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Abstract
We investigate regularization methods for solving the problem of crack detec-
tion in bounded planar domains from electrical measurements on the boundary.
Based on the multiple level-set approach introduced in Álvarez et al (2009 J.
Comput. Phys. 228 5710–21) and on the regularization strategy devised in
De Cezaro et al (2009 Inverse Problems 25 035004), we propose a Tikhonov
type method for stabilizing the inverse problem. Convergence and stability
results for this Tikhonov method are proven. An iterative method of (multiple)
level-set type is derived from the optimality conditions for the Tikhonov func-
tional, and a relation between this method and the iterated Tikhonov method
is established. The proposed level-set method is tested on the same benchmark
problem considered in Álvarez et al (2009 J. Comput. Phys. 228 5710–21). The
numerical experiments demonstrate its ability to identify cracks in different
scenarios with high accuracy even in the presence of noise.
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1. Introduction

The presence of cracks drastically reduces the structural strength of materials. Hence, the
development of methods for crack detection from indirect measurements becomes a para-
mount issue. This inverse problem is related to non-destructive testing and finds application
in techniques used in the science and technology industry, e.g. [3, 8, 16, 20, 21, 25, 33] and
references therein. In contrast to elasticmaterials [8, 32], crack identification in the electromag-
netic medium is considered in the setting of inverse scattering (see, e.g. [12, 34]) or in imped-
ance imaging with boundary measurement (see, e.g. [3, 8, 16, 22, 29]). Crack reconstruction
approaches includes shape optimization methods [3, 12, 23, 24, 34], reciprocity principle [32],
probe method [22], factorization method [6, 7, 19], asymptotic analysis [9], among others.

In this manuscript, we investigate the problem of determine both position and shape of a
crack in a material represented as bounded domain Ω⊂ R2, from a finite set on N electrical
measurements on the boundary ∂Ω related to the Neumann-to-Dirichelt map [26, 27].

As a model problem, we assume that the domain Ω has Lipschitz boundary and represents
the specimen under investigation, in which a set of currents profiles {ηj}Nj=1 are applied at
the boundary ∂Ω, for with, we have access to measurements of the corresponding potentials
{uj}Nj=1 only on ∂Ω (i.e. we measure uj|∂Ω). Furthermore, we investigate problems constituted
by an insulating crack with finite conductivity b(x), that represent a high contrast between the
interior and the exterior of the crack4. In other words, we assume that a crack can bemodeled as
a thin structure with small thickness β > 0 along a curve contained in Ω, satisfying the system
of Neumann boundary values problem (BVP)

∇· (b(x)∇uj(x)) = 0 , x ∈ Ω , b(x)(uj(x))ν = ηj(x) , x ∈ ∂Ω , (1)

with
´
∂Ω
ηj = 0, for j= 1, . . . ,N (here (uj(x))ν denotes the normal derivative of uj at x ∈ ∂Ω).

We further adopt the following parameter space for the conductivity b given by DF := {b ∈
L∞(Ω); b⩾ b(x)⩾ b> 0 , a.e. in Ω} ⊂ X := {b ∈ L∞(Ω);b(x)⩾ b> 0 , a.e. ∈ Ω}. Assum-
ing that the boundary data ηj ∈ H−1/2(∂Ω) in (1), then, it is well known that the system
of Neumann BVP (1) has a unique solution uj ∈ H1

∗ := {u ∈ H1(Ω);
´
∂Ω
uj = 0}, for each

j= 1, . . . ,N, e.g. [14].
Therefore, the crack detection problem can be written in terms of the system of nonlinear

operator equations

Fj : DF ⊂ X→ Y

b 7→ Fj(b) = uj|∂Ω =: γj (2)

where Y := H1/2(∂Ω) and uj|∂Ω is the Dirichlet trace (e.g. [1]) of the corresponding solution uj
for the BVP (1), for each j= 1, . . . ,N. Hence, the crack problem under investigation is related
to the electrical impedance tomography problem for the Neumann-to-Dirichlet (NtD) operator
with a finite number N of measurements [5, 26, 27].

In practical applications the exact data γj ∈ Y, for j= 1, . . . ,N is, in general, not known.
Instead, one disposes only an approximate measured data γδj ∈ Y satisfying

N∑
j=1

‖γδj − γj‖Y ⩽ δ , (3)

4 See section 2 for a precise representation of b.

2



Inverse Problems 39 (2023) 035009 A De Cezaro et al

where δ > 0 is the noise level.
Our formulation and numerical computation concerns cracks with a small and fixed thick-

ness of size β > 0 and known conductivity and background conductivity values (see the details
in section 2). The main results in this article can be summarized as follows:

(a) We prove that any forward map Fj in (2), for j= 1, . . . ,N is continuous in the L1(Ω)-
topology (see proposition 4). Such property is necessary to establish regularization prop-
erties for the level set approximated solutions for the inverse problems.

(b) The position and shape of the crack are parameterized by a pair of level set functions
(see section 2). A Tikhonov functional based on a TV-H1 penalization is proposed and
analyzed (see section 3). We prove that this generates a regularization method for the crack
identification problem in (2) and (3).

(c) The optimality conditions for the Tikhonov functional allow the derivation of a stable level-
set type method (namely, an iterated-Tikhonov type method) for the crack identification
problem.

This article is outlined as follows: In section 2, we formulate the level set modeling setting
for the crack detection. In section 3, we prove regularization properties of the level set approach
for the crack detection. In section 4, we formulate the numerical approach and derives the
algorithm used in the numerical experiments presented in section 5. Section 6, is devoted to
some final remarks and conclusions.

2. Modeling the parameter space

In order to model the space of admissible parameters (cracks), we use the approach proposed
in [3]. According to this representation strategy a level set function φ : Ω→ R is chosen in
such a way that its zero level-set Γφ := {x ∈ Ω; φ(x) = 0} defines a connected curve within
Ω and that the cracks are located ‘along’ Γφ. Moreover, a second level-set function ψ : Ω→ R
is chosen such that the intersections of the level-set curve Γψ := {x ∈ Ω; ψ(x) = 0} with Γφ
coincide with the endpoints of the cracks, and the cracks are contained in {x ∈ Ω; ψ(x)> 0}.
Therefore, the position of the cracks corresponds to the set

S= S(φ,ψ) := Γφ ∩{x ∈ Ω; ψ(x)> 0} .

In the ‘ideal insulating crack’ case (with zero thickness β= 0), the set S correspond to a proper
subset of Γφ and the strategy above allow us to exactly represent the cracks (in a non unique
way), see [3].

In this article, we assume the cracks have fixed thickness β > 0 (and β� 1) and conductiv-
ity bi > 0much smaller than the background value be > 0, where all the three constants β,bi,be
are known. Therefore, the position of the cracks can be represented by the set

Sβ = Sβ(φ,ψ) := Γβφ ∩{x ∈ Ω; ψ(x)> 0} ,

where Γβφ := {x ∈ Ω; −β/2< φ(x)< β/2}.
Consequently, the conductivity distribution in (1) can be modeled by

b(x) = be+(bi− be)χSβ (x) , (4)

where χSβ is the indicator function of the set Sβ .
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It is worth noticing that in (4) a multiple level-set representation (see, e.g. [10] and ref-
erences therein) of the unknown parameter b is proposed. Following [10], we introduce the
Heaviside projector

(H(φ))(x) :=

{
1, if φ(x)> 0

0, if φ(x)⩽ 0
,

define the ‘symmetric translation’ (Hβ(φ))(x) := H(φ(x)+β/2)−H(φ(x)−β/2), and write
the conductivity distribution b(x) in the form

b = (bi− be)Hβ(φ)H(ψ)+ be =: P(φ,ψ) . (5)

As already observed in [10], the operator H maps H1(Ω) into the space

V0,1 := {w ∈ L∞(Ω) |w= χS , S⊂ Ω measurable, H1(∂S)<∞} , (6)

whereH1(S) denotes the one-dimensional Hausdorff measure of the set S. Thus, the operator
P in (5) maps H1(Ω)×H1(Ω) into the admissible class V ⊂ X defined by

V := {w ∈ L∞(Ω) |w= be+(bi− be)χS , S⊂ Ω measurable, H1(∂S)<∞} . (7)

In the forthcoming analysis, we write P(φ,ψ) := q(H(φ+β/2),H(φ−β/2),H(ψ)),
where the operator q : (L∞(Ω))3 → L∞(Ω) is defined as

q : (z1,z2,z3) 7→ (bi− be)(z
1 − z2)z3 + be . (8)

Within this framework, the inverse problem (2) with data given as in (3) can be written in the
form of the system of operator equations

Fj(P(φ,ψ)) = γδj , j= 1, . . . ,N . (9)

Once an approximate solution (φ,ψ) of (9) is calculated, a corresponding approximate solution
of (2) is obtained in a straightforward way, indeed, b= P(φ,ψ).

3. Tikhonov regularization

Here, we follow [10] and introduce the Tikhonov functional

Gα(φ,ψ) :=
N∑
j=1

‖Fj(P(φ,ψ))− γδj ‖2Y+α
(
µ1|H(φ+β/2)|BV +µ2|H(φ−β/2)|BV

+µ3|H(ψ)|BV +µ4‖φ−φ0‖2H1(Ω) +µ5‖ψ−ψ0‖2H1(Ω)

)
(10)

based on TV-H1 penalization, where α> 0 plays the role of a regularization parameter. The
H1–terms act simultaneously as a control on the size of the norm and as a regularization on
the space H1(Ω) (here φ0,ψ0 ∈ H1(Ω) are reference level-set functions). The BV-seminorm
terms are well known for penalizing the length of the Hausdorff measure of the boundary of
the sets {x : φ(x)>−β/2}, {x : φ(x)< β/2} and {x : ψ(x)> 0} (see [15]). The constants µj
for j ∈ {1, . . . ,5} are weight parameters.

3.1. Choosing the parameter space

Once the Tikhonov functional has been chosen, we concentrate on the task of finding an
adequate parameter space to minimize Gα(φ,ψ) in (10).We start posing some general assump-
tions to the model.
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(A1) Ω⊆ R2 is bounded with piecewise C1 boundary ∂Ω.
(A2) System (9) has a solution, i.e. there exists b∗ ∈ U satisfying Fj(b∗) = γj, j= 1, . . . ,N.

Moreover, there exist functions φ∗, ψ∗ ∈ H1(Ω) satisfying P(φ∗,ψ∗) = b∗, with
|∇φ∗| 6= 0, |∇ψ∗| 6= 0 in a neighborhood of {φ∗ ∈ [−β/2,β/2]}, {ψ∗ = 0} respect-
ively. We further assume that H(φ∗ +β/2) = z1, H(φ∗ −β/2) = z2, H(ψ∗) = z3, for
some z1, z2, z3 ∈ V0,1.

The choice of the parameter space (as well as it is topology) should be such that existence
of minimizers for the functional Gα in (10) can be guaranteed. This is not the case as explained
in the following remark.

Remark 1. According to the model exposed in section 2, the unknown parameter b is to be
modeled by b= P(φ,ψ) = q(O(φ,ψ)), where

O : (H1(Ω))2 3 (φ,ψ) 7−→ [H(φ−β/2),H(φ+β/2),H(ψ)] ∈ (L∞(Ω))3 .

However, since H is discontinuous, the graph of the operator O is not closed as a sub-
set of (L∞(Ω))3 × (H1(Ω))2. Consequently, it is not possible to guarantee that minimizing
sequences for the functional Gα have limit in (L∞(Ω))3 × (H1(Ω))2.

With the remark 1 in mind, we adapt the concept of generalized minimizers introduced in
[10] to the framework described above. As we shall see in definition 1 below, we introduce an
extended parameter space (the so-called set of admissible quintuples), which corresponds to
the closure of the graph ofO in (L∞(Ω))3 × (H1(Ω))2 with respect to a topology related to the
concept of Γ–convergence [4]. Furthermore, we redefine the Tikhonov functional Gα(φ,ψ) on
this extended parameter space in order to introduce a new concept of (generalized) minimizers
of Gα.

Before introducing the generalized minimizers, we define the operators {Hε}ε>0

Hε(φ) :=

 0, if φ <−ε
1+φ/ε, if φ ∈ [−ε,0]

1, if φ > 0
,

which represent continuous approximations to the operator H. Analogously, we define the
approximations {Pε}ε>0 to the operator P by

Pε(φ,ψ) := (bi− be)Hβ,ε(φ)Hε(ψ)+ be , (11)

where Hβ,ε(φ) := Hε(φ+ β
2 )−Hε(φ− β

2 ).

Definition 1. Let the operators Hε, Hβ,ε be defined as above.

(a) A quintuple of functions (z1,z2,z3,φ,ψ) ∈ (L∞(Ω))3 × (H1(Ω))2 is called admissible if
there exist sequences {φk,ψk}k∈N in (H1(Ω))2, and a sequence of positive numbers εk → 0
such that

lim
k→∞

‖φk−φ‖L2(Ω) = 0 , lim
k→∞

‖ψk−ψ‖L2(Ω) = 0 ,

lim
k→∞

‖Hεk(φk+
β
2 )− z1‖L1(Ω) = lim

k→∞
‖Hεk(φk−

β
2 )− z2‖L1(Ω)

= lim
k→∞

‖Hεk(ψk)− z3‖L1(Ω) = 0.
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(b) Aminimizer of Ĝα is considered to be any admissible quintuple of the form (z1,z2, z3,φ,ψ)
minimizing

Ĝα(z1,z2,z3,φ,ψ) :=
∥∥F(q(z1,z2,z3))− yδ

∥∥2
Y
+αρ(z1,z2,z3,φ,ψ) (12)

over all admissible quintuples. Here the functional ρ is defined by

ρ(z1,z2,z3,φ,ψ) := inf
{
liminf
k→∞

(
µ1|Hεk(φk+

β
2 )|BV +µ2|Hεk(φk−

β
2 )|BV

+µ3|Hεk(ψk)|BV +µ4‖φk−φ0‖2H1 +µ5‖ψk−ψ0‖2H1

)}
, (13)

where the infimum is taken with respect to all sequences {εk}k∈N and {φk,ψk}k∈N satis-
fying (a).

(c) A generalized minimizer of Gα(φ,ψ) is a minimizer of Ĝα(z1,z2,z3,φ,ψ) on the set of
admissible quintuples.

In what follows, we present some remarks related to definition 1.

Remark 2. The set of admissible quintuples is to be considered as a topological space, namely
a subset of (L∞(Ω))3 × (H1(Ω))2 endowed with the topology of (L1(Ω))3 × (L2(Ω))2. The
closedness of this extended parameter space, which contains the generalized minimizers of
Gα is analyzed in lemma 2.

Remark 3. Let φ∗, ψ∗ ∈ H1(Ω) satisfying Assumption (A2). Define the constant sequence
{(φk,ψk) = (φ∗,ψ∗)}k∈N. Then, arguing with the co-area formula [15, chapter 4], we can
prove that

‖Hεk(φk+β/2)− z1‖L1 → 0, ‖Hεk(φk−β/2)− z2‖L1 → 0, ‖Hεk(ψk)− z3‖L1 → 0

as k→∞ (see [10, remark 1] for details). Now, from definition 1, we conclude that
(z1,z2,z3,φ∗,ψ∗) is an admissible quintuple. Consequently, it follows from assumption (A2)
that the set of admissible quintuples satisfying Fj(P(φ,ψ)) = γj is not empty.

Remark 4. From definition 1 (b), it follows that for each admissible quintuple (z1,
z2,z3,φ,ψ) ∈ (L∞(Ω))3 × (H1(Ω))2 the functional ρ in (13) is the Γ–limit of the sequence
of functionals ρk(φ,ψ) := µ1|Hεk(φ+ β

2 )|BV +µ2|Hεk(φ− β
2 )|BV +µ3|Hεk(ψ)|BV +µ4‖φ−

φ0‖2H1 +µ5‖ψ−ψ0‖2H1 , where {εk}k∈N is a sequence on which the infimum on the right hand
side of (13) is attained.

Moreover, from the fact that ρ is a Γ–limit together with the Γ–convergence definition [4,
section 6], we conclude that ρ is lower semi-continuous on the set of admissible quintuples
w.r.t. the topology described in remark 2.

Next, we verify some basic properties of the operators Pεk , Hεk and q that are necessary in
the forthcoming analysis

Lemma 1. Under assumption (A1) the following assertions hold true:

(a) Let {(z1k ,z2k ,z3k)}k∈N ∈ (V0,1)
3 be a sequence converging in (L1(Ω))3 to some element

(z1,z2,z3) ∈ (V0,1)
3. Then q(z1k ,z

2
k ,z

3
k) → q(z1,z2,z3) in L1(Ω).

(b) Let (zi,φ,ψ) ∈ L∞(Ω)3 ×H1(Ω)2 be such that Hε(φ+β/2)→ z1, Hε(φ−β/2)→ z2

Hε(ψ)→ z3 in L1(Ω) as ε→ 0. Then Pε(φ,ψ)→ q(z1,z2,z3) in L1(Ω) as ε→ 0.
(c) Given ε> 0, let {(φk,ψk)}k∈N be a sequence in (H1(Ω))2 converging to (φ,ψ) ∈ (H1(Ω))2

in the L2-norm. Then Hε(φk+β/2)→ Hε(φ+β/2), Hε(φk−β/2)→ Hε(φ−β/2) and
Hε(ψk)→ Hε(ψ) in L1(Ω), as k→∞.
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Proof. Assertion (a) follows from the estimate

‖q(z1k ,z2k ,z3k)− q(z1,z2,z3)‖L1 ⩽
ˆ
Ω

|bi− be| |(z1k − z2k)z
3
k − (z1 − z2)z3 ± (z1 − z2)z3k |

⩽ |bi− be|
ˆ
Ω

(|z1k − z1|+ |z2k − z2|)|z3k |+ |z1 − z2||z3k − z3|

⩽ 2|bi− be|
ˆ
Ω

(|z1k − z1|+ |z2k − z2|+ |z3k − z3|) ,

where in the last inequality we used the fact zi,zik ∈ V0,1. The proof of assertion (b) follows a
similar argument. For a proof of assertion (c) we refer the reader to [10, lemma 1].

The following result guarantees the closedness of the set of admissible quintuples with
respect to the (L1(Ω))3 × (L2(Ω))2 convergence (see definition 1). The prove follow the lines
of the proof of [10, lemma 2].

Lemma 2. Let {(z1k ,z2k ,z3k ,φk,ψk)}k∈N be a sequence of admissible quintuples converging in
(L1(Ω))3 × (L2(Ω))2 to some (z1,z2,z3,φ,ψ) ∈ (L∞(Ω))3 × (H1(Ω))2. Then (z1,z2,z3,φ,ψ)
is an admissible quintuple.

In the next lemma, we verify the coerciveness and lower semi-continuity of the functional
ρ on the set of admissible quintuples.

Lemma 3. For each admissible quintuple (z1,z2,z3,φ,ψ), we have

3∑
i=1
µi|zi|BV +µ4‖φ−φ0‖2H1 +µ5‖ψ−ψ0‖2H1 ⩽ ρ(z1,z2,z3,φ,ψ) . (14)

Moreover, given a sequence {(z1k ,z2k ,z3k ,φk,ψk)}k∈N of admissible quintuples such that zik → zi

in L1(Ω), φk ⇀φ in H1(Ω), ψk ⇀ψ in H1(Ω), where (z1,z2,z3, φ,ψ) is some admissible
quintuple, then ρ is weak-lower semi-continuous, i.e. satisfies

ρ(z1,z2,z3,φ,ψ) ⩽ liminf
k∈N

ρ(z1k ,z
2
k ,z

3
k ,φk,ψk) .

Proof. What concerns the lower semi-continuity property of ρ, this issue is addressed in
remark 4. The proof of the coercivity property in (14) follows the lines of the proof in [10,
lemma 4].

3.2. Convergence analysis

As we have seen in lemmas 1 and 2, the set of generalized admissible parameters shall be
considered endowed with the L1(Ω)-topology. Therefore, for the convergence analysis of the
Tikhonov approach, we shall be able to prove the continuity of forward operators Fj in (2)
w.r.t. the L1(Ω)—topology. It is the content of the following proposition (for Lp continuity
results of the forward operator in the Complete Electrode Model, see [28]).

Proposition 4. Let the boundary data in the BVP (1) satisfy ηj ∈ (W1−1/q,q(∂Ω)) ′, for q=
p/(p− 1), for any p ∈]2,p0[, where p0 > 2 is an adequate constant. Then, the operators Fj :
D(F)⊂ L1(Ω)→ Y are continuous on D(F) with respect to the L1(Ω)-topology.

Although proposition 4 is quintessential for the forthcoming convergence analysis (theor-
ems 5–7), a proof is postponed to section 3.3. In what follows, we prove that for any regu-
larization parameter α> 0 the functional Gα in (10) is well posed in the generalized sense of
definition 1.

7
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Theorem 5 (Well-Posedness). Let the assumptions of proposition 4 and the general assump-
tion of this paper hold. The functional Gα in (10) attains generalized minimizers on the set of
admissible quintuples.

Sketch of the proof. It follows from remark 3 that the set of admissible quintuples is not
empty. Thus, there exists a minimizing sequence of admissible quintuples for Ĝα. It follows
from the coercivity of ρ in lemma 3, the Sobolev compact embedding of H1 into L2 [1], and
the compact embedding of BV into L1 [15], that this minimizing sequence converges to some
quintuple which is admissible (see lemma 2). Next, from the weak lower semi-continuity of ρ,
together with the continuity of Fj (see proposition 4), and the continuity of q (see lemma 1),
we conclude that this limit quintuple is a minimizer of Ĝα.

In the next two theorems we present the main convergence and stability results. The proofs
use classical techniques from the analysis of Tikhonov type regularization methods (see, e.g.
[10]).

Theorem 6 (Convergence for exact data). Assume we have exact data (i.e. γδj = γj) and let

(z1α,z
2
α,z

3
α,φα,ψα), α> 0, denote a generalized minimizer of Ĝα. Then, for every sequence

of positive numbers {αk}k∈N converging to zero there exists a subsequence (denoted again by
{αk}) such that (z1αk

,z2αk
,z3αk

, φαk ,ψαk) is strongly convergent in (L
1(Ω))3 × (L2(Ω))2 to some

(z̄1, z̄2, z̄3, φ̄, ψ̄). Moreover, the limit is a solution of Fj(q(z̄1, z̄2, z̄3)) = γj, j= 1, . . . ,N.

Sketch of the proof. Let {αk}k∈N satisfy the above assumptions. For each k ∈ N, we denote
by (z1k ,z

2
k ,z

3
k ,φk,ψk) := (z1αk

,z2αk
,z3αk

,φαk ,ψαk) a minimizer of Gαk (that exists by theorem 5).
It follows from Assumption (A2) that

Gαk(z
1
k ,z

2
k ,φk,ψk)⩽

N∑
j=1

∥∥Fj(q(z1,z2,z3))− γj
∥∥+αkρ(z

1,z2,z3φ∗,ψ∗)

= αkρ(z
1,z2,z3φ∗,ψ∗) , k ∈ N . (15)

As a consequence of (15) we obtain

ρ(z1k ,z
2
k ,z

k,φk,ψk)⩽ ρ(z1,z2,z3φ∗,ψ∗)< ∞ . (16)

Then, arguing with (16) and lemma 3, we prove that the sequences {φk}, {ψk} and {zjk} are
bounded in H1(Ω) and BV respectively.

Arguing as in theorem 5, we conclude the existence of strong converging subsequences,
with limit (z1,z2,z3,φ,ψ) being an admissible quintuple. Moreover, from lemma 1 (a), the
continuity of Fj (see proposition 4), the assumption on the sequence {αk}, and (15) we obtain

γj = lim
k→∞

Fj(q(z
1
k ,z

2
k ,z

3
k)) = Fj(q(z

1,z2,z3)) ,

concluding the proof.

Theorem 7 (Convergence for noisy data). Let α= α(δ) be a function satisfying
limδ→0 α(δ) = 0 and limδ→0 δ

2α(δ)−1 = 0. Moreover, let {δk}k∈N be a sequence of pos-
itive numbers converging to zero and γδk ∈ Y be corresponding noisy data satisfying (3). Then
there exists a subsequence, again denoted by {δk}, and a sequence {αk := α(δk)} such that

8
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(z1αk
,z2αk

,z3αk
,φαk ,ψαk) converges in (L1(Ω))3 × (L2(Ω))2 to some (z̄1, z̄2, z̄3, φ̄, ψ̄) satisfying

Fj(q(z̄1, z̄2, z̄3)) = γj, j= 1, . . . ,N.

Sketch of the proof. For each k ∈ N, let {αk}k∈N := {αk(δk)}k∈N and the corresponding
(z1k ,z

2
k ,z

3
k ,φk,ψk) := (z1αk(δk)

,z2αk
,z3αk

,φαk ,ψαk) be a minimizer of Gαk (that exists by the-
orem 5). It follows from Assumption (A2) that

Gαk(δk)(z
1
k ,z

2
k ,φk,ψk)⩽

N∑
j=1

∥∥∥Fj(q(z1,z2,z3))− γδkj

∥∥∥2 +αkρ(z
1,z2,z3φ∗,ψ∗)

⩽ Nδ2k +αkρ(z
1,z2,z3φ∗,ψ∗) ,k ∈ N . (17)

From (17) and the assumptions on {αk}, it follows that {ρ(z1k ,z2k ,z3k ,φk,ψk)} is bounded. From
this fact and lemma 3, we conclude that {φk}, {ψk} and {zjk} are bounded in H1(Ω) and BV
respectively. To conclude the proof, it is enough to argue as in the last paragraph of the proof
of theorem 6.

3.3. Proof of proposition 4

In the proof of proposition 4, a result of Lp-regularity for the solution of elliptic boundary value
problems of Neumann type is needed. Such regularity is obtained by a modification of a result
by Meyers [30], which guaranteeW1,p-regularity of u⋆ (the solution of (1)), provided b⋆ ∈ V .
For details, we refer the reader to [18].

Lemma 8 (Meyers). Let Ω⊂ R2 be a bounded connected domain with Lipschitz boundary,
b ∈ V and u ∈ H1(Ω) be the unique solution of (1).
There exists a constant p0 ∈ (2,∞) depending only on bi, be and Ω, such that for every

p ∈ (2,p0) and s ∈ [p/2,∞], there exists a constant C= C(p,s,bi,be,Ω) such that

‖u‖W1,p(Ω) ⩽ C‖ηj‖Ls(∂Ω) ,

whenever ηj has the extra regularity ηj ∈ (W1−1/q,q(∂Ω)) ′, for q−1 + p−1 = s−1.

The constant p0 in proposition 4 is chosen as in lemma 8. Next, we introduce some notation
and the necessary assumptions on the smoothness of the boundary data in (1). Let b ∈ V be
given as in (7), and assume that the current profile ηj in the BVP (1) satisfies5 the assumption
of proposition 4.

Now, for each j ∈ {1, . . . ,N}, consider the operator Gj : V⊂ X→ H1(Ω) given by Gj(b) =
uj, where uj ∈ H1(Ω) is the unique solution of (1) in H1

∗(Ω) := {w ∈ H1(Ω) :
´
∂Ω
w= 0}.

Thus the operator Fj in (2) satisfies Fj(b) = ΓD(Gj(b)), where ΓD : H1(Ω)→ H1/2(∂Ω) is the
Dirichlet trace operator, which is linear and continuous [1]. Consequently, in order to prove
the continuity of Fj stated in proposition 4 at some point b⋆ ∈ V , it is sufficient to verify the
estimate

‖Gj(b)−Gj(b
⋆)‖H1(Ω) ⩽ C⋆ ‖b− b⋆‖1/pL1(Ω)

(18)

for some constant C⋆ > 0 depending only on b⋆ and some p> 2, as in lemma 8.
In what follows, we denote (for simplicity) u := Gj(b) and u⋆ := Gj(b⋆). Using integration

by parts, we obtain

5 Note that, under the hypothesis of proposition 4, we have (W1−1/q,q(∂Ω)) ′ ⊂ H−1/2(∂Ω).

9
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ˆ
Ω

b |∇(u⋆− u)|2 =
ˆ
Ω

b |∇u⋆|2 − 2
ˆ
∂Ω

b(u)ν u
⋆+

ˆ
Ω

b |∇u|2

=

ˆ
Ω

(b− b⋆) |∇u⋆|2 −
ˆ
Ω

b⋆ |∇u⋆|2 +
ˆ
Ω

b |∇u|2

=

ˆ
Ω

(b− b⋆) |∇u⋆|2 −
ˆ
∂Ω

b⋆ (u⋆)ν u
⋆+

ˆ
∂Ω

b(u)ν u

=

ˆ
Ω

(b− b⋆) |∇u⋆|2 −
ˆ
Ω

b∇u∇u⋆+
ˆ
Ω

b⋆∇u⋆∇u

=

ˆ
Ω

(b− b⋆) |∇u⋆|2 −
ˆ
Ω

(b− b⋆)∇u⋆∇u

=

ˆ
Ω

(b− b⋆)∇u⋆ (∇u⋆−∇u). (19)

Since b ∈ V (see (7)), it follows from the Hölder inequality

bi

ˆ
Ω

|∇(u⋆− u)|2 ⩽
(ˆ

Ω

|b− b⋆|q
) 1

q
(ˆ

Ω

|∇u⋆|p
) 1

p
(ˆ

Ω

|∇(u⋆− u)|r
) 1

r
(20)

for p, q, r> 1 with 1
p +

1
q +

1
r = 1. Choosing r= 2 in (20), we obtain

bi
(ˆ

Ω

|∇(u⋆− u)|2
) 1

2 ⩽
(ˆ

Ω

|b− b⋆|q
) 1

q
(ˆ

Ω

|∇u⋆|p
) 1

p
, (21)

for p, q> 1with 1
p +

1
q =

1
2 . From the Lp-regularity result in lemma 8, it follows the existence of

p0 > 2 such that ‖∇u⋆‖Lp <∞ for 2< p⩽ p0. Thus, choosing p= 2+ ϵ and q= p/(p− 2) =
(2ϵ+ 4)/ϵ in (21), we conclude that

‖∇u⋆−∇u‖L2 ⩽ b−1
i ‖∇u⋆‖Lp ‖b− b⋆‖Lq .

Consequently, we get the estimate

‖Gj(b)−Gj(b
⋆)‖H1 ⩽ (cP bi)

−1 ‖∇u⋆‖Lp ‖b− b⋆‖Lq , (22)

where cP = cP(Ω) is the constant in the Poincarré inequality with null mean [1].
Moreover, since q> 2, we canwrite q= 1+ q̄ (with q̄> 1) and estimate the last term in (22)

by

‖b− b⋆‖Lq =
(ˆ

Ω

|b− b⋆| |b− b⋆|q̄
)1/q

⩽ (2be)
q̄/q ‖b− b⋆‖1/qL1 (23)

(notice that b, b⋆ ∈ V implies |b− b⋆|⩽ 2be a.e. inΩ). Finally, from (22) and (23) follows (18)
with q= (2ϵ+ 4)/ϵ and C⋆ = C⋆(u⋆) = (cP bi)−1‖∇u⋆‖Lp(2be)q̄/q, where p= 2+ ϵ. □

4. Towards numerical realization

The Tikhonov functional Gα defined in the previous section is not suitable for computing
numerical approximations to the solution of (9). This becomes obvious when one observes the
definition of the penalization term ρ in (13). In this section we introduce the functional Gε,α,
which can be used for the purpose of numerical implementations. This functional is defined
in such a way that it is minimizers are ‘close’ to the generalized minimizers of Gα in a sense
that will be made clear later (see proposition 9). For each ε> 0 we define the functional

10
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Gε,α(φ,ψ) :=
N∑
j=1

‖Fj(Pε(φ,ψ))− γδj ‖2Y+α
(
µ1|Hε(φ+β/2)|BV +µ2|Hε(φ−β/2)|BV

+µ3|Hε(ψ)|BV +µ4‖φ−φ0‖2H1 +µ5‖ψ−ψ0‖2H1

)
, (24)

where Pε(φ,ψ) := q(Hε(φ+β/2),Hε(φ−β/2),Hε(ψ)) is the functional defined in (11). In
the next proposition we verify that this functional is well-posed. Moreover, we prove that, for
ε→ 0, the minimizers of Gε,α approximate a generalized minimizer of Gα. The proof follow
the lines of [10, lemma 10 and theorem 11]. For the convenience of the reader, a sketch of the
proof is presented.

Proposition 9. Let α, β, ε> 0 and φ0, ψ0 ∈ H1(Ω) be given. Then

(a) The functional Gε,α in (24) attains a minimizer on (H1(Ω))2.
(b) For each ε> 0 denote by (φε,α,ψε,α) a minimizer of Gε,α. There exists a positive

sequence {εk} converging to zero such that (Hεk(φεk,α+
β
2 ),Hεk(φεk,α−

β
2 ),Hεk(ψεk,α),

φεk,α,ψεk,α) converges strongly in (L
1(Ω))3 × (L2(Ω))2 and the limit is a generalized min-

imizer of Gα in the set of admissible quintuples.

Proof. Sketch of the proof Since ε> 0, α> 0, and inf{Gε,α(φ,ψ) : (φ,ψ) ∈ (H1(Ω))2}⩽
Gε,α(0,0)<∞, there exists a minimizing sequence {(φk,ψk)}k∈N for Gε,α. The definition of
Gε,α, implies that the minimizing sequence {(φk,ψk)}k∈N is bounded in (H1(Ω))2. Then, the
compact embedding theorem [1, chapter 5] and lemma 1 imply the existence of a subsequence
(denotedwith the same index) such that (φk,ψk)→ (φ,ψ) in (L2(Ω))2,Pε(φk,ψk)→ Pε(φ,ψ)
in L1(Ω), Hε(φk± β

2 )→ Hε(φ± β
2 ) and Hε(ψk)→ Hε(ψ) in L1(Ω).

Furthermore, from the weak lower semi-continuity of the BV-seminorm [15, the-
orem 1, p 172] and of the H1–norm, we obtain |Hε(φ± β

2 )|BV ⩽ liminf
k→∞

|Hε(φk± β
2 )|BV,

|Hε(ψ)|BV ⩽ liminf
k→∞

|Hε(ψk)|BV, ‖φ−φ0‖2H1(Ω) ⩽ liminf
k→∞

‖φk−φ0‖2H1(Ω), ‖ψ−ψ0‖2H1(Ω) ⩽
liminf
k→∞

‖ψk−ψ0‖2H1(Ω). These facts together with the continuity of both Fj and q (see propos-

ition 4 and lemma 1) allow us to conclude that Gε,α(φ,ψ)⩽ liminf
k→∞

Gε,α(φk,ψk) = infGε,α,
proving Assertion (a).

Add Assertion (b).
Let (z1α,z

2
α,z

3
α,φ

1
α,ψ

2
α) be an admissible quintuple minimizing Ĝα (that exists by the-

orem 5). From definition 1 follows the existence of a positive sequence εk → 0 and a cor-
responding sequence (φk,ψk) ∈ (H1(Ω))2 such that

(φk,ψk,Hεk(φk+
β
2 ),Hεk(φk−

β
2 ),Hεk(ψk))→ (φα,ψα,z

1
α,z

2
α,z

3
α)

in (L2(Ω))2 × (L1(Ω))3 as k→∞. Moreover, from lemma 3 we can further assume that
ρ(z1α,z

2
α,z

3
α,φα,ψα) = limk→∞

(
µ1|Hεk(φk+

β
2 )|BV +µ2|Hεk(φk−

β
2 )|BV +µ3|Hεk(ψk)|BV +

µ4‖φk−φ0‖2H1 +µ5‖ψk−ψ0‖2H1

)
.

Let (φεk ,ψεk) be a minimizer of Gεk,α, for each k ∈ N. From the definition of Gεk,α
follows that each coordinate of the sequence

{
(‖φεk −φ0‖H1 ,‖ψεk −ψ0‖H1 , |Hεk(φεk +

β
2 )|BV, |Hεk(φεk −

β
2 )|BV, |Hεk(ψεk)|BV)

}
k
is uniformly bounded by Gεk,α(0,0)<∞. Hence,

from the compact embedding theorems for H1(Ω) in L2(Ω), and for BV in L1(Ω), we conclude
the existence of subsequences (again denoted by the same indexes) such that

(φεk ,ψεk ,Hεk(φεk +
β
2 ),Hεk(φεk −

β
2 ),Hεk(ψεk))→ (φ̂, ψ̂, ẑ1, ẑ2, ẑ3)

11
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in (L2(Ω))2 ×L1((Ω))3 as k→∞. This characterizes the limit (φ̂, ψ̂, ẑ1, ẑ2, ẑ3) as an admissible
quintuple (see definition 1). Now, the continuity of Fj and q (see proposition 4 and lemma 1)
and the characterization of ρ as a Γ–limit (see lemma 3) implies that

∥∥Fj(q(ẑ1, ẑ2, ẑ3))− γδj
∥∥=

lim
k→∞

∥∥Fj(Pεk(φεk ,ψεk))− γδj
∥∥ and

ρ(ẑ1, ẑ2, ẑ3, φ̂, ψ̂) ⩽ liminf
k→∞

(
µ1|Hεk(φεk +

β
2 )|BV +µ2|Hεk(φεk −

β
2 )|BV

+µ3|Hεk(ψεk)|BV +µ4‖φεk −φ0‖2H1 +µ5‖ψεk −ψ0‖2H1

)
.

Thus,

Gα(ẑ1, ẑ2, ẑ3, φ̂, ψ̂) =
N∑
j=1

∥∥∥Fj(q(ẑ1, ẑ2, ẑ3))− γδj

∥∥∥2 +αρ(ẑ1, ẑ2, ẑ3, φ̂, ψ̂)

⩽ liminf
k→∞

Gεk,α(φεk ,ψεk)

⩽ liminf
k→∞

Gεk,α(φk,ψk) ⩽ limsup
k→∞

Gεk,α(φk,ψk)

⩽
N∑
j=1

limsup
k→∞

∥∥∥Fj(Pεk(φk,ψk))− γδj

∥∥∥2 +α limsup
k→∞

(
µ1|Hεk(φk+

β
2 )|BV

+µ2|Hεk(φk−
β
2 )|BV +µ3|Hεk(ψk)|BV +µ4∥φk−φ0∥2H1 +µ5∥ψk−ψ0∥2H1

)
=

N∑
j=1

∥∥∥Fj(q(z1α,z2α,z3α))− γδj

∥∥∥2 +αρ(z1α,z
2
α,z

3
α,φα,ψα) = inf Ĝα ,

proving that (ẑ1, ẑ2, ẑ3, φ̂, ψ̂) is a minimizer of Gα.

Proposition 9 justifies the use functionals Gε,α in order to obtain numerical approximations
to the generalized minimizers of Gα. It is worth noticing that, differently from Gα, the minim-
izers of Gε,α can be numerically computed. In the next subsection we compute the first order
conditions of optimality for the functional Gε,α, which will allow us to compute the desired
minimizers.

4.1. Optimality conditions for the Tikhonov functional

For the numerical purposes we have in mind, it is necessary to derive the first order optimality
conditions for a minimizer of the functionals Gε,α. To this end we consider Gε,α in (24) and
we look for the Gâteaux directional derivatives with respect to φ, ψ.

Since H ′
ε(φ±β/2) and H ′

ε(ψ) are self-adjoint
6, the optimality conditions for a minimizer

of the functional Gε,α can be written in the form of the system of equations

αµ4(I−∆)(φ−φ0) =−R1
ε,α(φ,ψ) , αµ5(I−∆)(ψ−ψ0) =−R2

ε,α(φ,ψ) , in Ω (25a)

(φ−φ0)ν = 0 , (ψ−ψ0)ν = 0 , at ∂Ω (25b)

where ν(x) is the external unit normal vector at x ∈ ∂Ω, and

6 Notice that H ′
ε(t) =

{
1/ε t ∈ (−ε,0)

0 else
.

12
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R1
ε,α(φ,ψ) =

N∑
j=1

(bi− be)Hε(ψ)H
′
β,ε(φ)F

′
j (Pε(φ,ψ))

∗(Fj(Pε(φ,ψ))− γδj )

− α
2

[
µ1H

′
ε(φ+ β

2 )∇·

(
∇Hε(φ+ β

2 )

|∇Hε(φ+ β
2 )|

)

+µ2H
′
ε(φ− β

2 )∇·

(
∇Hε(φ− β

2 )

|∇Hε(φ− β
2 )|

)]
, (26a)

R2
ε,α(φ,ψ) =

N∑
j=1

(bi− be)Hβ,ε(φ)H
′
ε(ψ)F

′
j (Pε(φ,ψ))

∗(Fj(Pε(φ,ψ))− γδj )

− α
2 µ3H

′
ε(ψ)∇·

(
∇Hε(ψ)
|∇Hε(ψ)|

)
. (26b)

It is worth noticing that the derivation of (25) is purely heuristic, since the BV seminorm is
not differentiable. Moreover, due to the terms |∇Hε(·)|, |∇Hε(· ± β

2 )| appearing in the denom-
inators of (26), we have to assume that the gradients∇φ,∇ψ do not vanish in a ε-neighborhood
of the level curves {φ= β

2 }, {φ=−β
2 } and {ψ = 0} respectively (compare with assumption

(A2)).
In what followswe apply iterative regularization to the system of optimality conditions (25).

This idea was suggested in [10] and allow the derivation of an iterative regularization method
on the space of parameters modeled by level-set functions. The resulting method is the starting
point of the iterative algorithm proposed in this article for solving the crack detection problem
(see section 5).

4.2. An iterative regularization method

The method discussed in the sequel consists of successively solving the system of optim-
ality conditions in (25). This regularization method was used in connection with level-set
approaches in [10, 17].

For n= 0 set G(0)
ε,α(φ,ψ) := Gε,α(φ,ψ) as in (24), where (φ0,ψ0) is some initial guess. The

iterative regularization method under consideration consists in minimizing the family of func-
tionals

G(n)
ε,α(φ,ψ) :=

N∑
j=1

‖Fj(Pε(φ,ψ))− γδj ‖2Y+α
(
µ1|Hε(φ+ β

2 )|BV +µ2|Hε(φ− β
2 )|BV

+µ3|Hε(ψ)|BV +µ4‖φ−φn‖2H1 +µ5‖ψ−ψn‖2H1

)
. (27)

The minimizer of G(n)
ε,α(φ,ψ) is denoted by (φn+1,ψn+1). Notice that (φn+1,ψn+1) can be

realized by solving the system of optimality conditions

αµ4(I−∆)(φ−φn) =−R1
ε,α(φ,ψ) , αµ5(I−∆)(ψ−ψn) =−R2

ε,α(φ,ψ) , in Ω

(φ−φn)ν = 0 , (ψ−ψn)ν = 0 , at ∂Ω .

In the sequel we describe an algorithm (see algorithm 1) to implement the iterative regular-
ization method for the crack identification problem. Each iteration of this algorithm consists
of four steps:

13
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Algorithm 1. Iterative regularization method for solving the crack detection problem.

1. Evaluate [rj]Nj=1 := [Fj(Pε(φn,ψn))− γδ
j ]
N
j=1 = [wj|∂Ω − γδ

j ]
N
j=1,

where [wj]Nj=1 ∈ [H1(Ω)]N solves
∇· (Pε(φn,ψn)∇wj) = 0 , in Ω; b(wj)ν = ηj , at ∂Ω .

2. Evaluate [F ′
j (Pε(φn,ψn))

∗rj]Nj=1 :=−[∇wj ·∇uj]Nj=1 ∈ [L2(Ω)]N, where [wj]Nj=1 is the
function computed in Step 1. and [uj]Nj=1 ∈ [H1(Ω)]N solves

∇· (Pε(φn,ψn)∇uj) = 0 in Ω; b(uj)ν = rj , at ∂Ω .
3. Calculate R1

ε,α(φn,ψn) and R2
ε,α(φn,ψn) as in (26).

4. Evaluate the updates δφ, δψ ∈ H1(Ω) by solving
αµ4(I−∆)δφ=−R1

ε,α(φn,ψn) , in Ω; (δφ)ν = 0 , at ∂Ω .

αµ5(I−∆)δψ =−R2
ε,α(φn,ψn) , in Ω; (δψ)ν = 0 , at ∂Ω .

5. Update the level-set functions φn+1 = φn+ δφ, ψn+1 = ψn+ δψ.

• In the first step the residual [rj]Nj=1 ∈ [L2(∂Ω)]N corresponding to the iterate (φn,ψn) is eval-
uated. This requires the solution of N elliptic BVP’s of Neumann type.

• In the second step the solutions [uj]Nj=1 ∈ H1(Ω) of the adjoint problems for the residual
components [rj]Nj=1 are evaluated. This corresponds to solving N elliptic BVP of Neumann
type and to computing N inner product in L2 (namely [∇wj ·∇uj]Nj=1.

• The third step consists in the computation of R1
ε,α(φn,ψn) and R

2
ε,α(φn,ψn). Each compu-

tation requires the sum of N inner products in L2.
• In the fourth step, the updates δφn, δψn ∈ H1(Ω) for the level-set functions φn and ψn are
evaluated. This corresponds to solving two non-coupled elliptic BVP’s of Neumann type.

Remark 5. In section 4.2 we propose an iterative method (summarized in algorithm 1) to
compute approximate solutions of the system of operator equation (9). The method under
consideration is the ‘iterated Tikhonov method’ given by

(φn+1,ψn+1) := argminφ,ψG(n)
ε,α(φ,ψ),n= 0,1, . . .

where the functionals G(n)
ε,α, n ∈ N are defined in (27). Notice that (φn+1,ψn+1) is the solution

of optimality condition for G(n)
ε,α (see (25) and (26)).

A similar algorithm was successfully used in [10, 17] to solve the inverse potential prob-
lem under the framework of level-sets and multiple level-sets respectively. However, what
concerns the crack detection problem the method outlined above becomes disadvantageous if
the number of physical experiments N in (1) is large. Indeed, in each iteration one has to solve
2N+ 2 elliptic BVP’s.

5. Numerical experiments

In this section we present reconstruction results obtained from a numerical implementation of
the level-set method discussed in this manuscript (see algorithm 1).

In what follows Ω⊂ R2 is the unit disk. We address the identification of three distinct
crack scenarios: the piecewise constant functions b⋆1 (curved crack close to the boundary),
b⋆2 (‘S’ shaped crack far from the boundary), b⋆3 (two straight cracks) shown in figure 1. The
(constant) thickness of the cracks is β= 0.04, the background conductivity is be = 1.0 and the
crack conductivity is bi = 0.01 (see section 1).

14
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Figure 1. Exact cracks b⋆k , k= 1,2,3 used in the numerical experiments.

Figure 2. Typical Neumann-to-Dirichlet experiment. (LEFT) Crack b⋆2 . (RIGHT) Solu-
tions u1, u2 and u8 of (1) for the Neumann data η1, η2 and η8 respectively.

The solutions of the BVP’s (required for the implementation of our method) are computed
using a finite element type method and the open-source package FEniCS [2].

Remark 6. Since the conductivities are assumed to be known, these crack identification prob-
lems belong to the family of ‘shape identification problems’.

When the conductivities are not known, we face a problem of simultaneous identification
of ‘shape and contrast’. This is known to be a challenging problem. In this case, it is possible
to modify the Tikhonov functional in (10), in order to also determine the conductivity values
(see, e.g. [11, section 1.3]).

5.1. Neumann/Dirichlet data

We use N= 8 distinct pairs of Neumann/Dirichlet boundary data {(ηj,γj)}Nj=1 corresponding
to 8 uniformly spaced electrodes placed around ∂Ω= {x ∈ R2; ‖x‖= 1} (see figure 2 for a
typical NtD experiment in the crack scenario b⋆2 ). EachNeumann data ηj is a piecewise constant
function that takes current values 1 over one electrode, −1 on the adjacent electrode and zero
elsewhere (adjacent current pattern); moreover, it satisfies

´
∂Ω
ηj = 0.

In order to generate the exact data, in each crack scenario the BVP’s in (1) with Neumann
data ηj, j= 1, . . . ,N are solved; the corresponding solutions are denoted by uj : Ω→ R. The
Dirichlet data γj, j= 1, . . . ,N, are computed as the Dirichlet trace of uj at ∂Ω, i.e. γj := uj|∂Ω

In order to generate the noisy data γδj used in our experiments, the exact Dirichlet data γj
are perturbed by adding uniformly distributed random noise. Two distinct levels of noise are
used, namely δ = 1% and δ = 20%.
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Figure 3. Initial guess for level-set functions φ0 (LEFT), ψ0 (CENTER), and the res-
ulting crack Pε(φ0,ψ0) (RIGHT).

5.2. Relevant aspects of the numerical implementation

5.2.1. Initial guess and regularization parameters. The same initial guess is used in all
numerical experiments. In figure 3 the initial guess for the level-set functions (φ0,ψ0) as well
as the resulting crack Pε(φ0,ψ0) are depicted.

In all crack scenarios we use ε= 0.01 and µ1 = µ2 = µ3 = 0.000001, µ4 = 1. Moreover,
µ5 = 1 in crack scenarios b⋆1 , b

⋆
3 , while µ5 = 0.1 in crack scenario b⋆2 .

5.2.2. Meshes used in the numerical implementation. The solutions uj of the BVP’s in
section 5.1 (needed to generate the data for the inverse problem) are computed using adaptively
refined triangular meshes with average 40 000 elements (1200 boundary vertices).

In order to avoid inverse crimes, adaptively refined meshes (with average 11 000 ele-
ments and 600 boundary vertices) are used in the implementation of the level-set method (see
algorithm 1). Notice that these meshes are coarser then the meshes used to generate the data
for the inverse problem (see section 5.1).

A third uniform mesh with 18 182 elements and 600 boundary vertices is used to represent
the level-set functions (φk,ψk); the same mesh is used for all steps k of the iterative method.

5.2.3. Reinitialization. We observed in the numerical implementation of our method that the
level-set function φk develops small gradients as k grows large. This is a well known issue
in level-set type methods, that leads to numerical instabilities. To address this difficulty, we
implement a reinitialization type method [31]. The main purpose is to enforce the property
|∇φk|= 1 in Ω along the iteration.

Here we use a variation of the reinitialization method in [31, section 7.4]. In other words,
we solve the IVP ϕt− α̃∆ϕ− Sβ(φk)(|∇ϕ| − 1) = 0, t> 0 with initial condition ϕ(0) = φk.
Here Sβ(ϕ) := sign(ϕ) for |ϕ|> β

2 , and zero elsewhere. The constant α̃ > 0 plays the role of a
stabilization parameter: we use α̃= 0.01 in crack scenario b⋆1 and α̃= 0.005 in crack scenarios
b⋆2 and b

⋆
3 .

This reinitialization procedure of φk is implemented after every 10 iterations. No reinitial-
ization is needed for the level-set function ψk.

5.3. Numerical results

The reconstruction results obtained for the three crack scenarios are presented in the figure 4.
For each crack scenario b⋆k , k= 1,2,3, two levels of noise are considered, namely δ = 1% and
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Figure 4. Reconstruction results. Crack scenarios are divided by columns. (FIRST
ROW) noise level δ = 1%. (SECOND ROW) noise level δ = 20%.

δ = 20%. Each plot in this figure shows the contour of exact crack (RED) and the correspond-
ing reconstruction (BLACK). The reconstructions are computed using k= 1500 iterations (for
δ = 1%) and k= 500 (for δ = 20%).

In figure 5 the evolution of the relative residual and relative iteration error are presented
in all three crack scenarios, and for both levels of noise.

Some considerations about the numerical experiments follow:

• Crack b⋆1 is successfully reconstructed at both noise levels.
• The reconstruction quality of crack b⋆2 deteriorates for the noise level δ = 20%. The curvature
of b⋆2 is recovered in both noise levels, but instabilities in the reconstruction appear as
the noise level increases (a possible explanation is the fact that the Neumann data in
section 5.1—using adjacent pattern—do not favor the reconstruction of information located
in the interior of Ω; see, e.g. [5]).

• The reconstruction of crack b⋆3 represents the most challenging scenario. Since b⋆3 consists
of two disjoint cracks, we observe a geometry split in the evolution of level-set function
ψk (see figure 7), which requires a large number of iterations. A detailed description of the
evolution in this crack scenario is given at the end of this section (see figures 6 and 7).

• In all three crack scenarios the relative residual is monotonically decreasing; a few observed
instabilities are related to the reinitialization procedure (see figure 5). On the other hand, the
relative iteration error increases in the first iterations. A possible explanation is the fact that
the zero level-sets of (φk,ψk) abruptly change in the first iterations (this is a well documented
fact in the level-set literature; see, e.g. [17]).
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Figure 5. Evolution of relative residual (FIRST ROW) and relative iteration error
(SECOND ROW). Crack scenarios are divided by columns.

• Iterative methods for ill-posed problems are commonly stopped according to the discrep-
ancy principle [13]. Here the iterations are not stopped using discrepancy, since no theoret-
ical results are available for our multiple level-set method. Instead, we observe the relative
residual: the numerical experiments are terminated when the evolution of the relative resid-
ual stagnates (see first line in figure 5). Consequently, the experiments are terminated at
either k= 1500 iterations (for δ = 1%) or k= 500 (for δ = 20%).

Next we present more details about the sequence (φk,ψk) produced by our method in crack
scenario b⋆3 with level of noise δ = 1%. In figure 6 the evolution of the reconstructed cracks
bk = Pε(φk,ψk) is presented. The initial guess consists of a single crack (see figure 3). At
k= 250 steps the iteration bk splits in two disconnected components. The evolution stagnates
at k= 1000 steps (compare with figure 5, third column). In figure 7 the corresponding evolution
of the level-set functions (φk,ψk) is presented (in all pictures of this figure, the zero level-sets
of φk and ψk are plotted in black).

5.3.1. Revisiting the generation of Neumann/Dirichlet data

5.3.1.1. Choosing the number of NtD pairs. In all experiments above we used N= 8 pairs of
Neumann/Dirichlet boundary data {(ηj,γj)}Nj=1. It is worth mentioning that we also conducted
numerical experiments for different values of N (ranging from 4 to 20) and observed that the
use of a larger amount of NtD data may lead to a reconstruction of better quality (however, it
certainly increases the numerical effort to run the iterative method).

In all crack scenarios b⋆i considered in this section, we observed that the choice N= 8 rep-
resents a fair balance between ‘accuracy of the reconstruction’ and ‘numerical effort’. In order
to justify this assertion, we revisit in figure 8 the crack scenario b⋆2 with noise level δ = 20%.
The reconstruction results corresponding to the choices N= 4,8,16 are shown in this figure
(the other parameters remain unchanged).
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Figure 6. Crack scenario b⋆3 with δ = 1%. Evolution of bk = Pε(φk,ψk) for distinct
values of k.

Figure 7. Crack scenario b⋆3 with δ = 1%. Evolution of the level-set functions φk and
ψk for distinct value of k.

5.3.1.2. The choice of the current pattern. In our experiments the adjacent current pattern
(1,−1,0,0,0,0,0,0) was used. We performed tests using other patterns, e.g. opposite pattern
(1,0,0,0,−1,0,0,0) and jump-one pattern (1,0,−1,0,0,0,0,0). In all crack scenarios b⋆i we
observed that the choice of current pattern do not strongly influence the quality of the recon-
struction (crack scenario b⋆1 with δ = 20% is revisited in figure 9; reconstruction results using
adjacent/opposite/jump-one current patterns are compared).
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Figure 8. Crack scenario b⋆2 revisited: δ = 20% and adjacent current pattern. Recon-
struction results for distinct values of N.

Figure 9. Crack scenario b⋆1 revisited: δ = 20% and N= 16. Reconstruction results for
distinct current patterns.

5.3.1.3. The choice of the regularization parameters. Concerning the choice of parameters
for the Tikhonov functional in (24), we follow [11, 17] in the numerical setup.

• µ1,µ2,µ3 relate the BV-seminorm penalization and are small (or zero [17]);
• µ4,µ5 influence the stepsize for the updates (δφ,δψ) respectively, and usually µ4 = µ5 = 1
[11]. In crack scenario crack b⋆2 , we chose a smaller value for µ5 in order to stabilize the
evolution of the level-set function ψ);

• we set ε= β/4 (the constant β > 0 is known); consequently, the thickness of the iterates
Pε(φn,ψn) is compatible with the thickness of the exact solutions b⋆i .

6. Conclusions

In this article we introduce and analyze a hierarchical level-set approach for solving an inverse
problem of crack identification in 2D-domains. The crack is modeled by two level-set func-
tions: the first one represents the shape of the crack, while the second one determines the
endpoints (by intersecting the first one). Based on this approach the Tikhonov functional Gα
using TV-H1 penalization is introduced.
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The concept of generalized minimizers in [10] is extended to the Tikhonov functional Gα
introduced here. Using this concept, coercivity and lower semi-continuity of the TV-H1 pen-
alization term is proven.

The fist main contribution of this manuscript is the regularity result in proposition 4, where
the L1-continuity of the parameter-to-output operator F (see (2)) is proven. This is necessary
to prove the existence of minimizers of Gα. Moreover, convergence and stability results are
obtained. These results characterize our Tikhonov approach as a regularization method in the
sense of [13, chapter 4].

For the purpose of numerical implementations, we introduce the smoothed functionals Gε,α,
and prove that the corresponding minimizers converge to a (generalized) minimizer of Gα as
ε→ 0.

The second main contribution of this manuscript consists in using the optimality conditions
for Gε,α to derive a multiple level-set iterative method. In this context, our multiple level-set
method can be interpreted as an iterated-Tikhonov type method for the smoothed functional
Gε,α with small ε> 0.

Numerical experiments for the two-dimensional crack identification problem on a circular
domain are used to verify the theoretical results using the iterative regularization algorithm
presented in section 4.2 and detailed in algorithm 1. The numerical setting was built with
synthetic Neumann/Dirichlet adjacent pattern data and artificially added noise. The level set
iterations were performed with reinitialization steps in a constant fine mesh and the crack
conductivity steps in an adaptive coarser mesh.

The numerical results show accurate reconstruction of simply/multiple connected cracks
under the presence of noise. Moreover, these results are in agreement with the original purpose
of the multiple level-set method proposed in these notes: while one of the level-set functions
recover the shape of the crack, the other evolves to establish its endpoints.
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