first series follows from lemma 3.2. The summability of the
second series follows from (A3) and the summability of the first series. The summability of
the third series follows from (A3), the summability of the second series, and the facts:

(a) λIk = 0 iff AIk xk = yIk ;
(b) λIk � C−2 whenever ‖A∗

Ik
(AIk xk − yIk )‖ > 0

(see remarks 2.2 and 2.3). �

Yet another consequence of lemma 3.2 is the fact that the sequence (xk) generated by the
rPLKW method with exact projections (i.e., obtained by choosing θk = 1 in (6a)) is an average
reasonable wanderer in the sense of [4], i.e.,

∑
k E[‖xk − xk+1‖2] < ∞. Indeed, since θk = 1,

it follows from (6) that either AIk xk = yIk and xk+1 = xk; or ‖AIk xk − yIk‖ > 0 and xk+1 = xk −
λIk A∗

Ik
(AIk xk − yIk ) ∈ HIk ,xk (see remark 2.2). In either case we have 〈xk − x∗, xk − xk+1〉 =

‖xk − xk+1‖2 for any solution x∗ of AIk x = yIk . 8 Thus, arguing as in (9) we obtain

‖x∗ − xk+1‖2 − ‖x∗ − xk‖2 = 2〈x∗ − xk, xk − xk+1〉+ ‖xk − xk+1‖2 = −‖xk − xk+1‖2.

Now, arguing as in proposition 3.4 we conclude that
∑∞

k=0 E[‖xk − xk+1‖2] < ∞.
We are now ready to state and prove the main result of this manuscript, namely conver-

gence in mean square of the sPLWK method. First, however, we briefly recall the concept of
minimal norm solutions of (7).

Remark 3.5. It is worth noticing that there exists an x0-minimal norm solution of (7), i.e., a
solution x† of (7) satisfying ‖x† − x0‖ = inf {‖x − x0‖; x ∈ X is solution of (7)}. 9 Moreover,
x† is the only solution of (7) with this property.

Theorem 3.6 (Convergence for exact data). Let assumptions (A1), (A2), (A3) and
(A6) hold true. Then, any sequence (xk) generated by the sPLWK method (6) converges in
mean square to x†, the x0-minimal norm solution of (7): E[‖x† − xk‖2] → 0 as k →∞.

Proof. Let x� be given as in (A1). The proof is divided in three main steps:

Step 1. We prove that (xk) is a Cauchy sequence.
It is enough to prove that ek := x� − xk is a Cauchy sequence. From proposition 3.3

follows

lim
k→∞

E[‖ek‖2] = ε, (11)

for some ε � 0. In order to prove that (ek) is a Cauchy sequence, we first prove

E[〈en − ek, en〉] → 0 and E[〈el − en, en〉] → 0 as k, l →∞, (12)

with k � l for some k � n � l (compare with [17, theorem 2.3]). Notice that E[〈· , · 〉X],
E[〈· , · 〉Y]) define inner products in L2(Ω; X) and L2(Ω; Y) respectively10.

Notice that, for any k � l, one can always choose an index n with k � n � l such that

E[λI‖AI xn − yI‖2] � E[λI‖AI x j − yI‖2], ∀k � j � l (13)

8 Notice that all solutions of AIk x = yIk belong to HIk ,xk
.

9 See, e.g., [9] for details.
10 L2(Ω; X) is the space of square integrable random variables defined on Ω and taking values in X. We write E[〈· , · 〉]
instead of E[〈· , · 〉X] whenever it is clear from the context.

9
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holds true. Next, we argue with (6a) and the Cauchy–Schwartz inequality to estimate

|E[〈en − ek, en〉]| =

∣∣∣∣∣∣
n−1∑
j=k

E[〈x j+1 − x j, x� − xn〉]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
j=k

E[θ j λI〈A∗
I (yI − AI x j), x� − xn〉]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
j=k

θ j E[λI〈yI − AI x j, AI(x
� − xn)〉]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
j=k

θ j E

[
〈λ

1
2
I (yI − AI x j),λ

1
2
I (yI − AI xn)〉

]∣∣∣∣∣∣
�

n−1∑
j=k

θ j E[λI‖AI x j − yI‖2]
1
2 E[λI‖AI xn − yI‖2]

1
2 . (14)

Now notice that, due to minimizing property (13), it follows from (14)

|E[〈en − ek, en〉]| �
n−1∑
j=k

θ j E[λI‖AI x j − yI‖2].

Consequently, proposition 3.4 allow us to conclude E[〈en − ek, en〉] → 0 as k, l →∞.
Analogously one proves E[〈el − en, en〉] → 0 as k, l →∞, establishing (12).

Finally, one argues with (12), (11), inequality E[‖e j − ek‖2]
1
2 � E[‖e j − el‖2]

1
2 +

E[‖el − ek‖2]
1
2 and identities

E[‖e j − el‖2] = 2E[〈el − e j, el〉] + E[‖e j‖2] − E[‖el‖2],

E[‖el − ek‖2] = 2E[〈el − ek, el〉] + E[‖ek‖2] − E[‖el‖2]

to conclude that E[‖e j − ek‖2] → 0, as k, l →∞, i.e., (ek) is a Cauchy sequence in
L2(Ω; X).
Step 2. We prove that (xk) converges to some x∗ in L2(Ω; X), which is a solution of (7).

Since (xk) is Cauchy in L2(Ω; X), it has an accumulation point x∗. Moreover, it fol-
lows from proposition 3.4 that the mean square residuals E[‖AI xk − yI‖2] converge to
zero as k →∞. Consequently,E[‖AI x∗ − yI‖2] = 0, i.e., x∗ ∈ X and ‖Aix∗ − yi‖2 = 0 for
i = 0, . . . , N − 1 (at this point assumption (A6) is needed). Thus x∗ is a solution of (7).
Step 3. We prove that x∗ = x†.

Indeed, notice that xk+1 − xk ∈ R(A∗
Ik

) ⊂ N (AIk )⊥ ⊂ N (A)⊥, for k = 0, 1, . . . .11

Thus, an inductive argument shows that x∗ ∈ x0 +N (A)⊥. However, x† is the only
solution of (7) with this property (see remark 3.5), concluding the proof. �

11 Here A = (Ai)N−1
i=0 : X → YN .

10
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4. Regularization properties

Is this section we investigate the regularization properties of sPLWK method in the noisy data
case. The mean square iteration error E[‖x∗ − xδk‖2] is defined as in remark 3.1.

In what follows we estimate the average gainE[‖x∗ − xδk+1‖2] − E[‖x∗ − xδk‖2], extending
the results in lemma 3.2 to the noisy data case.

Lemma 4.1. Let assumptions (A1) and (A2) hold true and (xδk) be a sequence generated by
the sPLWK method (6). Then, for any x∗ solution of (7) it holds

E
[
‖x∗ − xδk+1‖2

]
− E

[
‖x∗ − xδk‖2

]
� θk(θk − 2)E

[
λI‖AI x

δ
k − yδI ‖

(
‖AI x

δ
k − yδI‖ − δI

)]
, k = 0, . . . , k∗δ − 1. (15)

Proof. Let Ik ∈ {0, . . . , N − 1}. If ‖A∗
Ik

(AIk xδk − yδIk
)‖ > γδIk , we derive from (6)

‖x∗ − xδk+1‖2 − ‖x∗ − xδk‖2

= 2θkλIk 〈yIk ± yδIk
− AIk xδk , AIk xδk − yδIk

〉+ ‖xδk+1 − xδk‖2

� 2θkλIk‖AIk xδk − yδIk
‖
(
δIk − ‖AIk xδk − yδIk

‖
)
+ ‖xδk+1 − xδk‖2

= θk(θk − 2)λIk‖AIk xδk − yδIk
‖
(
‖AIk xδk − yδIk

‖ − δIk

)
. (16)

Otherwise, if ‖A∗
Ik

(AIk xδk − yδIk
)‖ � γδIk , we have λIk = 0, xδk+1 = xδk , and (16) holds trivially.

The remaining of the proof follows the lines of the proof of lemma 3.2. �

Notice that, due to (6b), the term λI‖AI xδk − yδI ‖
(
‖AI xδk − yδI‖ − δI

)
on the right-hand side

of (15) is either positive or zero. Consequently, we derive

Proposition 4.2 (Monotonicity). Let the assumptions of lemma 4.1 hold. Additionally,
let assumption (A3) hold. Then

E
[
‖x∗ − xδk+1‖2

]
� E

[
‖x∗ − xδk‖2

]
, k = 0, . . . , k∗δ − 1

for any x∗ solution of (7).

The careful reader observes that, due to the definition of λIk in (6b), both lemma 4.1 and
proposition 4.2 hold true also for k > k∗δ (if one continues to iterate after step k∗δ ).

Theorem 4.3 (Stability). Let assumptions (A1), (A2), (A3) and (A6) hold. Let (δ j) =
(δ j

0, . . . , δ j
N−1) ∈ (R+)N be a sequence with ‖δj‖→ 0 as j →∞, and (yδ

j
) = (yδ

j

0 , . . . , yδ
j

N−1) ∈
YN be a corresponding sequence of noisy data satisfying (1). Moreover, let (xl)l∈N and (xδ

j

l )
k∗
δ

l=0
be the sequences generated by the sPLWK method in the case of exact and noisy data respec-
tively; all sequences are generated using the same (I0, . . . , Ik, . . .). Then, for each k ∈ N it
holds

lim
j→∞

E

[
‖xδ

j

k − xk‖2
]

= 0. (17)

Proof. We give here an inductive proof in k. Notice that x0 = xδ
j

0 , for all j ∈ N. Conse-

quently, (17) holds true for k = 0. Next, assume that lim j E

[
‖xδ

j

k − xk‖2
]
= 0. Our goal is to

prove that lim j E

[
‖xδ

j

k+1 − xk+1‖2
]
= 0. The proof is divided in three steps:

11
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Step 1. We verify that, for each fixed k ∈ N, lim j ‖xδ
j

k − xk‖2 = 0.
We claim that, for each realization (I0, . . . , Ik−1), the inequality ‖xδk − xk‖2 �

cE
[
‖xδk − xk‖2

]
holds, where c = c(k, N, p0, . . . , pN−1) is a positive constant. Indeed, for

k = 1, we have E
[
‖xδ1 − x1‖2

]
=

∑N−1
i=0 pi‖xδ1;i − x1;i‖2 � pmin

∑N−1
i=0 ‖xδ1;i − x1;i‖2 �

pmin ‖xδ1;I0
− x1;I0‖2 = pmin ‖xδ1 − x1‖2. Here pmin := mini pi > 0 and xδ1;i is given by (6a)

taking I0 = i (x1;i is defined analogously). Thus, for k = 1 our claim holds with c = p−1
min.

For k > 1 we have

E
[
‖xδk − xk‖2

]
=

N−1∑
i0=0
...

ik−1=0

pi0 . . . pik−1‖xδk;i0,...,ik−1
− xk;i0,...,ik−1‖2

� pk
min‖xδk;I0,...,Ik−1

− xk;I0,...,Ik−1‖2 = pk
min‖xδk − xk‖2,

where xδk;i0,...,ik−1
is given by (6a) taking (I0, . . . , Ik−1) = (i0, . . . , ik−1) (xk;i0,...,ik−1 is defined

analogously). Consequently, our claim holds with c = p−k
min.

Step 1 follows now from the inductive hypothesis, the fact that xδ
j

k and xk are both
generated by the same fixed (I0, . . . , Ik−1), and the above claim with δ = δ j.
Step 2. We verify that, for each fixed k ∈ N, lim j ‖xδ

j

k+1 − xk+1‖2 = 0.
Step 2(a). The case A∗

Ik
(AIk xk − yIk ) �= 0.

It follows from (1), (A2) and step 1 that lim j ‖A∗
Ik

(AIk xδ
j

k − yδ
j

Ik
)‖ = ‖A∗

Ik
(AIk xk −

yIk )‖ > 0. Thus, we have ‖A∗
Ik

(AIk xδ
j

k − yδ
j

Ik
)‖ > 1

2‖A∗
Ik

(AIk xk − yIk )‖ > γδ j
Ik

for suffi-

ciently large j (this follows from the previous limit and from the fact that lim j δ
j
Ik
= 0).

Consequently, it follows from (6b) that

lim
j→∞

|λδ j

Ik
− λIk | = 0 (18)

(here we distinguish λIk from λδ
Ik

for exact and noisy data, respectively). In particular, the

sequence (λδ j

Ik
) j is bounded.

Moreover, it follows from the iteration formula (6a)

xδ
j

k+1 − xk+1

= xδ
j

k − xk − θk

[
λδ j

Ik
A∗

Ik
(AIk xδ

j

k − yδ
j

Ik
) − λIk A∗

Ik
(AIk xk − yIk )

]
= xδ

j

k − xk − θk(λδ j

Ik
− λIk )A∗

Ik
(AIk xk − yIk )

− θkλ
δ j

Ik
A∗

Ik

[
(AIk xδ

j

k − yδ
j

Ik
) − (AIk xk − yIk )

]
,

from where we estimate

‖xδ
j

k+1 − xk+1‖ � ‖xδ
j

k − xk‖+ 2C|λδ j

Ik
− λIk | ‖AIk xk − yIk‖

+ 2Cλδ j

Ik

[
C‖xδ

j

k − xk‖+ δ j
Ik

]
.

Therefore, it follows from step 1 and (18) that lim j ‖xδ
j

k+1 − xk+1‖2 = 0.

12
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Step 2(b). The case A∗
Ik

(AIk xk − yIk ) = 0.

In this case λIk = 0 and AIk xk = yIk .7 Thus, xδ
j

k+1 − xk+1 = xδ
j

k − xk − θkλ
δ j

Ik
A∗

Ik

(AIk xδ
j

k − yδ
j

Ik
) and we conclude that

‖xδ
j

k+1 − xk+1‖ � ‖xδ
j

k − xk‖+ 2λδ j

Ik
‖A∗

Ik
(AIk xδ

j

k − yδ
j

Ik
)‖. (19)

If ‖A∗
Ik

(AIk xδ
j

k − yδ
j

Ik
)‖ � γδ j

Ik
then λδ j

Ik
= 0 and it follows from (19)

‖xδ
j

k+1 − xk+1‖ � ‖xδ
j

k − xk‖. (20)

Otherwise, if ‖A∗
Ik

(AIk xδ
j

k − yδ
j

Ik
)‖ > γδ j

Ik
, we estimate

‖AIk xδ
j

k − yδ
j

Ik
‖2 = 〈AIk xδ

j

k − yδ
j

Ik
, AIk xδ

j

k − yδ
j

Ik
〉

= 〈A∗
Ik

(AIk xδ
j

k − yδ
j

Ik
), xδ

j

k − xk〉

+ 〈AIk xδ
j

k − yδ
j

Ik
, AIk xk − yIk + yIk − yδ

j

Ik
〉

� ‖A∗
Ik

(AIk xδ
j

k − yδ
j

Ik
)‖‖xδ

j

k − xk‖+ δ j‖AIk xδ
j

k − yδ
j

Ik
‖.

This inequality and (6b) yields the estimate λδ j

Ik
‖A∗

Ik
(AIk xδ

j

k − yδ
j

Ik
)‖ � ‖xδ

j

k − xk‖. From
the last inequality and (19) follows

‖xδ
j

k+1 − xk+1‖ � 3‖xδ
j

k − xk‖. (21)

Arguing with step 1, (20) and (21) it follows that, in either case, lim j ‖xδ
j

k+1 − xk+1‖2 = 0.
Step 3. We verify that, for each fixed k ∈ N, lim j E

[
‖xδ

j

k+1 − xk+1‖2
]
= 0.

Taking the average in step 2 over all possible realizations (I0, . . . , Ik) and using the fact that

E
[
‖xδk+1 − xk+1‖2

]
=

N∑
i0=0
...

ik=0

pi0 . . . pik‖xδk;i0,...,ik
− xk;i0,...,ik‖2,

one concludes that lim j E

[
‖xδ

j

k+1 − xk+1‖2
]
= 0, completing the inductive proof. �

Notice that, in step 1 of the above proof, the constant c is given by c =
c(k, N, p0, . . . , pN−1) = p−k

min and becomes unbounded as k →∞. This fact does not interfere
with the result, since k is a fixed (but arbitrary) positive integer.

Theorem 4.4 (Semi-convergence). Let assumptions (A1), . . . , (A6) hold. Let (δ j) =
(δ j

0, . . . , δ j
N−1) ∈ R

N be a zero sequence, (yδ j
) = (yδ

j

0 , . . . , yδ
j

N−1) ∈ YN a corresponding

sequence of noisy data satisfying (1). Moreover, for each j ∈ N, let (xδ
j

k )k∗(δ j)
k=0 be the corre-

sponding sequence generated by the sPLWK method (these sequences are generated using the
same (I0, . . . , Ik, . . .)). Then we have

lim
j→∞

E

[
‖xδ

j

k∗(δ j) − x†‖2
]
= 0, (22)

were x† is the x0-minimal norm solution of (7) (see remark 3.5).

13
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Proof. We claim that

‖x† − xδ
j

k+1‖2 − ‖x† − xδ
j

k ‖2 < λ2
min γ2(δ j

min)2 (23)

(here δ j
min = mini∈{0,...,N−1} δ

j
i > 0). Indeed, if ‖A∗

Ik
(AIk xδ

j

k − yδ
j

Ik
)‖ � γδ j

Ik
, then λδ j

Ik
= 0,

xδ
j

k+1 = xδ
j

k and (23) holds trivially. Otherwise, it follows from (16) and remark 2.5

‖x† − xδ
j

k ‖2 − ‖x† − xδ
j

k+1‖2 � θk(2 − θk)λIk‖AIk xδ
j

k − yδ
j

Ik
‖
(
‖AIk xδ

j

k − yδ
j

Ik
‖ − δ j

Ik

)
= θk(2 − θk)λ2

Ik
‖A∗

Ik
(AIk xδ

j

k − yδ
j

Ik
)‖2

> θk(2 − θk)λ2
min(γ δ j

Ik
)2

� θk(2 − θk)λ2
minγ

2 (δ j
min)2

(notice that, due to (A3), it holds θk(2 − θk) > 0, for k = 0, 1, . . . ). Consequently,

‖x† − xδ
j

k+1‖2 − ‖x† − xδ
j

k ‖2 < |θk(2 − θk)|λ2
minγ

2(δ j
min)2 < λ2

minγ
2(δ j

min)2

(notice that from (A3) follows |θk(2 − θk)| < 1, for k = 0, 1, . . . ), which is exactly what we
claim in (23).

Now, taking the average in (23) over all possible realizations (I0, . . . , Ik) and using remark
3.1 (d) we obtain

E

[
‖x† − xδ

j

k+1‖2
]
− E

[
‖x† − xδ

j

k ‖2
]
< λ2

minγ
2(δ j

min)2.

Due to (A5) we may assume that k∗
δ j = k∗(δ j) increases strictly monotonically with j. Given

m < n, we add the inequality above, with j = n, from k = k∗δm to k∗δn − 1, with the simplified
notation k∗j = k∗

δ j , to obtain

E
[
‖x† − xδ

n

k∗n‖
2
]
� E

[
‖x† − xδ

n

k∗m‖
2
]
+

k∗n−1∑
k=k∗m

λ2
minγ

2(δn
min)2

� 2E
[
‖x† − xk∗m‖2

]
+ 2E

[
‖xk∗m − xδ

n

km
‖2
]
+ λ2

minγ
2(δn

min)2
k∗n−1∑
k=k∗m

1

� 2E
[
‖x† − xk∗m‖

2
]
+ 2E

[
‖xk∗m − xδ

n

k∗m‖
2
]
+ λ2

minγ
2 ‖δn‖2 k∗n.

Here (xk) denotes the sequence generated by (6) using exact data and the same (I0, . . . , Ik, . . .)
as the sequences (xδ

j

k ).
Theorem 3.6 guarantees the existence of a large enough m, s.t. the first term

2E
[
‖x† − xk∗m‖2

]
is smaller then ε/3. Next, from theorem 4.3 with k = k∗m we conclude that

the second term 2E
[
‖xk∗m − xδ

n

k∗m
‖2
]

is smaller than ε/3 for large enough n. Finally, due to

assumption (A5), the last term λ2
minγ

2‖δn‖2k∗n also becomes smaller than ε/3 for large enough
n, concluding the proof. �
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Table 1. Descriptive Statistics of the probabilities (pi)N−1
i=0 for both inverse problems

considered in section 5. The first two rows are the mean and the standard deviation,
respectively. The last five rows are the quantiles (25%, 50%, 75%), the minimum and
the maximum.

Benchmark Big Data

Mean 1.0000 × 10−6 2.3876 × 10−7

Std 3.2346 × 10−4 1.0685 × 10−7

min 1.1157 × 10−11 6.2049 × 10−8

25% 1.9834 × 10−11 1.3341 × 10−7

Median 4.4624 × 10−11 2.4929 × 10−7

75% 1.7847 × 10−10 3.2199 × 10−7

Max 2.8407 × 10−1 4.6939 × 10−7

5. Numerical experiments

5.1. A benchmark problem

In this section the sPLWK method in (6) is implemented for solving a benchmark problem,
which happens to be a well-known system of linear ill-posed equations12.

Let H = (Hi)N−1
i=0 ∈ R

N×M be a Hilbert type matrix with rows Hi =
(

1
i+ j+1

)M−1

j=0
∈ R

1,M ,

X = R
M,1 and Y = R, where N = 108 and M = 26.

The operator A = (Ai)N−1
i=0 ∈ R

N×M , with rows Ai ∈ R
1,M , is obtained by a random shuffle of

the rows of H. In our numerical experiments we set x� = (1, . . . , 1) ∈ X and compute the cor-
responding exact data yi = Aix�. Two distinct datasets yδ1 , yδ2 ∈ YN corresponding to distinct
levels of noise are used: (1) δ1 = 10−16, what corresponds to the MATLAB double precision
accuracy; (2) δ2 = 10−1. The performance of the sPLWK method is compared against two
concurrent randomized Kaczmarz type methods, namely: (1) Landweber–Kaczmarz (LWK)
with random ordering of equations within cycles [24]; (2) PLWK with random ordering of
equations within cycles [23].

In order to better investigate the behavior of iteration (6), six different runs of the sPLWK
method are computed for each set of data. In the first five runs (run 1 to run 5), the indexes
Ik are chosen from the set {0, . . . , N − 1} at random, with equal probability, i.e., pi = N−1

for i = 1, . . . , N − 1. In the last run (run ∗) however, each index Ik is chosen from the set
{0, . . . , N − 1} at random, with probability pi proportional to ‖Ai‖2 (as proposed in [34] for
the randomized Kaczmarz iteration). Some descriptive statistics of the probabilities are shown
in table 1. Moreover, in figure 5 we show plots of these probabilities.

In figures 1 and 2 we present the numerical results obtained for the datasets (yδ1 , δ1) and
(yδ2 , δ2) respectively. In both noise scenarios, the first five runs of the sPLWK method (run 1 to
run 5) produced similar results. The last run of the sPLWK method (run ∗) delivered the best
numerical performance. This difference is most probably explained by the fact that most of the
lines Ai have norms close to mini ‖Ai‖ (see the (TOP) picture in figure 5). Consequently only
a few probabilities pi are high (while the others are very small) and the sPLWK method uses,
with extremely high frequency, these lines along the iteration.

In figures 1 and 2, the first plot (TOP) shows the evolution of the residual, while the second
plot (BOTTOM) shows the relative iteration error. For the dataset (yδ1 , δ1) all methods are

12 Computations are performed using MATLAB R© R2017a, running in a Intel R© Core TM i9-10900 CPU.
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Figure 1. Benchmark problem—dataset (yδ1 , δ1): (TOP) ‖Axk − y‖; (BOTTOM)
‖x� − xk‖/‖x�‖.

stopped after 10N iterative steps (i.e., 10 cycles of methods (1) and (2)), while for (yδ2 , δ2) the
methods are stopped after 5N iterations. In both noise scenarios, the sPLWK methods deliver
their best results already after N steps.

It is worth noticing that, in the sPLWK method we have monotonicity of the mean square
iteration error E

[
‖x� − xk‖2

]
, see proposition 3.3. However monotonicity of mean square

residual E
[
‖Axk − y‖2

]
cannot be guaranteed. These two facts are illustrated in both figures 1

and 2.

Remark 5.1 (Methods used in the comparison of numerical performance). The
performance of the sPLWK method is compared against two randomized (cyclic) Kaczmarz
type methods, namely: LWK [24] and PLWK [23].

It has been observed by many authors (including ourselves [23]) that, numerically, random-
ized (cyclic) Kaczmarz methods eventually perform better than standard Kaczmarz methods.
In the applications considered in sections 5.1 and 5.2, this is not the case. Namely, ‘randomized
(cyclic) Kaczmarz’ and ‘standard Kaczmarz’ methods perform similarly for the specific inverse
problems under consideration. For this reason, no standard Kaczmarz methods are included in
section 5 in the comparison of numerical performance.
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Figure 2. Benchmark problem—dataset (yδ2 , δ2): (TOP) ‖Axδk − yδ‖; (BOTTOM)
‖x� − xδk‖/‖x�‖.

5.2. A big data linear regression problem with real data

Multiple linear regression is a well-known statistical tool for modeling linear relationship
between two data sets. More precisely, given n observations of a set of independent variables
a1, . . . , ap ∈ R

n, and of a dependent variable y ∈ R
n, one seeks the regression coefficients

xi ∈ R, i = 0, . . . , p in the linear model x0 + a1x1 + · · · apxp = y. The corresponding mathe-
matical model can be expressed as Ax = y, where y ∈ R

n is a vector of n observations of the
dependent variable, the columns of A ∈ R

n×(p+1) are predictors (or covariates) and the vector
x ∈ R

p+1 contains the regression coefficients. One aims to solve the unconstrained least square
problem: minx ‖Ax − y‖2.

For the specific application considered in this section, we use a data set collected in a gas
delivery platform facility at the ChemoSignals Laboratory in the BioCircuits Institute at Uni-
versity of California, San Diego. This measurement system platform provides versatility for
obtaining the desired concentrations of the chemical substances of interest with high accuracy.

The data set contains the readings of 16 chemical sensors (Figaro Inc., US) of 4 differ-
ent types: TGS-2600, TGS-2602, TGS-2610, TGS-2620 (4 units of each type). These sensors
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Figure 3. Scatter plots of sensor #i data (for i = 1, . . . , 15) against sensor #16 data.

were exposed to the mixture of Ethylene and CO at varying concentrations in air (Ethylene
concentration ranges from 0–20 ppm, while CO concentration ranges from 0–600 ppm). For
this gas mixture, the measurement was constructed by the continuous acquisition of the 16-
sensor array signals for a duration of approximately 12 h without interruption. Concentration
transitions were set at random times, in the interval 80–120 s, and to random concentration
levels. The data set was constructed such that all possible transitions are present: increasing,
decreasing, or setting to zero the concentration of one volatile while the concentration of the
other volatile is kept constant (either at a fixed or at zero concentration level). At the beginning,
ending, and approximately every 104 s, additional predefined concentration patterns with pure
gas mixtures were inserted. The concentration ranges for Ethylene and CO were selected such
that the induced magnitudes of the sensor responses were similar. Moreover, for gas mixtures,
lower concentration levels were favored. Therefore, the multivariate response of the sensors

18
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Figure 4. Big data problem: relative residual ‖Axδk − yδ‖/‖Ax0 − yδ‖.

to the presented set of stimuli is challenging since the gas mixture configuration can be easily
identified from the magnitude of sensors responses (we refer to [12] for further details)13.

In our numerical tests we follow the experimental setting proposed in [38]: readings from
the last sensor (sensor #16) are used as the response variable, and readings from other sensors
as covariates (the readings from sensor #2 are not used in the analysis, since approximately
50% of the values are negative). Thus, there are p = 14 covariates in this example. Moreover,
the first 20 000 data points of all sensors are excluded (this corresponds to less than 4 min of
system run-in time). Consequently, each sensor data consists of n = 4188 262 scalar measure-
ments. In figure 3 the scatter plots of sensor #i data against sensor #16 data are presented for
i = 1, . . . , 15 (full data is plotted).

Summarizing, the inverse problem under consideration consists in finding approximate
solutions to a linear system Ax = yδ, where A = (Ai)N−1

i=0 ∈ R
N×M , N = 4188 262, M = 15

and unknown noise level δ > 0. As in section 5.1, the performance of the sPLWK method is
compared against the concurrent Kaczmarz type methods LWK and PLWK. Once again, six
different runs of the sPLWK method are computed (these runs are executed as described in
section 5.1). All iterations are started using x0 = 0.

In figure 4 we present the evolution of the relative residual ‖Axδk − yδ‖/‖Ax0 − yδ‖
obtained for the above described experimental setting; all methods are stopped after 4N
iterative steps. The approximate solution computed by run 2 after N steps reads

xδN = (0.03 0.00 − 0.79 0.00 0.03 0.29 0.06 0.72 0.040.03 0.04 1.12 − 0.39 0.10 − 0.15) .

This approximate solution is in agreement with the data plotted in figure 3. Indeed, notice
that coordinates xδN,i for i = 1, 8, 9 (highlighted red) correspond to sensors #1, #9 and #10
respectively. These coordinates of xδN have small absolute values, while the corresponding
sensors have the highest scatter patterns against sensor #16.

The careful reader observes that all runs of the sPLWK method produced similar results.
This scenario differs from one observed in section 5.1. A possible explanation resides in the
fact that the probabilities pi used in run ∗ (which are proportional to ‖Ai‖2) are similar to

13 The data set used in our numerical experiments is freely accessible on-line, at the web-site of the UC Irvine Machine
Learning Repository (https://archive.ics.uci.edu/ml/index.php).
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Figure 5. Plots of the probabilities (pi)N−1
i=0 for both inverse problems considered in

section 5. The probabilities were transformed for a better visualization; we show plots
of 30 + log pi, i = 0, . . . , N − 1 (see table 1 for details). (TOP) Benchmark problem;
(BOTTOM) big data problem.

the uniform probabilities pi = N−1 = 2.3876 × 10−7 in the big data problem, while these
probabilities range between 1.1157 × 10−11 and 2.8407 × 10−1 in the benchmark problem.

In figure 5 we present plots of these probabilities for the two applications considered in
sections 5.1 and 5.2. Moreover, some descriptive statistics are shown in table 1.

6. Conclusions

We investigate stochastic LWK type methods for computing stable approximate solutions to
large scale systems of linear ill-posed operator equations. The main contribution of this article
is to propose and analyze a stochastic version of the PLKW method in [23] (see also [24]).

We prove monotonicity of the proposed sPLWK method (proposition 3.3). Moreover, we
provide estimates to the average gain (lemmas 3.2 and 4.1) as well as a lower bound to the step-
sizes λIk proposed in (6b) (remark 2.5). A convergence proof in the case of exact data is given
(theorem 3.6). In the noisy data case, stability and semiconvergence results are established
(theorems 4.3 and 4.4).

An algorithmic implementation of the sPLWK method is presented. The resulting iteration is
tested and compared with two well-known Kaczmarz type methods, namely LWK and PLWK.
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Two applications are considered: (i) a well-known benchmark problem modeled by a large
scale Hilbert type matrix with 108 lines; (ii) a big data linear regression problem using real
data from a gas sensor array under dynamic gas mixtures [12]. The obtained results validate
the efficiency of our method.

It is worth noticing that, in our numerical experiments, the choice of the probabilities (pi)N−1
i=0

may strongly influence the performance of the algorithm. Indeed, choosing probabilities pro-
portional to the square of the norm of the rows allows for faster convergence when these norms
vary over a wider range. On the other hand, when the range is small, this choice of probabil-
ities are very similar to the uniform distribution and, numerically, we have not observed a
improvement over the deterministic version of the algorithm.
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