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Abstract: In this article we propose and analyze a Levenberg–Marquardt–Kaczmarz-type (LMK) method for
obtaining stable approximate solutions to systems of ill-posed equations modeled by non-linear operators
acting between Hilbert spaces. We extend to the LMK iteration the strategy proposed in [A. Leitão, F. Margotti
and B. F. Svaiter, Range-relaxed criteria for choosing the Lagrange multipliers in the Levenberg–Marquardt
method, IMA J. Numer. Anal. 41 (2021), no. 4, 2962–2989] for choosing the Lagrange multipliers in the
Levenberg–Marquardt (LM) method. Our main goal is to devise a simple (and easy to implement) strategy
for computing the multiplier in each iterative step, such that the resulting LMK iteration is both stable and
numerically efficient. Convergence analysis for the proposed LMK typemethod is provided, including conver-
gence for exact data, stability and semi-convergence. Numerical experiments using real data are presented
for a 2D parameter identification problem, namely the Electrical Impedance Tomography (EIT) problem. The
mathematical model known as complete electrode model (EIT-CEM) is considered. The obtained numerical
results validate the efficiency of the proposed LMK-type method.
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1 Introduction

In this article we propose a Levenberg–Marquardt–Kaczmarz-type (LMK) method for regularizing systems of
non-linear ill-posed operator equations. This is a Kaczmarz-type method [14], where each step is defined as
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in the Levenberg–Marquardt method [11, 19, 21]. Additionally, the Lagrange multipliers are chosen as to
guarantee the (linearized) residual of the next iterate to be in a range [18].

The inverse problemwe are interested in consists of determining an unknown quantity x ∈ X from the set
of data (y0, . . . , yN−1) ∈ YN , where X and Y are Hilbert spaces, and N ≥ 1. In practical situations, one does
not know the data exactly. Instead, only approximate measured data yδi ∈ Y satisfying

‖yδi − yi‖ ≤ δi , i = 0, . . . , N − 1, (1.1)

are available, where δi > 0 are the (known) noise levels. The available data yδi are obtained by indirect mea-
surements of the parameter x, this process being described by the system of ill-posed operator equations

Fi(x) = yi , i = 0, . . . , N − 1, (1.2)

where Fi : X → Y are given operators (see Section 2 for details).

Levenberg–Marquardt-type methods

Standard Levenberg–Marquardt (LM)-typemethods for solving the ill-posed problem (1.1)–(1.2) are defined,
after rewriting (1.2) as a single equation

F(x) = y,

where F = (F0, . . . , FN−1) : X → YN and y = (y0, . . . , yN−1) ∈ YN , by the iteration formula

xδk+1 = argmin
x∈X
{‖yδ − F(xδk) − F

󸀠(xδk)(x − x
δ
k)‖

2 + αk‖x − xδk‖
2} (1.3)

(see [2, 11]) or, equivalently, by

xδk+1 = x
δ
k + h

δ
k , with hδk := (F

󸀠(xδk)
∗F󸀠(xδk) + αk I)

−1F󸀠(xδk)
∗(yδ − F(xδk)). (1.4)

whereF󸀠(xδk) : X → YN is the Fréchet derivative ofF(xδk) andF󸀠(x
δ
k)
∗ : YN → X is the adjoint operator toF󸀠(xδk).

The parameter αk > 0 can be viewed as the Lagrange multiplier of the problem of projecting xδk onto a lev-
elset of ‖yδ − F(xδk) − F󸀠(x

δ
k)(x − x

δ
k)‖

2. If the sequence {αk = α} is constant, iteration (1.4) is called stationary
LM [2], otherwise it is denominated non-stationary LM [6, 11, 18].

In the non-stationary LM methods, each αk is chosen either a priori [6, 11] (e.g., the geometrical choice
αk = rk, r < 1) or a posteriori [11, 18]. In this article we focus on the a posteriori strategy investigated in [18],
where the authors propose a choice for the Lagrange multipliers, which requires the linearized residual at
the next iterate to assume a prescribed value dependent on the current residual and also on the noise level.
More precisely, αk is chosen so that xδk+1 satisfies

Φ1(‖F(xδk) − y
δ‖, δ) ≤ ‖yδ − F(xδk) − F

󸀠(xδk)(x
δ
k+1 − x

δ
k)‖ ≤ Φ2(‖F(xδk) − y

δ‖, δ),

with appropriately chosen functions Φi, i = 1, 2.
The LM-type methods may become inefficient if N is large or the evaluation of the step in (1.4) is expen-

sive. In such cases, Kaczmarz-type methods which cyclically consider each equation in (1.2) separately, are
reported to be faster [22] and are often the method of choice in practice. On the other hand, only few theoret-
ical results about regularizing properties of LM-Kaczmarz methods are available, so far (see, e.g., [2, 3]).

Levenberg–Marquardt–Kaczmarz-type methods

The method proposed and analyzed in this manuscript for solving the ill-posed problem (1.1)–(1.2) is
a Kaczmarz-type method, where each step is defined as in the LM method. Moreover, the choice of Lagrange
multipliers is inspired in the one proposed in [18]. This iterative method can be summarized as follows:

xδk+1 = x
δ
k + h

δ
k , (1.5)
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where

hδk =
{
{
{

(F󸀠[k](x
δ
k)
∗F󸀠[k](x

δ
k) + αk I)

−1F󸀠[k](x
δ
k)
∗(yδ[k] − F[k](x

δ
k)) if ‖F[k](xδk) − y

δ
[k]‖ > τδ[k],

0 otherwise,
(1.6)

and

αk =
{
{
{

chosen as in Algorithm 1 if ‖F[k](xδk) − y
δ
[k]‖ > τδ[k],

not defined otherwise.
(1.7)

Here [k] = (kmod N) ∈ {0, 1, . . . , N − 1}, xδ0 = x0 ∈ X is an initial guess and τ > 1 is a fixed constant (see next
section).

The hδk ∈ X in (1.6) is inspired in the iterative step proposed in [18] for the [k]th equation F[k](x) = y[k]
of system (1.2), with data yδ[k] given as in (1.1). Notice that, if ‖F[k](xδk) − y

δ
[k]‖ ≤ τδ[k] for some k, then the

computation of (αk , hδk) is avoided; we set h
δ
k = 0 and x

δ
k+1 = x

δ
k .

Following [18] we refer to this method as the range-relaxed Levenberg–Marquardt–Kaczmarz (rrLMK)
method. Essentially, it consists in incorporating the Kaczmarz strategy to the Levenberg–Marquardt-type
method in [18]. This procedure is analog to the one introduced in [8, 10], [5], [9], [3], and [7] regarding the
Landweber Kaczmarz (LWK), the Steepest Descent Kaczmarz (SDK), the Expectation Maximization Kaczmarz
(EMK), the iteratively regularized Gauss–Newton–Kaczmarz (irGNK), and the iterated Tikhonov Kaczmarz
(iTK) iterations, respectively. It is worth mentioning that iteration (1.5), (1.6), (1.7) was considered in [2] for
the constant choice αk = α.

In Kaczmarz-type algorithms, a group of N subsequent steps (starting at some multiple of N) is called
a cycle. The iteration (1.5)–(1.7) should be terminated when, for the first time, all xδk are equal within a cycle.
That is, we stop the iteration at step k∗ = k∗((δi)N−1i=0 , (yδi )

N−1
i=0 ) such that

k∗ := min{lN : l ∈ ℕ and xδlN = x
δ
lN+1 = ⋅ ⋅ ⋅ = x

δ
lN+N}. (1.8)

In other words, k∗ ∈ ℕ is the smallest multiple of N such that xδk∗ = x
δ
k∗+1 = ⋅ ⋅ ⋅ = x

δ
k∗+N .

Outline of the manuscript

The article is organized as follows: In Section 2 we introduce the rrLMK method, proposed and analyzed in
this manuscript. A detailed formulation of this method is given (Section 2.2). Moreover, we prove that the
method is well defined (Section 2.3). In Section 3 a convergence analysis for the rrLMKmethod is presented.
Themain results discussed in this section are: convergence in the exact data case (Theorem3.9), stability and
semi-convergence results (Theorems 3.11 and 3.12, respectively). Section 4 is devoted to numerical experi-
ments. Here we consider the Complete ElectrodeModel for Electrical Impedance Tomography (EIT-CEM) [24].
For the reconstructions we use both synthetic data (Section 4.2) and real data (Section 4.3). The perfor-
mance of the rrLMK method is compared with other Kaczmarz-type methods, namely the geometric LMK
method (gLMK) with αk chosen in geometric progression, the stationary LMK method (sLMK) with constant
αk. Section 5 is dedicated to final remarks and conclusions.

2 A range-relaxed Levenberg–Marquardt–Kaczmarz method

In the sequel we introduce the range-relaxed Levenberg–Marquardt–Kaczmarz (rrLMK) method for solving
the ill-posed linear system (1.1)–(1.2). Section 2.1 is devoted to main assumptions needed in the analysis.
The new method is presented in Section 2.2 and a corresponding algorithm is discussed. In Section 2.3 we
prove that, under the main assumptions, the rrLMK method is well defined.

The implementable method proposed here happens to be a LMK-type method where, in each iteration,
the set of feasible choices for the Lagrange multipliers is an interval, instead of a single real number. For this
reason, this method is called range-relaxed Levenberg–Marquardt–Kaczmarz method.
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2.1 Main assumptions

Throughout this article we assume that the intersection of the domains of definition D(Fi) have non-empty
interior, and that the initial guess x0 ∈ X satisfies Bρ(x0) ⊂ ⋂N−1i=0 D(Fi) for some ρ > 0. Additionally:
(A1) Each operator Fi is Fréchet differentiable with continuous derivative F󸀠i . Moreover, there exists a con-

stant C > 0 such that

‖F󸀠i (x)‖ ≤ C for i = 0, . . . , N − 1 and for all x ∈ Bρ(x0). (2.1)

(A2) The weak Tangential Cone Condition (wTCC) holds at Bρ(x0), with 0 < η < 1, i.e.,

‖Fi(x̄) − Fi(x) − F󸀠i (x)(x̄ − x)‖Y ≤ η‖Fi(x̄) − Fi(x)‖Y for i = 0, . . . , N − 1 and for all x, x̄ ∈ Bρ(x0). (2.2)

(A3) There exists x⋆ ∈ Bρ/2(x0) such that Fi(x⋆) = yi, i = 0, . . . , N − 1, where yi ∈ Rg(Fi) are the exact data
satisfying (1.1), i.e., x⋆ is a (non-necessarily unique) solution of (1.2).

2.2 Description of the method

As mentioned in the introduction, the iterative step of the rrLMK method is inspired in the step proposed
in [18]. In what follows we address the computation of the iterate xδk+1, given x

δ
k . From this point on we adopt

the simplified notation i := [k].
If the iterate xδk is such that ‖Fi(xδk) − y

δ
i ‖ ≤ τδi, then we set xδk+1 := x

δ
k . Otherwise, we define for each

μ > 0 the set
Ωi
μ := {x ∈ X : ‖yi − Fi(xδk) − F

󸀠
i (x

δ
k)(x − x

δ
k)‖ ≤ μ}

(the careful reader observes that Ωi
μ, μ > 0, are levelsets of the residual (linearized at x = xδk) of the ith equa-

tion of the nonlinear system (1.2)). The next iterate xδk+1 is obtained by solving for (x, μ) ∈ X × ℝ the range-
relaxed projection problem

{{{{
{{{{
{

min
x
‖x − xδk‖

2

s.t. ‖yi − Fi(xδk) − F
󸀠
i (x

δ
k)(x − x

δ
k)‖

2 ≤ μ2

and Φ̄(‖Fi(xδk) − y
δ
i ‖, δi) ≤ μ ≤

̄Φ̄(‖Fi(xδk) − y
δ
i ‖, δi),

(2.3)

where the functions Φ̄, ̄Φ̄ : ℝ2 → ℝ are defined by

Φ̄(u, v) = (p̄ + η)u + (η + 1 − p̄)v and ̄Φ̄(u, v) = ( ̄p̄ + η)u + (η + 1 − ̄p̄)v for all u, v ∈ ℝ,

with 0 < p̄ < ̄p̄ < 1 chosen appropriately (see Algorithm 1). Notice that the interval

[Φ̄(‖Fi(xδk) − y
δ
i ‖, δi),

̄Φ̄(‖Fi(xδk) − y
δ
i ‖, δi)] ⊂ ℝ+

is non-degenerate whenever ‖Fi(xδk) − y
δ
i ‖ > δi.

Once a solution (x󸀠, μ󸀠) of (2.3) has been computed, define xδk+1 := x󸀠 (consequently, the linearized resid-
ual satisfies ‖yδi − Fi(xδk) − F

󸀠
i (x

δ
k)(x

δ
k+1 − x

δ
k)‖ = μ

󸀠). It is worth mentioning that xδk+1 is generated from xδk by
projecting it onto any one of the family of closed convex sets (Ωi

μ)Φ̄≤μ≤ ̄Φ̄ (see, e.g., [18] or [6, Section 5.1]).
In Algorithm 1 we present the rrLMK method in algorithmic form. The above discussed range-relaxed

projection problem can be recognized in Step 3.2.

Remark 2.1. Some remarks on Algorithm 1:
(a) In Step 3.2 there is a safeguard to guarantee αk ≥ αmin. This fact is used in the proof of convergence of

the rrLMK (Theorem 3.9).
(b) In the (realistic) noisy data case, a lower bound on αk is not required for the implementation of Algo-

rithm 1. Indeed, since δi > 0 is fixed and the stopping criteria is always reached after a finite number
of steps (Proposition 3.6), the constant αmin > 0 can be chosen sufficiently small such that αk ≥ αmin
for k = 0, . . . , k∗.
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Algorithm 1. The range-relaxed Levenberg–Marquardt–Kaczmarz (rrLMK) method
(1) Choose an initial guess x0 ∈ X and αmin > 0; set k := 0.
(2) Choose the positive constants τ, p̄ and ̄p̄ s.t.

τ > (1 + η)(1 − η)−1 and 0 < p̄ < ̄p̄ < [τ(1 − η) − (1 + η)](τ − 1)−1. (2.4)

(3) repeat
(3.1) i = [k];
(3.2) if [‖Fi(xδk) − y

δ
i ‖ > τδi] then

compute (αk , hδk) ∈ ℝ+ × X such that

hδk = (F
󸀠
i (x

δ
k)
∗F󸀠i (x

δ
k) + αk I)

−1F󸀠i (x
δ
k)
∗(yδi − Fi(x

δ
k)), (2.5)

‖yδi − Fi(x
δ
k) − F

󸀠
i (x

δ
k)h

δ
k‖ ∈ [ck , dk], (2.6)

where

ck = (p̄ + η)‖Fi(xδk) − y
δ
i ‖ + (η + 1 − p̄)δi , (2.7)

dk = ( ̄p̄ + η)‖Fi(xδk) − y
δ
i ‖ + (η + 1 − ̄p̄)δi . (2.8)

if [αk < αmin] then
αk = αmin; hδk = (F

󸀠
i (x

δ
k)
∗F󸀠i (x

δ
k) + αminI)−1F󸀠i (x

δ
k)
∗(yδi − Fi(x

δ
k));

endif
else

hδk = 0;
endif

(3.3) xδk+1 = x
δ
k + h

δ
k; k = k + 1;

until [([k] = 0) and (hδk−1 = h
δ
k−2 = ⋅ ⋅ ⋅ = h

δ
k−N = 0)];

(4) k∗ = k − N.

(c) The inequality ‖yδi − Fi(xδk) − F
󸀠
i (x

δ
k)h

δ
k‖ ≥ ck holds in both cases αk > αmin and αk = αmin (in the last

case this inequality follows from Algorithm 1 and Lemma 2.2 (2) and (4)). However, the inequality
‖yδi − Fi(x

δ
k) − F

󸀠
i (x

δ
k)h

δ
k‖ ≤ dk can only be guaranteed in the case αk > αmin.

(d) The Lagrange multipliers αk are defined if and only if ‖Fi(xδk) − y
δ
i ‖ > τδi holds. Otherwise, we apply the

loping strategy proposed in [10] and set xk+1 := xk, avoiding the computation of the pair (αk , hδk).
(e) The inequalities (1 + η)(1 − η)−1 > 1, [τ(1 − η) − (1 + η)](τ − 1)−1 < 1, p̄ + η < 1 (see (2.4)) are used sev-

eral times in the manuscript.

2.3 Preliminary results

The remaining of this section is devoted to verify that, under assumptions (A1), (A2) and (A3), Step 3.2 in
Algorithm 1 is well defined (see Theorem 2.4). We start the discussion with a lemma, which contains a col-
lection of results related to the solvability of the range-relaxed projection problem (2.3). For a proof, we refer
the reader to [18, Lemma 2.3].

Lemma 2.2. Let A : X → Y be a continuous linear mapping, z̄ ∈ X and b ∈ Y a vector with non-zero projection
onto the range of A. Define, for α > 0,

zα := argmin
z∈X
‖A(z − z̄) − b‖2 + α‖z − z̄‖2. (2.9)

The following assertions hold:
(1) zα = z̄ + (A∗A + αI)−1A∗b,
(2) α 󳨃→ ‖A(zα − z̄) − b‖ is a continuous, strictly increasing function on α > 0,
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(3) limα→0‖A(zα − z̄) − b‖ = infz∈X‖A(z − z̄) − b‖,
(4) limα→∞‖A(zα − z̄) − b‖ = ‖b‖,
(5) α ≤ ‖A∗b‖2[‖b‖(‖b‖ − ‖A(zα − z̄) − b‖)]−1.

The next result will allow us to compare the non-linear residual ‖yδi − Fi(x)‖ with the linearized residual
‖yδi − Fi(x) − F

󸀠
i (x)(x

∗ − x)‖ for x ∈ Bρ(x0) and x∗ ∈ Bρ(x0) a solution of (1.2).

Lemma 2.3. Let assumptions (A1)–(A2) hold, and let x∗ ∈ Bρ(x0) be a solution of problem (1.2). Then, for
i = 0, . . . , N − 1, we have

‖yδi − Fi(x) − F
󸀠
i (x)(x

∗ − x)‖ ≤ η‖yδi − Fi(x)‖ + (1 + η)δi for all x ∈ Bρ(x0).

Moreover, in the exact data case, ‖yi − Fi(x) − F󸀠i (x)(x
∗ − x)‖ ≤ η‖yi − Fi(x)‖ for all x ∈ Bρ(x0).

Proof. The proof follows the lines of the proof of [18, Lemma 2.4].

Notice that, if assumptions (A1)–(A3) hold, then Lemma 2.3 is valid for x∗ = x⋆ as in (A3). The next result
guarantees the well definedness of Step 3.2 in Algorithm 1.

Theorem 2.4. Let assumptions (A1)–(A3) hold, and let (xδk)be a sequence generated byAlgorithm1. If, for some
k ≥ 0, xδk ∈ Bρ(x0) and ‖F[k](xδk) − y

δ
[k]‖ > τδ[k], then there exists a pair (αk ∈ ℝ

+, hδk ∈ X) solving (2.5)–(2.6).

Proof. We first consider the noisy data case. It follows from the assumption ‖Fi(xδk) − y
δ
i ‖ > τδi that ck < dk.

Thus, we can define the set J := {α > 0 : ‖yδi − Fi(xδk) − F
󸀠
i (x

δ
k)(ξα − x

δ
k)‖ ∈ [ck , dk]}, where ξα is defined by the

mapping
(0, +∞) ∋ α 󳨃→ ξα := argmin

ξ∈X
‖yδi − Fi(x

δ
k) − F

󸀠
i (x

δ
k)(ξ − x

δ
k)‖

2 + α‖ξ − xδk‖
2 ∈ X.

To complete the proof in the noisy data case, it is enough to verify that J is a non-empty, non-degenerate
interval.

Notice that ck = p̄(‖Fi(xδk) − y
δ
i ‖ − δi) + η‖Fi(x

δ
k) − y

δ
i ‖ + (1 + η)δi > η‖Fi(xδk) − y

δ
i ‖ + (1 + η)δi. Therefore,

it follows from Lemma 2.3 (with x = xδk and x∗ = x⋆ as in (A3)) that

ck > ‖yδi − Fi(x
δ
k) − F

󸀠
i (x

δ
k)(x
⋆ − xδk)‖ ≥ infz∈X

‖yδi − Fi(x
δ
k) − F

󸀠
i (x

δ
k)(z − x)‖.

On the other hand, it follows from (2.4) that [ ̄p̄ + η + η+1− ̄p̄
τ ] < 1. Consequently,

dk = ( ̄p̄ + η)‖Fi(xδk) − y
δ
i ‖ + (η + 1 − ̄p̄)δi < [ ̄p̄ + η +

η + 1 − ̄p̄
τ ]‖Fi(xδk) − y

δ
i ‖ < ‖Fi(x

δ
k) − y

δ
i ‖.

Summarizing our findings:

inf
z
‖yδi − Fi(x

δ
k) − F

󸀠
i (x

δ
k)(z − x)‖ < ck < dk < ‖Fi(x

δ
k) − y

δ
i ‖.

The existence of (αk , hδk) solving (2.5), (2.6) follows from these inequalities and Lemma 2.2 (2)–(4).
Next we consider the exact data case. The proof is analogous to the noisy data case. In order to esti-

mate dk, one uses the inequality ̄p̄ + η < 1 (see (2.4)) to conclude that dk < ‖Fi(xk) − yi‖.

3 Convergence analysis

We start this section deriving estimates for the “gain” ‖x∗ − xδk‖2 − ‖x∗ − x
δ
k+1‖

2, where (xδk) is a sequence
generated by the rrLMK method.

Proposition 3.1. Let assumptions (A1)–(A2) hold, and let (xδk) be a sequence generated by Algorithm 1 in the
noisy data case. Moreover, let x∗ ∈ Bρ(x0) be a solution of (1.2). If xδk ∈ Bρ(x0) for some k ≥ 0, two scenarios
may occur:
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(i) If ‖Fi(xδk) − y
δ
i ‖ > τδi, then

‖x∗ − xδk‖
2 − ‖x∗ − xδk+1‖

2

≥ ‖xδk+1 − x
δ
k‖

2 + 2p̄(1 − 1τ)α
−1
k ‖y

δ
i − Fi(x

δ
k) − F

󸀠
i (x

δ
k)(x

δ
k+1 − x

δ
k)‖‖y

δ
i − Fi(x

δ
k)‖.

(3.1)

(ii) If ‖Fi(xδk) − y
δ
i ‖ ≤ τδi, then ‖x

∗ − xδk‖
2 − ‖x∗ − xδk+1‖

2 = 0.
Additionally, in the exact data case, if ‖Fi(xk) − yi‖ = 0 we have ‖x∗ − xk+1‖ = ‖x∗ − xk‖, otherwise

‖x∗ − xk‖2 − ‖x∗ − xk+1‖2 ≥ ‖xk+1 − xk‖2 + 2p̄α−1k ‖yi − Fi(xk) − F
󸀠
i (xk)(xk+1 − xk)‖‖yi − Fi(xk)‖. (3.2)

Proof. Item (ii) follows immediately from Algorithm 1, since ‖Fi(xδk) − y
δ
i ‖ ≤ τδi implies xδk+1 = x

δ
k . In order to

prove Item i), we derive from the polarization formula the identity

‖x∗ − xδk‖
2 − ‖x∗ − xδk+1‖

2 = ‖xδk+1 − x
δ
k‖

2 − 2⟨xδk+1 − x
δ
k , x

δ
k+1 − x

∗⟩. (3.3)

We adopt the notation Ak = F󸀠i (x
δ
k), b

δ
k = y

δ
i − Fi(x

δ
k). From hδk = α

−1
k A∗k (b

δ
k − Akhδk) follows

−⟨xδk+1 − x
δ
k , x

δ
k+1 − x

∗⟩ = α−1k ⟨A
∗
k (Akhδk − b

δ
k), x

δ
k+1 − x

∗⟩

= α−1k ⟨Akhδk − b
δ
k , Ak(hδk − (x

∗ − xδk)) + b
δ
k − b

δ
k⟩

= α−1k [⟨Akhδk − b
δ
k , Akhδk − b

δ
k⟩ − ⟨Akhδk − b

δ
k , Ak(x∗ − xδk) − b

δ
k⟩]

≥ α−1k ‖Akhδk − b
δ
k‖[‖Akhδk − b

δ
k‖ − ‖Ak(x∗ − xδk) − b

δ
k‖]. (3.4)

In order to estimate the last term in (3.4), we derive from (2.7) the identity (1 + η)δi + η‖bδk‖ = ck + p̄δi − p̄‖b
δ
k‖.

Thus, we conclude from Lemma 2.3, Algorithm 1 and ‖bδk‖ > τδi that

‖Ak(x∗ − xδk) − b
δ
k‖ ≤ (1 + η)δi + η‖b

δ
k‖ = ck + p̄δi − p̄‖b

δ
k‖

< ‖Akhδk − b
δ
k‖ + p̄(

1
τ − 1)‖b

δ
k‖ (3.5)

(in the last inequality we used the fact ck ≤ ‖Akhδk − b
δ
k‖, see Remark 2.1 (c)). Consequently, (3.1) follows by

substituting (3.5) and (3.4) in (3.3).
What concerns the exact data case, the first assertion is trivial. On the other hand, if ‖Fi(xk) − yi‖ > 0, we

argue as in the noisy data case in order to obtain, instead of (3.5), the inequalities

‖Ak(x∗ − xk) − bk‖ ≤ η‖bk‖ = ck − p̄‖bk‖ ≤ ‖Akhk − bk‖ − p̄‖bk‖ (3.6)

(here bk := yi − Fi(xk)). Then the derivation of (3.2) is analogous to the proof of inequality (3.1) in the noisy
data case.

The next result is a direct consequence of Proposition 3.1. It guarantees that any sequence generated by
Algorithm 1 does not leave the ball Bρ(x0).

Corollary 3.2. Let assumptions (A1)–(A3) hold, and let (xδk)be a sequence generated byAlgorithm1 in the noisy
data case. Then xδk ∈ Bρ(x0) for k = 0, . . . , k∗ − 1. Moreover,

‖x⋆ − xδk+1‖ ≤ ‖x
⋆ − xδk‖, k = 0, . . . , k∗ − 1, (3.7)

where x⋆ is given as in (A3). Additionally, in the exact data case we have (xk) ∈ Bρ(x0), and

‖x⋆ − xk+1‖ ≤ ‖x⋆ − xk‖ for k = 0, 1, . . . .

The careful reader observes that, for any x∗ ∈ Bρ(x0) solution of (1.2) it holds ‖x∗ − xδk+1‖ ≤ ‖x∗ − x
δ
k‖,

k = 0, . . . , k∗ − 1. Moreover, in the exact data case ‖x∗ − xk+1‖ ≤ ‖x∗ − xk‖, for k = 0, 1, . . .

Lemma 3.3. Let assumptions (A1), (A2), (A3) hold, and let (xδk) be a sequence generated by Algorithm 1. If
‖Fi(xδk) − y

δ
i ‖ > τδi, then

αk ≤ αmax := max{ C2

(1 − ̄p̄)(1 − τ−1) − η(1 + τ−1)
, αmin}. (3.8)

Additionally, in the exact data case, if ‖Fi(xk) − yi‖ > 0, then αk ≤ αmax := max{ C2
1−( ̄p̄+η) , αmin}.
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Proof. Assume αk > αmin. From Lemma 2.2 (5) with α = αk, z = xδk, zα = x
δ
k+1, b = y

δ
i − Fi(x

δ
k) and A = F

󸀠
i (x

δ
k)

it follows that

αk ≤
‖F󸀠i (x

δ
k)
∗(yδi − Fi(x

δ
k))‖

2

‖yδi − Fi(x
δ
k)‖(‖y

δ
i − Fi(x

δ
k)‖ − ‖y

δ
i − Fi(x

δ
k) − F

󸀠
i (x

δ
k)h

δ
k‖)

≤
C2‖yδi − Fi(x

δ
k)‖

‖yδi − Fi(x
δ
k)‖ − ‖y

δ
i − Fi(x

δ
k) − F

󸀠
i (x

δ
k)h

δ
k‖
. (3.9)

Moreover, it follows from Algorithm 1 (see (2.6) and (2.8)) that for all k = 0, 1, . . . , k∗ − 1,

‖yδi − Fi(x
δ
k)‖ − ‖y

δ
i − Fi(x

δ
k) − F

󸀠
i (x

δ
k)h

δ
k‖ ≥ ‖y

δ
i − Fi(x

δ
k)‖ − dk

≥ (1 − ( ̄p̄ + η) − η + 1 −
̄p̄

τ )‖yδi − Fi(x
δ
k)‖

= ((1 − ̄p̄)(1 − τ−1) − η(1 + τ−1))‖yδi − Fi(xδk)‖ (3.10)

(notice that (1 − ̄p̄)(1 − τ−1) − η(1 + τ−1) > 0, see (2.4)). Thus, (3.8) follows from (3.9) and (3.10).
Next we address the exact data case. In this case dk = ( ̄p̄ + η)‖yi − Fi(xk)‖. Once again we assume

αk > αmin. Consequently,

‖yi − Fi(xk)‖ − ‖yi − Fi(xk) − F󸀠i (xk)hk‖ ≥ (1 − ( ̄p̄ + η))‖yi − Fi(xk)‖

(notice that 1 − ( ̄p̄ + η) > 0, see (2.4)). From this inequality and (3.9) follows αk ≤ C2[1 − ( ̄p̄ + η)]−1. There-
fore, it holds αk ≤ max{ C2

1−( ̄p̄+η) , αmin} completing the proof.

Lemma 3.4. Let assumptions (A1)–(A3) hold, and let (xδk) be a sequence generated by Algorithm 1. For
k = 0, 1, . . . , k∗ − 1 we have

(p̄ + η)‖yδi − Fi(x
δ
k)‖ ≤ ‖y

δ
i − Fi(x

δ
k) − F

󸀠
i (x

δ
k)(x

δ
k+1 − x

δ
k)‖ ≤ ‖y

δ
i − Fi(x

δ
k)‖. (3.11)

In the exact data case (3.11) holds for k = 0, 1, . . . .

Proof. First we address the exact data case. We adopt the notation

Ak = F󸀠i (xk), bk = yi − Fi(xk) and hk = xk+1 − xk .

FromCorollary 3.2 it follows that xk ∈ Bρ(x0) for k ≥ 0. If ‖Fi(xk) − yi‖ = 0, then xk+1 = xk and (3.11) is trivial.
On the other hand, if ‖Fi(xk) − yi‖ > 0, the second inequality in (3.11) follows from Lemma 2.2 (2) and (4)
(with α = αk, z = xk, zα = xk+1, b = bk andA = Ak).Moreover, it follows fromRemark2.1 (c) and thedefinition
of ck in (2.7)

(η + p̄)‖bk‖ = ck ≤ ‖Akhk − bk‖, (3.12)

which is the first inequality in (3.11).
In the noisy data case, the proof is analogous. The main difference is that, if δi > 0, (3.12) is replaced by

(η + p̄)‖bδk‖ ≤ ck ≤ ‖Akhδk − b
δ
k‖

(where bδk = y
δ
i − Fi(x

δ
k) and h

δ
k = x

δ
k+1 − x

δ
k).

Proposition 3.5. Let assumptions (A1), (A2) and (A3) hold. Any sequence (xk) generated by Algorithm 1 in the
exact data case satisfies

∞
∑
k=0

α−1k ‖yi − Fi(xk) − F
󸀠
i (xk)hk‖‖yi − Fi(xk)‖ < ∞,

∞
∑
k=0
‖xk+1 − xk‖2 < ∞,

∞
∑
k=0
‖yi − Fi(xk)‖2 < ∞,

∞
∑
k=0
‖yi − Fi(xk) − F󸀠i (xk)hk‖

2 < ∞.

Proof. The summability of the first two series follow from Proposition 3.1. The summability of the third and
fourth series follows from the summability of the first one, together with Lemma 3.3 and Lemma 3.4.
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Proposition 3.6. Let assumptions (A1)–(A3) hold, and let (xδk) be a sequence generated by Algorithm 1. The
stopping index k∗ defined in (1.8) is finite and satisfies

k∗ ≤ N(1 +
αmax‖x⋆ − x0‖2

2p̄(τ − 1)(p̄ + η)τδ2min
) (3.13)

with αmax > 0 defined as in Lemma 3.3.

Proof. Assume by contradiction that k∗ is not finite. Thus, in each cycle l ∈ ℕ of the rrLMK method (con-
sisting of steps {lN, lN + 1, . . . , lN + N − 1}) there exists at least one index j(l) ∈ {0, . . . , N − 1} such that the
inequality ‖Fj(l)(xδlN+j(l)) − y

δ
j(l)‖ > τδj(l) holds. Consequently, it follows from Proposition 3.1 that (3.1) holds

for k = lN + j(l), with l ∈ ℕ. Moreover, we know from Proposition 3.1 and Algorithm 1 that either (3.1) holds
or xδk+1 = x

δ
k . Therefore, for all l ∈ ℕ we have

‖x⋆ − x0‖2 ≥
lN
∑
k=0
‖x⋆ − xδk‖

2 − ‖x⋆ − xδk+1‖
2 ≥

l
∑
s=0
‖x⋆ − xδsN+j(s)‖

2 − ‖x⋆ − xδsN+j(s)+1‖
2

≥ 2p̄(1 − 1τ)
l
∑
s=0

α−1sN+j(s)‖y
δ
j(s) − Fj(s)(x

δ
sN+j(s)) − F

󸀠
j(s)(x

δ
sN+j(s))(x

δ
sN+j(s)+1 − x

δ
sN+j(s))‖

⋅ ‖yδj(s) − Fj(s)(x
δ
sN+j(s))‖

≥ 2p̄(1 − 1τ)α
−1
max

l
∑
s=0
(p̄ + η)‖yδj(s) − Fj(s)(x

δ
sN+j(s))‖

2

≥ 2lp̄(1 − 1τ)α
−1
max(p̄ + η)τ2δ2min (3.14)

(to derive the fourth inequality we used Lemma 3.3 and Lemma 3.4). Since the right-hand side of (3.14)
becomes unbounded as l →∞, a contradiction is established and the finiteness of k∗ follows. To complete
the proof, we derive (3.13) by substituting l = k∗−N

N in (3.14).

In what follows we discuss the evolution of the non-linear residual in the exact data case.

Remark 3.7. Let assumptions (A1)–(A3) hold, and let (xk) be a sequence generated by Algorithm 1 in the
exact data case. If, for some k ≥ 0, ‖Fi(xk) − yi‖ > 0, then it holds

‖yi − Fi(xk+1)‖ ≤ Λ1‖yi − Fi(xk)‖, (3.15)

where Λ1 = √2 + 2C4α−2min(1 − η)−2.

Proof. It follows from (A2) that

‖yi − Fi(xk+1)‖2 ≤ 2‖yi − Fi(xk)‖2 + 2‖Fi(xk+1) − Fi(xk)‖2

≤ 2‖yi − Fi(xk)‖2 +
2
(1 − η)2 ‖F

󸀠
i (xk)(xk+1 − xk)‖

2

≤ 2‖yi − Fi(xk)‖2 +
2C2
(1 − η)2 ‖xk+1 − xk‖

2. (3.16)

Moreover, it follows from Step 3.2 of Algorithm 1 that

‖xk+1 − xk‖2 = ‖(F󸀠i (xk)
∗F󸀠i (xk) + αk I)

−1F󸀠i (xk)
∗(yi − Fi(xk))‖2 ≤ C2α−2min‖yi − Fi(xk)‖

2. (3.17)

Inequality (3.15) follows now from (3.16) and (3.17).

We are now ready to state an prove the first main result of this section, namely convergence of the rrLMK
method for exact data (Theorem3.9). First however, we briefly recall the concept ofminimumnorm solutions.

Definition 3.8. An element x† ∈ X is called a x0-minimal norm solution of problem (1.2)whenever ‖x† − x0‖ =
inf{‖x∗ − x0‖, x∗} is a solution of (1.2)}.
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Existence and uniqueness of x0-minimal norm solutions of (1.2) is guaranteed by [6, 15]. Let assumptions
(A1), (A2) and (A3) hold. Given x∗ ∈ Bρ/2(x0) a solution of (1.2) and z ∈ N(F󸀠i (x

∗)), for some 0 ≤ i ≤ N − 1,
then the element x∗ + tz ∈ Bρ(x0) is also a solution of Fi(x) = yi for all t ∈ (− ρ2 ,

ρ
2 ). Due to (A3), x† ∈ Bρ/2(x0).

Consequently, the inequality
‖x† − x0‖ ≤ ‖(x† + tz) − x0‖

holds for all t ∈ (− ρ2 ,
ρ
2 ) and all z ∈ ⋂

N−1
i=0 N(F󸀠i (x

∗)), from where we conclude that

x† − x0 ∈ [
N−1
⋂
i=0

N(F󸀠i (x
†))]
⊥

. (3.18)

Theorem 3.9 (Convergence for exact data). Let assumptions (A1)–(A3) hold, and let (xk) be a sequence gener-
ated by Algorithm 1 in the exact data case. Either (xk) terminates after finitely many iterations with a solution
of (1.2), or (xk) converges to a solution of (1.2) as k →∞. Additionally, if

N(F󸀠j (x
†)) ⊂ N(F󸀠j (x)) for all x ∈ Bρ(x0), j = 0, 1, . . . , N − 1, (3.19)

holds, then xk → x† as k →∞.

Proof. We use the notation Ak = Fi(xk), bk = yi − Fi(xk) and ek = x⋆ − xk, for k ≥ 0.
If the rrLMK method stops after k∗ < ∞ steps, it follows from Algorithm 1 that xk∗ is a solution of (1.2).
Otherwise, it follows from Lemma 3.2 that (‖ek‖) is monotone non-increasing. Thus, ‖ek‖ → ε, for some

ε ≥ 0, as k →∞. In what follows we verify that (ek) is a Cauchy sequence.
In order to prove that (ek) is indeed a Cauchy sequence, it suffices to prove that

|⟨en − ek , en⟩| → 0

and
|⟨el − en , en⟩| → 0

as k, l →∞, with k ≤ l for some k ≤ n ≤ l (see, e.g., [12, Theorem 2.3]).
Given k ≤ l arbitrary, we write

k = k0N + k1 and l = l0N + l1

with k1, l1 ∈ {0, . . . , N − 1}, and choose n0 ∈ {k0, . . . , l0} such that
N−1
∑
s=0
‖Fs(xn0N+s) − ys‖ ≤

N−1
∑
s=0
‖Fs(xj0N+s) − ys‖ (3.20)

for all j0 ∈ {k0, . . . , l0}. Next we define n := n0N + N − 1 (if n0 = l0, we set n := n0N + l1; so that k ≤ n ≤ l),
and estimate

|⟨en − ek , en⟩| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

n−1
∑
j=k
⟨(xj+1 − xj), (x⋆ − xn)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

n−1
∑
j=k

α−1j ⟨Ajhj − bj , Aj(x⋆ − xn)⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
n−1
∑
j=k

α−1j ‖Ajhj − bj‖‖Aj(x⋆ − xn)‖

=
n−1
∑
j=k

α−1j ‖Ajhj − bj‖[‖F󸀠[j](xj) (xn − xj)‖ + ‖F
󸀠
[j](xj)(xj − x

⋆)‖]

≤ (1 + η)
n0
∑
j0=k0

N−1
∑
j1=0

α−1j ‖Ajhj − bj‖‖Fj1 (xn) − yj1‖

+ 2(1 + η)
n0
∑
j0=k0

N−1
∑
j1=0

α−1j ‖Ajhj − bj‖‖Fj1 (xj) − yj1‖ (3.21)
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(we use the notation j = j0N + j1). The term ‖Fj1 (xn) − yj1‖ in (3.21) can be estimated by

‖Fj1 (xn) − yj1‖ = ‖Fj1 (xn0N+N−1) − yj1‖

≤ ‖Fj1 (xn0N+j1 ) − yj1‖ +
N−2
∑
s=j1
‖Fj1 (xn0N+s+1) − Fj1 (xn0N+s)‖

≤ ‖Fj1 (xn0N+j1 ) − yj1‖ +
1

1 − η
N−2
∑
s=j1
‖F󸀠j1 (xn0N+s)(xn0N+s+1 − xn0N+s)‖

≤ ‖Fj1 (xn0N+j1 ) − yj1‖ +
C

1 − η
N−2
∑
s=j1
‖xn0N+s+1 − xn0N+s‖

≤ ‖Fj1 (xn0N+j1 ) − yj1‖ +
C

1 − η
N−1
∑
s=0

Cα−1min‖Fs(xn0N+s) − ys‖

≤ (1 +
C2α−1min
1 − η )

N−1
∑
s=0
‖Fs(xn0N+s) − ys‖

(the forth inequality follows from (3.17)). From this inequality and (3.20) we get

‖Fj1 (xn) − yj1‖ ≤ (1 +
C2α−1min
1 − η )

N−1
∑
s=0
‖Fs(xj0N+s) − ys‖.

Inserting this last inequality into (3.21) ,we obtain

|⟨en − ek , en⟩| ≤ (1 + η)(1 +
C2α−1min
1 − η )

n0
∑
j0=k0
[
N−1
∑
j1=0

α−1j ‖Aj hj − bj‖][
N−1
∑
j1=0
‖Fj1 (xj) − yj1‖]

+ 2(1 + η)
n0
∑
j0=k0

N−1
∑
j1=0

α−1j ‖Aj hj − bj‖ ‖Fj1 (xj) − yj1‖

≤ (1 + η)(1 +
C2α−1min
1 − η )

N
2

n0
∑
j0=k0
[α−2min

N−1
∑
j1=0
‖Aj hj − bj‖2 +

N−1
∑
j1=0
‖Fj1 (xj) − yj1‖2]

+ 2(1 + η)
n0
∑
j0=k0

N−1
∑
j1=0

α−1j ‖Aj hj − bj‖‖Fj1 (xj) − yj1‖

(in the last inequality we used the fact αk ≥ αmin). Hence, from Proposition 3.5, we have |⟨en − ek , en⟩| → 0
as k, l → 0. Analogously, one proves that |⟨el − en , en⟩| → 0 as k, l → 0. Therefore, (ek) is a Cauchy sequence
and xk converges to some x+ ∈ X. Since the residuals ‖Fi(xk) − yi‖ converge to zero as k →∞ (see Proposi-
tion 3.5), we conclude that x+ is a solution of (1.2).

To prove the last assertion notice that, if (3.19) holds, then for k = 0, 1, . . . ,

xk+1 − xk = α−1k A∗k (bk − Akhk) ∈ Rg(F󸀠[k](xk)
∗) ⊂ N(F󸀠[k](xk))

⊥ ⊂ N(F󸀠[k](x
†))⊥ ⊂ [

N−1
⋂
j=0

N(F󸀠j (x
†))]
⊥

.

Thus, we conclude

xk − x0 ∈ [
N−1
⋂
j=0

N(F󸀠j (x
†))]
⊥

.

From (3.18), it follows xk − x† ∈ [⋂N−1j=0 N(F󸀠j (x
†))]⊥. Consequently,

x+ − x† = lim
k
(xk − x†) ∈ [

N−1
⋂
j=0

N(F󸀠j (x
†))]
⊥

,

from where we obtain x+ = x†.

Next we derive the secondmain result of this section, namely the stability property of the rrLMKmethod. First
however, we introduce two relevant concepts.
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Definition 3.10. We introduce the concepts of successor and noiseless sequence. Let (xδk) be a sequence gen-
erated by Algorithm 1, and let xδk be an element of this sequence.
∙ Successor of xδk: If ‖Fi(x

δ
k) − y

δ
i ‖ > τδi, a successor of xδk is any vector z ∈ X satisfying z := xδk + h, where

either of the following hold:
(i) h belongs to a pair (α > αmin, h ∈ X) satisfying (2.5)–(2.6),
(ii) h belongs to a pair (αmin, h) satisfying (2.5):
moreover, there exist α ≤ αmin and hα = (F󸀠i (xδk)∗F

󸀠
i (x

δ
k) + αI)

−1F󸀠i (x
δ
k)
∗(yδi − Fi(x

δ
k)) satisfying (2.5)–(2.6).

Otherwise, when ‖Fi(xδk) − y
δ
i ‖ ≤ τδi, the only successor of xδk is the vector z := x

δ
k itself.

∙ Noiseless sequence: A sequence (xk) generated by Algorithm 1 in the exact data case is called a noiseless
sequence.

Some relevant remarks regarding the above definitions follow:
(1) xδk+1 is a successor of x

δ
k for k = 0, . . . , k∗ − 1, and xk+1 is a successor of xk for all k ∈ ℕ.

(2) xk+1 = xk if and only if Fi(xk) = yi with i = [k].
(3) In the exact data case xk+1 = xk + hk, where hk = argminhTk,αk (h) with

Tk,αk (h) := ‖yi − Fi(xk) − F󸀠i (xk)h‖2 + αk‖h‖2, (3.22)

and αk > 0 is defined as in Step 3.2 of Algorithm 1.

Theorem 3.11 (Stability). Let assumptions (A1), (A2) and (A3) hold. Let (δj) = (δj0, . . . , δ
j
N−1) ∈ ℝ

N be a zero
sequence and (yδj ) = (yδj0 , . . . , yδ

j

N−1) ∈ Y
N a corresponding sequence of noisy data satisfying (1.1). For each

j ∈ ℕ, let xδjl+1 be a successor of x
δj
l for 0 ≤ l < k∗(δj , yδ

j ). Then there exists a noiseless sequence (xl) such that,
for every fixed k ∈ ℕ, there exists a subsequence (δjm ) ∈ ℝN (depending on k) satisfying

xδjml → xl as jm →∞ for l = 0, . . . , k. (3.23)

Proof. We use an inductive argument. Since xδ0 = x0 for every δ ≥ 0, the assertion is clear for k = 0. Our main
argument consists of recursively choosing subsequences of the original sequence (δj). In order to avoid anota-
tional overload, we denote a subsequence of (δj) again by (δj). Assume by induction that (3.23) holds true
for some k ∈ ℕ, i.e., that there exists a subsequence (δj) and (xl)kl=0 satisfying

xδjl → xl as j →∞ for l = 0, . . . , k, (3.24)

where xl+1 is a successor of xl for l = 0, . . . , k − 1.¹ Our goal is to prove the existence of a successor xk+1 of xk
and of a subsequence (δj) of the current sequence such that xδjk+1 → xk+1 as j →∞, completing the inductive
proof. We divide this proof in three steps as follows:
∙ Step 1. Definition of the element hk ∈ X and definition of xk+1 := xk + hk.
∙ Step 2. Prove that, up to a subsequence, xδjk+1 → xk+1 as j →∞.
∙ Step 3. Prove that xk+1 is a successor of xk.

Proof of Step 1. Define the sequence βδjk by βδjk = (α
δj
k )
−1 if hδjk ̸= 0, or β

δj
k = 0 otherwise. Since k ∈ ℕ is fixed, it

follows fromAlgorithm1 that βδjk ≤ α
−1
min for sufficiently large j ∈ ℕ.¹ Consequently, there exists a subsequence

(δj) and βk ∈ [0, α−1min] such that
βk = lim

j→∞
βδjk . (3.25)

If βk = 0, define hk := 0. Otherwise, define αk := β−1k and hk := argminh∈X Tk,αk (h) (with Tk,αk defined in
(3.22)). Now we define and xk+1 := xk + hk.

Proof of Step 2. It is enough to prove that, up to a subsequence, hδjk → hk as j →∞. From the definition of
hδjk and hk it follows that

βδjk (A
δj
k )
∗(Aδj

k h
δj
k − b

δj
k ) + h

δj
k = 0 = βkA

∗
k (Akhk − bk) + hk

1 Notice that k∗(δj , yδ
j ) > k for large enough j. Indeed, if this is not the case. the noiseless sequence (xl) stops after k iterations

at a solution of (1.2), and the proof is trivial.
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(we use the notation Aδj
k = F

󸀠
i (x

δj
k ), b

δj
k = y

δj
i − Fi(x

δj
k ), Ak = F󸀠i (xk) and bk := yi − Fi(xk)). Consequently,

hδjk = (β
δj
k (A

δj
k )
∗Aδj

k + I)
−1(βδjk (A

δj
k )
∗bδjk ) and hk = (βkA∗kAk + I)−1(βkA∗kbk). (3.26)

Notice that, from (1.1), (A1) and (3.24) we conclude that bδjk → bk and Aδj
k → Ak as j →∞. These two facts,

together with (3.25) and (3.26), allow us to conclude that hδjk → hk as j →∞.

Proof of Step 3. We consider two cases:
∙ First case: ‖Fi(xk) − yi‖ = 0. In order to prove that xk+1 is a successor of xk, we have to show that xk+1 = xk

(seeDefinition 3.10). FromStep 1. above,wehave either hk =0or hk = argminh∈X Tk,αk (h). If hk = 0, then
xk+1 = xk andwe are done. Otherwise, we have hk = (A∗kAk + αk I)−1[A∗k (yi − Fi(xk))] = 0, and once again
we have xk+1 = xk.

∙ Second case: ‖Fi(xk) − yi‖ > 0. It follows from (3.24) that limj ‖Fi(xδ
j

k ) − y
δj
i ‖ = ‖Fi(xk) − yi‖ > 0. There-

fore, for sufficiently large j ∈ ℕ (say j > J), we have ‖Fi(xδ
j

k ) − y
δj
i ‖ > τδ

j
i and, consequently, the sequence

(αδjk )j>J is defined. Set J := {j > J : α
δj
k > αmin}. If #J < ∞, we have, up to a subsequence, αδ

j

k = αmin. Thus,
αk = limj αδ

j

k = αmin. Moreover,

(p̄ + η)‖Fi(xδ
j

k ) − y
δj
i ‖ + (1 + η − p̄)δ

j
i ≤ ‖y

δj
i − Fi(x

δj
k ) − Akhδ

j

k ‖, j > J.

Taking the limit j →∞, we conclude that (p̄ + η)‖Fi(xk) − yi‖ ≤ ‖yi − Fi(xk) − Akhk‖, proving that xk+1 is
a successor of xk according to item (ii) of Definition 3.10.

If #J = ∞, then (2.5) and (2.6) hold true for sufficiently large j ∈ ℕ. Since hδjk → hk as j →∞ (see Step 2), we
take the limit j →∞ in (2.5) and (2.6) to conclude that (αk , hk) (defined in Step 1) satisfy

hk = (A∗kAk + αk I)−1A∗k (yi − Fi(xk))

as well as
(p̄ + η)‖Fi(xk) − yi‖ ≤ ‖yi − Fi(xk) − Akhk‖ ≤ ( ̄p̄ + η)‖Fi(xk) − yi‖,

from where we conclude that xk+1 is a successor of xk, according to item (i) of Definition 3.10 (if αk > αmin)
or according to item (ii) (if αk = αmin).

Theorem 3.12 (Semi-convergence). Let assumptions (A1), (A2) and (A3) hold. Let (δj) = (δj0, . . . , δ
j
N−1) ∈ ℝ

N

be a zero sequence and (yδj ) = (yδj0 , . . . , yδ
j

N−1) ∈ Y
N a corresponding sequence of noisy data satisfying (1.1).

For each j ∈ ℕ, let xδjk+1 be a successor of x
δj
k for 0 ≤ k < kj∗ = k∗(δj , yδ

j ). Then every subsequence of (xδj
kj∗
) has

itself a subsequence converging strongly to a solution of (1.2).

Proof. Given a subsequence of (xδj
kj∗
) (which we shall denote again by (xδj

kj∗
)) we consider two distinct cases.

Case I: Assume first that the sequence (kj∗) is bounded. Then (kj∗) has a finite accumulation point. Therefore,
we can extract a subsequence (δjm ) such that kjm∗ = n for some n ∈ ℕ, and all jm. Theorem 3.11 guarantees
the existence of a noiseless sequence (xk), as well as the existence of a subsequence of (xδ

jm
n ) (denoted again

by (xδjmn )) such that
lim
m→∞

xδjm
kjm∗
= lim

m→∞
xδjmn = xn ,

the nth element of the sequence (xk).We claim that xn is a solution of (1.2). Indeed, for each i ∈ {0, . . . , N − 1}
we have

‖Fi(xn) − yi‖ = lim
m→∞
‖Fi(xδ

jm
n ) − yδ

jm

i ‖ ≤ lim
m→∞

τδjmi = 0.

Case II: Assume that (kj∗) is not bounded. Thus, there exists a monotone strictly increasing subsequence,
again denoted by (kj∗). Fix ε > 0 and let (xk) be a noiseless sequence constructed as in Theorem 3.11. From
Theorem 3.9 it follows that xk → x+, where x+ is a solution of (1.2). Then there exists a index L = L(ε) ∈ ℕ
such that

‖xk − x+‖ <
ε
2 , k ≥ L. (3.27)

Moreover, since (kj∗) is unbounded, there exists J ∈ ℕ such that kj∗ ≥ L, for all j ≥ J. Furthermore, from Corol-
lary 3.2 (see remark after the corollary) it follows that

j ≥ J 󳨐⇒ ‖xδj
kj∗
− x+‖ ≤ ‖xδjL − x

+‖.
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On the other hand, from Theorem 3.11 follows the existence of a subsequence (δjm ) (depending on L) and
the existence of M ∈ ℕ such that

jm ≥ M 󳨐⇒ ‖xδ
jm

L − xL‖ <
ε
2 .

Thus, for jm ≥ max{J,M} we have

‖xδjm
kjm∗
− x+‖ ≤ ‖xδjmL − x

+‖ ≤ ‖xδjmL − xL‖ + ‖xL − x
+‖ < ε. (3.28)

Notice that the subsequence (δjm ) depends on ε. We construct an ε–independent subsequence using a
diagonal argument: For ε = 1, we can find a subsequence (δj) and choose j1 ∈ ℕ such that

‖xδj1
kj1∗
− x+‖ < 1.

Since the current subsequence (δj) is also a positive zero-sequence, the same reasoning can be applied again
for ε = 1

2 ; then choose j2 > j1 such that
‖xδj2

kj2∗
− x+‖ < 12 .

Proceeding this way, it is possible to construct a subsequence (δjn ) satisfying

‖xδjn
kjn∗
− x+‖ < 1n for all n ∈ ℕ.

Consequently, ‖xδjn
kjn∗
− x+‖ → 0, as jn →∞, completing the proof.

In Theorem 3.12, if we add the assumption in (3.19), we conclude that (xδj
kj∗
) converges strongly to x†.

4 Numerical experiments

In this sectionwe test the performance of our algorithm in the inverse problemknownas Electrical Impedance
Tomography (EIT). The first mathematical model of EIT was introduced by A. Calderón in [4] and after that,
many variants have been considered. We present a variant, which is regarded as one of the more realistic
models, known as the Complete Electrode Model (EIT-CEM), see, e.g., [24].

4.1 Electric Impedance Tomography – Complete Electrode Model

In this procedure, electric currents are injected in the simply connected Lipschitz domain Ω ⊂ ℝ2 via L ∈ ℕ
electrodes attached to its boundary ∂Ω and the resulting voltages are measured in the same electrodes with
the goal of restoring the electrical conductivity γ : Ω → ℝ. For the correct translation in anappropriatemathe-
matical model, we suppose that the electrodes e1, . . . , eL are identified with the part of the surface of Ω they
contact. Thus, ei ⊂ ∂Ω is open and has positive measure |ei| > 0 for i = 1, . . . , L. Additionally, the electrodes
are connected and separated: ei ∩ ej = ⌀ for i ̸= j. In this model, only the density of the electric currents in
each electrode ei , denoted by Ii ∈ ℝ, are assumed to be known. Further, the electrodes are assumed to be
perfect conductors, which means that the electric potential on each electrode ei is a constant Ui ∈ ℝ.

Themathematicalmodelwhichdescribes theEIT-CEMon theweak formulation is givenby the variational
equation

B((u, U), (v, V)) =
L
∑
i=1

IiVi for all (v, V) ∈ H, (4.1)

where H := H1(Ω) ⊕ ℝL⋄ and the bilinear form B : H × H → ℝ is defined by

B((u, U), (v, V)) := ∫
Ω

γ∇u∇v +
L
∑
i=1

1
zi
∫
ei

(u − Ui)(v − Vi)dS. (4.2)

Here, u : Ω → ℝ represents the electric potential in Ω, and each number zi > 0 represents the so-called con-
tact impedance at the electrode ei. Further, the vector U := (U1, . . . , UL)⊤, which collects the potentials at
the electrodes, belongs toℝL⋄ := {U ∈ ℝL : ∑Li=1 Ui = 0}.
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In [24] is proved that, if the current pattern I := (I1, . . . , IL)⊤ belongs to the space ℝL⋄ and the electric
conductivity γ belongs to L∞+ (Ω) := {λ ∈ L∞(Ω) : λ > c > 0}, then there exists a unique solution (u, U) ∈ H
satisfying (4.1). This result permits to define the Neumann-to-Dirichlet (NtD) operator Λγ : ℝL⋄ → ℝL⋄ , I 󳨃→ U,
which is a bounded linear self-adjoint operator. The forward operator associated to EIT-CEM is now defined
by the function

F : D(F) ⊂ L∞(Ω) → L(ℝL⋄ ,ℝL⋄ ), γ 󳨃→ Λγ , (4.3)
where D(F) := L∞+ (Ω). Recovering γ from a partial knowledge of Λγ is the associated inverse problemwewant
to solve.

Since the NtD operator Λγ is linear, knowledge of the vectors

U j = Λγ I j , j = 1, . . . , L − 1,

where {I1, . . . , IL−1} is a basis for ℝL⋄ , is sufficient to determine the NtD operator itself.² In practice, one
fixes N ∈ ℕ current patterns I j ∈ ℝL⋄ , j = 0, . . . , N − 1 (which for notational reasons we put together in
a single vector ℑ := (I0, . . . , IN−1)⊤ ∈ ℝNL), and reads in the EIT-CEM experiment, a noisy version of the
vector Γγ := (U0, . . . , UN−1)⊤ ∈ ℝNL, where (uj , U j) ∈ H is the unique solution of (4.1) associated with the
current pattern I = I j, that is, U j := Λγ I j, j = 0, . . . , N − 1. Observe that the noisy versions of U j belong to the
spaceℝL but not necessarily toℝL⋄ .

We now reformulate (4.3) as Fℑ : D(F) ⊂ L∞(Ω) → ℝNL, γ → Γγ, and observe that the space Y = ℝNL fac-
torizes into the spaces Y = Y1 × ⋅ ⋅ ⋅ × YN ,with Yj := ℝL, j = 0, . . . , N − 1, andaccordingly, Fℑ = (F1, . . . , FN)⊤
with

Fj : D(F) ⊂ L∞(Ω) → ℝL , γ 󳨃→ U j , (4.4)
for j = 0, . . . , N − 1, which is a more suitable version for the application of a Kaczmarz method.

Theoperators Fj in (4.4) are Fréchet differentiable, see, e.g., [16, Theorem4.1]. LetW j ∈ ℝL⋄ be theFréchet
derivative of Fj, evaluated at the vector γ ∈ int(D(F)) in the direction of η ∈ L∞(Ω), i.e., W j := F󸀠j (γ)η. Then
W j is the second element of the pair (wj ,W j) ∈ H, which is the unique solution of the variational problem

B((wj ,W j), (v, V)) = −∫
Ω

η∇uj∇v dx for all (v, V) ∈ H, (4.5)

where (uj , U j) ∈ H is the unique solution of (4.1) with the current pattern I = I j.
We now restrict the searched-for conductivities to a finite-dimensional space. We thus define a trian-

gulation of Ω, Υ := {Ti : i = 1, . . . ,M}, with M ∈ ℕ triangles and restrict the solution space X to the finite-
dimensional space V := span{χT1 , . . . , χTM } ⊂ L∞(Ω). Accordingly, the domain of definition of Fj is replaced
by V+ := V ∩ L∞+ (Ω) ⊂ V2, where V2 := (V, ‖ ⋅ ‖L2(Ω)). With this framework, the discrete version of the opera-
tor Fℑ reads

Fℑ : V+ ⊂ V2 → ℝNL , γ 󳨃→ (U1, . . . , UN). (4.6)
Moreover, the operator defined in (4.4) is now given by Fj : V+ ⊂ V2 → ℝL, γ 󳨃→ U j. Summarizing, the inverse
problem in (1.1)–(1.2) can be written in the form

Fj(γ) = U j,δ , j = 0, . . . , N − 1 (4.7)

(see Section 4.2.2 for details on the noisy data U j,δ).
Identifying the arbitrary vector γ = ∑Mi=1 αiχTi ofV+with the vector of its coordinates (α1, . . . , αM)⊤ ∈ ℝM,

we observe that the function in (4.7) can now be seen as a non-linear operator from (a subset of)ℝM intoℝL.
Its derivative evaluated at a vector γ ∈ int(V+), F󸀠j (γ), can accordingly be regarded as a matrix (called the
Jacobian matrix) with dimension L ×M. In this framework, the adjoint operator of the derivative is repre-
sented by the transposed Jacobian matrix.

In order to calculate the entries of the Jacobian matrix, we use the equation

F󸀠j (γ) = (F
󸀠
j (γ)χT1 , . . . , F󸀠j (γ)χTM ) ∈ ℝL×M ,

2 Since Λγ is self-adjoint, only 1
2 L(L − 1) potential measurements are actually needed [24].
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which demands the computation of M solutions of the variational problem (4.5). However, we employ the
strategy explained in [23], which reduces the computational effort to the computation of only L variational
problems.

Since analytical solutions of (4.2) and (4.5) are in general not available, the Finite Elements Method
(FEM) is used to find approximate solutions. In [17], Lechleiter and Rieder proved that once the triangulation
Υ is fixed, there exists a number Lmin ∈ ℕ, depending on Υ, such that if the number of electrodes satisfies
L ≥ Lmin, then the Fréchet derivative of the (discrete) forward operator (4.6) is injective and satisfies the weak
Tangential ConeCondition (2.2) in a small ball centered on aprefixed arbitrary element γ ∈ int(D(F)). Further,
the same result remains true if the vector (u, U) ∈ H, which is the exact solution of (4.1) is changed by its
FEM-approximation. However, to the best of the authors’ knowledge, there is no proof of the Tangential Cone
Condition for the operators in (4.7).

Finally, in order to obtain more stable reconstructions, we employ a strategy explained in [25], associat-
ing each element of themeshΥ to a positive number calledweight. As a result, the inner product in space X is
changed, and accordingly, the adjoint of the Jacobian matrix F󸀠j (γ) is represented by the transposed matrix,
corrected by the given weights [25, Section 4.3].

4.2 Experiments with synthetic data

The computational code used in the implementation of the numerical experiments in this manuscript is writ-
ten in Python, including the Finite ElementsMethod (FEM) needed to solve the Partial Differential Equations.
The code was implemented with the aid of the open-source platform FEniCS [1] using a Intel® i5 CPU.

In order to test our algorithm using synthetic data, we employ the following procedure:
(1) Fix a refinement Θ of the triangulation Υ.
(2) Define a “solution” γ+ as a combination of characteristic functions of the elements of Θ.
(3) Generate the (exact) data U j := Fj(γ+) ∈ ℝL, for j = 0, . . . , N − 1 by solving (4.1).³
(4) Generate the noisy data U j,δ by adding by adding artificial noise to U j.
(5) Recover γ+ in the original mesh Υ from U j,δ.
The employment of the refined mesh Θ to generate the data U j is used to avoid inverse crimes. In our exper-
iments, we have chosen the meshes Υ and Θ with 844 and 7568 triangles, respectively. Further, the set Ω is
the circle centered at the origin with radius 1.

In all experiments performed in this section, the electrodes have the same size, are equally spaced on the
boundary of Ω, and cover 50%of ∂Ω.We fixed L = 16, N = 15 and applied the so-called adjacent current pat-
tern, which is defined as the set of the vectors I j := (0, . . . , 0, 1, −1, 0, . . . , 0)⊤, with 1 in the jth coordinate,
−1 in the immediately following one, and zero elsewhere. The contact impedances are the known constants
zj = 0.025, for j = 1, . . . , L.

The exact (sought) solution γ+ is defined by a constant background with conductivity 1 and an inclusion
with conductivity 2, i.e.,

γ+(x) =
{
{
{

2 if x ∈ B,
1 otherwise,

where B ⊂ Ω is modeled by two spheric inclusions defined from the fixed mesh. The function γ+ and the
triangulations Θ and Υ are depicted in Figure 1.

In all the tests we use the initial guess γ0 ≡ 1, which matches the background. In order compare the
results of the experiments, we define the relative iteration error

Ek =
‖γk − γ+‖L2(Ω)
‖γ+‖L2(Ω)

. (4.8)

It is worth noticing that for our choice of γ0, the initial error is E0 = 37.6%.

3 For a detailed explanation on how to employ the FEM in order to find a solution of (4.1) we refer to [23].
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(a) (b) (c)

Figure 1: Experiment with synthetic data: (a) Mesh Υ; (b) Mesh Θ; (c) Sought conductivity γ+ plotted on the mesh Θ.

4.2.1 Evaluating the Lagrange multipliers

In this subsectionwedetail the strategy employed for computing the parameters αk in Step3.2 of Algorithm1.
If the norm of the residual bk = U[k] − F[k](γk) is not below the threshold τδ[k] at step k, then it is neces-

sary to compute the derivative Ak = F󸀠[k](γk) and to find a parameter α > 0 such that the vector hα (see (2.5))
solution of

(A∗kAk + αI)hα = A∗kbk (4.9)
satisfies (2.6), i.e.,Hk(α) := ‖Akhα − bk‖ ∈ [ck , dk]. In order todo so,we implementedanalgorithmas follows:
Choose constants 0 < a1 < 1 < a2. Choose α > 0 and evaluate Hk(α) by applying the Biconjugated Gradient
(BCG) method to linear system (4.9). Next, define αold = α and redefine α = a1αold or α = a2αold according to
Hk(α) > dk or Hk(α) < ck, respectively. Repeat this process until Hk(α) ∈ [ck , dk].⁴

The computation of the parameters α by the method described above is highly expensive (in the sense
of computational effort) in many problems. This is due to the fact that the evaluation of each αk may require
the solution of many linear systems of the form (4.9). However, for the EIT-CEM model, the computation of
bk and Ak are by far the most demanding tasks; once they are computed, the evaluation of the vectors hα in
(4.9), and consequently the evaluation of αk, do not represent a large amount of computational effort.

4.2.2 Numerical realizations

In our experiments, we compared the rrLMK with two well-known Kaczmarz variations of the Levenberg–
Marquardt method with a priori choice of the Lagrange multipliers. The first one uses αk = α > 0 constant
(stationary LMK or sLMK). The second one uses a geometrical sequence αk = r≪k≫,⁵ with 0 < r < 1 (geometric
LMK or gLMK).

We add artificially generated noise to the synthetic data U j with relative noise level δ > 0 :

U j,δ = U j + δ‖U j‖2∆j for j = 0, . . . , N − 1,

where the perturbation vectors ∆j ∈ ℝL are uniformly distributed random variables with ‖∆j‖2 = 1. Then
‖U j,δ − U j‖2
‖U j‖2

= δ.

We then fix two distinct noise levels: δ = 0.1% and δ = 1%.

4 After finitely many steps we will find either Hk(α) ∈ [ck , dk] or [ck , dk] ⊂ [min{α, αold}, max{α, αold}]. In the second case, we
apply the bisection method to the function f(α) = Hk(α) − 1

2 (ck + dk) and the interval [min{α, αold}, max{α, αold}] until finding
Hk(α) ∈ [ck , dk].
5 Here≪k≫ denotes the largest integer less than or equal to k

N , i.e., αk is constant within each cycle.
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Although there are theoretical results [17] that guarantee the existence of a constant η satisfying assump-
tion (A2), it is usually difficult to estimate this constant properly. Aiming to estimate η, we employed a strategy
similar to the one in [18]. sLMK was implemented with α = 10−1 and δ = 0.1%. Since the constant τ (that
depends on η) was not available, we did not check whether or not the discrepancy principle was satisfied in
any iteration. Consequently, we did not drop any step during the iterations, but simply performed the fixed
number of 180 cycles. During this iteration, we computed the ratios

‖F[k](γk+1) − F[k](γk) − F󸀠[k](γk)(γk+1 − γk)‖
‖F[k](γk+1) − F[k](γk)‖

; (4.10)

the largest computed valuewasmultiplied by 2.5 and used as an estimate to η. With this procedure, we found
η = 0.4. The constant τ was then defined by τ = 1.3(1+η)

1−η . The constants p̄ and ̄p̄ (see Algorithm 1) are defined
as [τ(1 − η) − (1 + η)](τ − 1)−1 multiplied by 0.01 and 0.99, respectively. The constants a1 and a2, needed
to compute the Lagrange multipliers (see Section 4.2.1), are set to 0.7 and 1.5, respectively.

The relative iteration error Ek (see (4.8)) at the end of each cycle n (i.e., k = nN) is depicted in Figure 2.
Pictures (a) and (b) in this figure show the comparison of rrLMK and sLMK, while pictures (c) and (d) show
the comparison of rrLMK and gLMK. Pictures (a) and (c) correspond to the relative noise level of δ = 0.1%,
while pictures (b) and (d) correspond to δ = 1%,

For the implementation of sLMK we used the constant choices αk = 10−2, αk = 10−3, αk = 10−4 for both
levels of noise. For gLMK we used the choices αk = 0.98≪k≫, αk = 0.95≪k≫, αk = 0.9≪k≫ for δ = 0.1% and
the choices αk = 0.9≪k≫, αk = 0.6≪k≫, αk = 0.3≪k≫ for δ = 1%.

Notice that α0 = 1 in gLMK. Thus, in order to be fair in our comparisons, we used α = 1 as initial guess to
compute the Lagrange multipliers in the first cycle of the rrLMKmethod (see Section 4.2.1). For the compari-
son of rrLMK with sLMK we used α = 10−4 as initial guess in the first cycle of rrLMK. In the remaining cycles
we use as initial guesses for the Lagrange multiplier, the αk computed in the previous cycle.

In Figure 2 we observe the following facts:
∙ Comparison of sLMK with rrLMK: These methods perform similarly for both levels of noise. sLMK com-

putes a larger number of cycles than rrLMK for αk = 10−2, it computes a similar number of cycles for
αk = 10−3, and it diverges (fails to attain the stop criteria (1.8)) for αk = 10−4.

∙ Comparison of gLMK with rrLMK for δ = 0.1%: it computes a larger number of steps for αk = 0.95≪k≫;
it computes an even larger number of steps for αk = 0.98≪k≫; it diverges if αk = 0.9≪k≫. Comparison of
gLMKwith rrLMK for δ = 1%: An analog behavior is observed for the choices αk = 0.6≪k≫, αk = 0.9≪k≫
and αk = 0.3≪k≫, respectively.
Thenumber of computed cycles represents an important piece of information tomeasure theperformance

of amethod, since this is exactly the number of times that the non-linear residual is evaluated (remember that
N non-linear residuals are evaluatedat each cycle to checkwhich equations satisfy thediscrepancyprinciple).
Further, the performance of themethod also depends on thenumber ofactive equations at each cycle (namely,
equations that do not satisfy the discrepancy principle at the cycle), since this is the number of derivatives of
the forward operator which need to be evaluated at the cycle.

It is worth noticing that the performance of the rrLMK is not significantly affected by the number of linear
systems (4.9) solved for each active equation. Thus, the overall number of active equations (denoted here by
AcEq) as well as the total number of cycles allow a fair comparison of the performance of these methods.

In Figure 3 the number of active equations in each cycle of the experiments depicted in the first column
of Figure 2 is plotted (noise level δ = 0.1%). The left and the right pictures in Figure 3 relate to sLMK and
gLMK, respectively.

In Tables 1 and 2 the time elapsed to perform the experiments in Figure 2 is shown. These tables also
show the overall number of active equations as well as the number of cycles computed for each method.
Table 1 refers to sLMK, while Table 2 refers to gLMK. Notice the direct relation between the AcEq and the
curves shown in Figure 3.

In order to compare the reconstructions for the noise level δ = 0.1%, we plot in Figure 4 the last iter-
ate γk∗ of each method, namely rrLMK, sLMK and gLMK (correspond to the experiments depicted in the
first column of Figure 2). We plot only the best reconstructions obtained using sLMK (with αk = 10−3) and



R. Filippozzi et al., A range-relaxed criteria for Lagrange multipliers | 285

(a) (b)

(c) (d)

Figure 2: Experiment with synthetic data: Relative iteration error Ek (in %) at the end of each cycle (i.e., k = nN): (a) sLMK with
δ = 0.1%; (b) sLMK with δ = 1%; (c) gLMK with δ = 0.1%; (d) gLMK with δ = 1%.

(a) (b)

Figure 3: Experiment with synthetic data: Active iterations per cycle with δ = 0.1%. (a) sLMK, (b) gLMK.

gLMK (with αk = 0.95≪k≫). Below each picture, the reconstruction error at the last iterate Ek∗ is shown. The
reconstructions shown in Figure 4, using different methods, are similar. Apparently, if the parameters are
properly chosen, then sLMK and gLMK are capable of delivering reconstructions similar to the one obtained
by the rrLMK.

In order tomore closely observe how the rrLMKmethodworks, we show in Figure 5 the values of the com-
puted parameters αk for both noise levels (δ = 1% and δ = 0.1%) and for all the N = 15 equations in (4.7).



286 | R. Filippozzi et al., A range-relaxed criteria for Lagrange multipliers

Noise level rrLMK αk ≡ 10−4 αk ≡ 10−3 αk ≡ 10−2
δ = 0.1% Time (min) 7.9 Fails 7.69 40.58

AcEq 294 Fails 274 1617
Cycles 27 Fails 28 144

δ = 1% Time (min) 1.2 Fails 1.08 3.28
AcEq 32 Fails 22 81
Cycles 3 Fails 3 12

Table 1: Comparison of the performance of rrLMK method and sLMK.

Noise level rrLMK αk = 0.90≪k≫ αk = 0.95≪k≫ αk = 0.98≪k≫
δ = 0.1% Time (min) 8.19 Fails 44.95 62.36

AcEq 320 Fails 1983 3000
Cycles 27 Fails 156 200

rrLMK αk = 0.30≪k≫ αk = 0.60≪k≫ αk = 0.90≪k≫
δ = 1% Time (min) 1.8 Fails 4.23 13.14

AcEq 42 Fails 171 546
Cycles 5 Fails 14 46

Table 2: Comparison of the performance of rrLMK method and gLMK.

Figure 4: Experiment with synthetic data: Reconstructions γk∗ . From left to the right: sLMK method, gLMK method, rrLMK
method with starting guesses α = 1 and α = 10−4.

(a) (b)

Figure 5: Experiment with synthetic data: Computed values for αk in the rrLMK method with initial guess α = 10−4. (a)
δ = 0.1%; (b) δ = 1%.
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We conclude this subsection with some final considerations:
(i) In Figure 5 we observe a tendency of the parameters αk to become larger as the iteration index k grows.
(ii) gLMK performs badly in all considered scenarios, either showing slow convergence or divergence (i.e.,

not reaching the stop criterion). Further, the “optimal” geometric ratio r (αk = r≪k≫) changes according
to the noise level δ.

(iii) sLMK performs similarly to the rrLMK if the constant αk = α is properly chosen. In our numerical tests,
the optimal choice of α does not depend on the noise level δ. However, an inadequate choice of α may
lead either to slow convergence or to divergence.

(iv) In all numerical tests, the rrLMK method had a better performance than the concurrent sLMK and gLMK
methods. The only exception is the test with sLMK with αk ≡ 10−3 (and both levels of noise δ = 0.1%
and δ = 1%), where rrLMK and sLMK performed similarly. It is worth noticing that this situation is sig-
nificantly different from the observations in [18, 20]. In these references, the gLMK presents relatively
good results whenever the constant r in αk = r≪k≫ is properly chosen.⁶

4.3 Experiments with real data

In this subsection we reconstruct the solution of inverse problem (4.3) from real data. The experimental
framework, as well as the data, were provided by [13, KIT4] from the University of Eastern Finland. All the
measurements are made in a prototype, which consists of a cylindrical tank filled with saline water (repre-
senting the background) and one or more inclusions made of either metal or plastic. The size, position and
shape of the inclusions varies (triangle, cylinder, hollow cylinder, etc.).

The radius of the tank equals 14 cm. L = 16 identical equally spaced electrodes made of stainless steel
of 2.5 cmwidth are attached to its boundary and the tank is filled to a height of 7 cmwith saline water having
the conductivity of 0.03 S/m. Moreover, N = 15 adjacent current patterns I j are employed (see Section 4.2),
with amplitude 2mA and frequency of 1kHz.

It is worth noticing that the impedance contacts are not known; the noise levels are not informed, the
unit of measurement for the given potentials is not informed. In order to deal with this lack of information,
we proceed as follows:
(i) The mesh used to solve the inverse problem is similar to the one used to recover the conductivities in

Section 4.2 (see Figure 1). For real data we fix a mesh with 2089 triangles.
(ii) Determining the impedance contacts zj, j = 1, . . . , L: We assume that they have the same constant value

z > 0. This value is recovered using the procedure detailed in [25, Definition 4.4] together with the data
measured with the tank containing only saline water (without any inclusion). Using this procedure, we
obtained the value z = 2 ⋅ 10−3. This procedure also allow us to estimate the (constant) conductivity of
the saline water background, 0.296.⁷

(iii) Determining the noise levels δi:We apply the sLMKwith αk ≡ 0.5 and initial guess γ0 ≡ 0.326 to the data
measurements obtained from the tankfilledwith salinewater only. Since theparameter τ, whichdepends
on η and the noise levels δj are still unavailable, we do not apply the discrepancy principle neither to
terminate the algorithm nor to drop any equation during the iterations, but only run a fixed number
of 160 cycles. The resulting relative residuals, ‖U[k],δ − F[k](γk)‖/‖U[k],δ‖, evaluated for each equation
during the iterations, are depicted in Figure 6. We estimate the relative noise levels δj , j = 0, . . . , N − 1,
bymaking the assumption that the jth noise level is given by theminimum value attained by the residual
of the jth equation.⁸

6 From considerations (i) and (iv) we infer a possible explanation of why sLMK performs better than the gLMK in our experi-
ments: it seems more appropriate to keep the parameters αk constant or slowly increasing them during the iterations, instead of
decreasing them.
7 This value corresponds to the one informed in [13]. However, it is expressed in another unit and differs from a scaling factor.
8 This assumption is justified by the fact that ‖U[k],δ − F[k](γ+)‖ ≤ δ[k].
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Figure 6: Experiment with real data: Relative residual ri(n) := ‖Fi(γNn+i) − Ui‖/‖Ui‖, i = 0, . . . , N − 1, of each equation at the
cycle n = 0, . . . , 160, obtained using sLMK with αk ≡ 0.5 and data measured with the tank filled with saline water only.

The constant η in (A2) is estimated using the ratios in (4.10), a procedure analog to the one described
in Section 4.2.2. In order to do that, we compute sLMK with αk ≡ 0.1 and the data measurements related to
the pictures shown in the first row of Figure 7. This resulted in the value η = 0.25. The parameter τ was set
to 1.3(1+η)

1−η . The constants p̄ and ̄p̄ are defined as in the previous experiment.
Methods rrLMK and sLMK are tested⁹ to reconstruct three distinct solutions γ+j , j = 1, 2, 3, all modeled

by a saline water background and: γ+1 a plastic inclusion with the form of a cylinder; γ+2 a metallic inclusion
in form of a hollow cylinder; γ+3 a metallic and a plastic inclusion in form of a hollow cylinder and a triangle,
respectively. The sizes and positions of the inclusions are distinct (see pictures (a), (b) and (c) in Figure 7).

In the experiments shown in Figure 7 we compare reconstructions obtained by the methods rrLMK (2nd
row) and sLMK with different constants (3rd row). In order to find the “best” constant for sLMK, we tested
several choices for α, namely α = 10n and α = 5 × 10n, with n = −4, −3, −2, −1, 0, 1. For the choices n < −1,
the quality of the reconstructions is very poor; for n = −1 (i.e., α = 0.1 and α = 0.5) the reconstructions are
close to the sought solutions; for the values n ≥ 0 the quality of the reconstructions are similar to the choice
n = −1, however, the corresponding computational effort becomes higher. In Figure 7 (3rd row) we plot the
best results obtained using sLMK (with α = 0.1 and α = 0.5). In Table 3 detailed information on the numer-
ical effort of rrLMK and sLKM methods for these experiments is presented. In Figure 8 we investigate the
implementation of the range-relaxed strategy. In what follows we draw some conclusions based on the data
presented in Figure 7, Figure 8 and Table 3:
∙ [shapes] What concerns the shapes of the reconstructed inclusions, we observe in Figure 7 that the

approximate solutions computed by the sLMK and rrLMK methods have similar quality.
∙ [conductivity values] What concerns the reconstructed conductivity values, we observe in Figure 7

that the reconstructed conductivity of the plastic inclusion is lower than the conductivity of the back-
ground (for all methods), while the reconstructed conductivity of the hollow metal inclusion is higher
then the conductivity of the background (for all methods). Moreover, in the rrLMK and sLMKmethods all
reconstructed conductivity values are similar.

∙ [computational effort] The computational effort of the methods under consideration is quite different.
In Table 3 we compare the number of computed cycles as well as the overall number of active equations
(AcEq) for the experiments conducted in this section (see Figure 7 for a summary). It is worth noticing
that, for each method, the related computational effort strongly depends on the solution γ+j to be identi-

9 We also performed numerical tests with the gLMK method. The obtained results are not better (what concerns quality of
the reconstruction and numerical effort) then the ones obtained using the sLMK method. For this reason these results are not
described in this section.
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(a) (b) (c)

(d)

Figure 7: Experiment with real data: Reconstructions γk∗ . First row: real parameters. Second row: rrLMK method. Third row: From
left to the right sLMK with constant α = 0.1, α = 0.5 and α = 0.5.

Solution γ+1 γ+2 γ+3
Time (min) rrLMK 3.03 7.61 7.21

sLMK 0.99 11.78 7.88

AcEq rrLMK 36 158 143
sLMK 20 308 207

Cycles rrLMK 6 21 17
sLMK 3 49 28

Table 3: Comparison of the computational effort of the sLMK and the rrLMK methods when applied to reconstruct the pictures
shown in Figure 7.
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(a) (b)

Figure 8: Experiment with real data: implementation of the rrLMK method when applied to reconstruct the image (a) in Figure 7.
(a) Evolution of the parameters αk. (b) Linearized residual and the numbers ck and dk in each iteration k.

fied. In Table 3 we observe that, if the constant αk = α is chosen properly, the sLMK becomes competitive
with rrLMK from the computational point of view.

∙ [range-relaxed strategy]Figure 8 providesmore information concerning the iteration of rrLMK to recon-
struct the solution γ+1 (see Figure 7 (a)). In Figure 8 (a) we presents the evolution of the parameters αk.
Similarly to the results observed in Section4.2, theparameters αk tend to increasewith the iteration index
k. In Figure 8 (b)we display the values of the linearized residuals ‖F󸀠[k](γk)(γk+1 − γk) − (U[k],δ − F[k](γk))‖
and the constants ck and dk (see Algorithm 1) at each step. Notice that, as required,

‖F󸀠[k](γk)(γk+1 − γk) − (U
[k],δ − F[k](γk))‖ ∈ [ck , dk] for k = 0, . . . , k∗.

5 Conclusions

We investigate LMK-type methods for computing stable approximate solutions to systems of non-linear
ill-posed operator equations. The main contribution of this article is to extend the strategy for choosing
a sequence of Lagrange multipliers in [18] (we propose a different range) in order to couple the rrLM
method [18] with the Kaczmarz strategy. This modification allow us to prove convergence for exact data
(Section 3) using a technique different from the one applied in [18]. Moreover, we also prove stability and
semi-convergence results.

The range-relaxed LMK (rrLMK) method is advantageous when compared with other a posteriori strate-
gies for computing the Lagrange multipliers, since it allows each of the multipliers to belong to a non-degen-
erate interval. Consequently, the actual computation of the Lagrange multipliers (satisfying the theoretical
requirements needed for the convergence analysis) is simplified.

It is worth noticing that LM-type methods based on a priori choices for the multipliers (e.g., gLMK and
sLMK) require additional information on the sequence of multipliers in order to be efficiently implemented.
This information is usually obtained by trial and error. In the rrLMKmethod, on the other hand, the multipli-
ers are computed/adjusted during the iteration and no additional a priori information on the behavior of the
multipliers is required.

An algorithmic implementation of the rrLMKmethod (Algorithm 1) is discussed, and it is tested for solv-
ing awell known ill-posed problem (Electric Impedance Tomography – Complete ElectrodeModel [24]) using
both synthetic and real data. For this particular mathematical model, the evaluation of the Lagrange mul-
tiplier using the range-relaxed strategy does not represent a large computational cost (see Section 4.2.1).
Consequently, the cost of one rrLMK iteration is comparable with the cost of one iteration of the sLMK and
gLMK methods.
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The numerical experiments in Section 4 include real data sets using the framework proposed in [13]. All
the measurements are made in a prototype, which consists of a cylindrical tank (of 14 cm radius) filled with
salinewater (representing the background), 16 identical stainless steel electrodes and one ormore inclusions
made of either metal or plastic. Our experiments show (in both synthetic and real data cases) that the rrLMK
method is more efficient than the other tested Kaczmarz-type methods, namely the gLMKmethod (where the
Lagrange multipliers are computed a priori in geometric progression) and the sLMK method (with constant
Lagrange multipliers).
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