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Abstract

In these notes we propose and analyze an inertial type method for obtaining stable
approximate solutions to nonlinear ill-posed operator equations. The method is based on
the Levenberg-Marquardt (LM) iteration. The main obtained results are: monotonicity
and convergence for exact data, stability and semi-convergence for noisy data. Regarding
numerical experiments we consider: i) a parameter identification problem in elliptic PDEs,
ii) a parameter identification problem in machine learning; the computational efficiency of
the proposed method is compared with canonical implementations of the LM method.
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1 Introduction
sec:intro

In a standard inverse problem scenario [4, 10, 17], consider Hilbert spaces X and Y and
contemplate the challenge of deducing an unknown quantity x ∈ X from provided data y ∈ Y .
In other words, the task is to identify an unknown quantity of interest x (which cannot be
directly accessed) relying on information derived from a set of measured data y.

An essential aspect to note is that, in real-world applications, the precise data y ∈ Y is not
accessible. Instead, only approximate measured data yδ ∈ Y is at our disposal, meeting the
criteria of

∥yδ − y∥ ≤ δ . (1) eq:noisy-i

Here, δ > 0 represents the level of noise and we assume that δ (or an estimate thereof) is
known. The available noisy data yδ ∈ Y are obtained by indirect measurements of x ∈ X, this
process being represented by the model

F (x) = yδ, (2) eq:inv-probl

where F : X → Y , is a nonlinear, Fréchet differentiable, ill-posed operator.
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1.1 State of the art

The Levenberg-Marquardt (LM) method We recall a family of implicit iterative type
methods for obtaining stable approximate solutions to nonlinear ill-posed type operator equa-
tions as in (2). The Levenberg-Marquardt (LM) type methods are defined bydef:LM

xδk+1 := argminx
{
∥F (xδk) + F ′(xδk)(x− xδk)− yδ∥2 + λk∥x− xδk∥2

}
, k = 0, 1, . . . , (3a)

what corresponds to defining xδk+1 as the solution of the optimality condition(
A∗

kAk + λkI
)
(x− xδk) = A∗

k

(
yδ − F (xδk)

)
, k = 0, 1, . . . (3b)

where Ak := F ′(xδk) : X → Y is the Fréchet derivative of F evaluated at xδk and A∗
k : Y → X is

the adjoint operator to Ak. Additionally, (λk) is a positive sequence of Lagrange multipliers.
The iteration starts at a given initial guess x0 ∈ X.

In the case of linear ill-posed operator equations (i.e. F (x) = Ax; notice that (2) becomes
Ax = yδ) the LM method reduces to the iterated Tikhonov method [13, 6] (or proximal point
method [19, 27]), which correspond to defining xδk+1 := argminx

{
∥Ax− yδ∥2 + λk∥x− xδk∥2

}
.

The parameters λk are appropriately chosen Lagrange multipliers [6].
The literature on LM type methods for inverse problems is extensive, exploring various

aspects, including regularization properties [9, 12, 16, 15], convergence rates [13, 28], a poste-
riori strategies for choosing the Lagrange multipliers [6], a cyclic version of the LM method
[8], among others.

Inertial iterative methods Inertial iterative methods have been introduced by Polyak
in [23] for the minimization of a smooth convex function f . The algorithm is written as a two
step method

wk = xk + αk(xk − xk−1)

xk+1 = wk − λk∇f(xk)

where αk is an extrapolation between 0 and 1 and λk is a stepsize. The method is called the
heavy-ball method as the extrapolation can be motivated by a discretization of the dynamical
system ẍ(t) + γẋ(t) = −∇f(x(t)) which models the dynamics of a mass with friction driven
by a potential f . The method has also been extended to monotone operators, e.g. by Alvarez
and Attouch in [1] for the proximal point method and by Moudafi and Oliny in [20] for the
forward-backward method.

The heavy ball method achieves the optimal lower complexity bounds for first order meth-
ods for smooth strongly convex functions [22]. For merely smooth function, a simple modifica-
tion proposed by Nesterov in [21] achieves the lower complexity bounds also in this case. The
method reads as

wk = xk + αk(xk − xk−1)

xk+1 = wk − λk∇f(wk)

and the only difference to the heavy ball method is that the gradient is also evaluated at the
extrapolated point. The performance relies on a clever choice of the extrapolation sequence
αk such that it approaches 1 not too fast and not too slow. The method has been extended
to the forward backward case for convex optimization by Beck and Teboulle [5] and further to
monotone inclusions by Lorenz and Pock [18]. Su, Boyd and Candés [29] related Nesterov’s
method to the dynamical system ẍ(t)+ α

t ẋ(t) = −∇f(x(t)) which is is similar to the heavy ball
method but the damping α/t vanishes asymptotically. The viewpoint of continuous dynamics
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was further elaborated by Alvarez, Attouch, Bolte and Redont [2] where the authors proposed
to analyze

ẍ(t) + (αI + β∇2f(x(t)))ẍ(t) = −∇f(x(t))

which they called dynamic inertial Newton system (DIN). After time disretization, this leads
to an inertial Levenberg-Marquardt method similar to the one we consider in this paper, but [2]
only analyzed the continuous time system. Attouch, Peypoquet and Redont [3] combined the
DIN method with vanishing damping

ẍ(t) + (αt I + β∇2f(x(t)))ẍ(t) = −∇f(x(t)).

1.2 Contribution

In these notes, we introduce and analyze an implicit inertial iteration, here called inertial
Levenberg-Marquardt method (inLM), which can be construed as an extension of the LM
method. Our approach is connected to the inertial method put forth in 2001 by Alvarez
and Attouch [1]. In the case of linear ill-posed operator equations an approch analog to the
one addressed in this manuscript (namely the inertial iterated Tikhonov method) is treated in
[24].

We suggest this implicit inertial method as a practical alternative for computing robust
approximate solutions to the ill-posed operator equation (2) and explore its numerical effec-
tiveness.

The method under consideration consists in choosing appropriate non-negative sequences
(αk), (λk) and defining (at each iterative step) the extrapolation wδ

k := xδk + αk(x
δ
k − xδk−1);

the next iterate xk+1 is than defined by

xδk+1 := argminx
{
∥F (wδ

k) + F ′(wδ
k)(x− wδ

k)− yδ∥2 + λk∥x− wδ
k∥2
}
, k = 0, 1, . . . (4) eq:inLM-step

where x−1 = x0 ∈ X are given. For obvious reasons we refer to this implicit two-point method
as inertial Levenberg-Marquardt method (inLM).

1.3 Outline

The outline of the manuscript is as follows: In Section 2 we introduce and analyze the inLM
method. We prove a monotonicity result as well as convergence for exact data in Section 2.2,
and discuss stability and semi-convergence results in Section 2.3. In Section 3 the inLM method
is tested for two ill-posed problems: i) a parameter identification problem in elliptic PDEs, ii)
a parameter identification problem in machine learning. Section 4 is devoted to final remarks
and conclusions.

2 The inertial Levenberg-Marquardt method
sec:iteration

In this section we introduce and analyze the inLM method considered in these notes. In
Section 2.1 the inLM method is presented and preliminary results are derived. A convergence
result (in the exact data case) is proven in Section 2.2. Stability and semi-convergence results
(in the noisy data case) are proven in Section 2.3.

This is the set of main assumptions that we impose on the operator F and the data y:

(A1) The operator F : X → Y is continuously Fréchet differentiable. Moreover, there exist
constants C > 0 and ρ > 0 such that ∥F ′(x)∥ ≤ C, for all x ∈ Bρ(x0).
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(A2) The operator F satisfies the weak Tangential Cone Condition (wTCC) at Bρ(x0) for
some η ∈ [0, 1), i.e.

∥F (x′)− F (x)− F ′(x)(x′ − x)∥ ≤ η ∥F (x′)− F (x)∥ , ∀ x, x′ ∈ Bρ(x0).

(A3) There exists x⋆ ∈ Bρ/2(x0) such that F (x⋆) = y, where y ∈ Rg(F ) is the exact data.

(A4) There exists q ∈ (η, 1) such that λk > q C2 (1− q)−1, for k = 0, 1, . . .

2.1 Description of method
ssec:2.1

To emphasize the fundamental principles that underlie the definition of our method, we com-
mence the discussion by examining the scenario with exact data yδ = y, i.e. δ = 0. Denoting
the current iterate by xk ∈ X, for k ≥ 0, the step of the proposed inLM method consists in
two parts: (i) compute wk ∈ X, according todef:inLM

wk := xk + αk (xk − xk−1) ; (5a) def:inLM-w

(ii) define the subsequent iterate xk+1 ∈ X as the solution of(
A∗

kAk + λkI
)
(x− wk) = A∗

k

(
y − F (wk)

)
, (5b) def:inLM-x

for k = 0, 1, . . . , were Ak := F ′(wk) : X → Y is the Fréchet derivative of F at wk and
A∗

k : Y → X is the adjoint operator to Ak. Here x0 ∈ X plays the role of an initial guess and
x−1 := x0. Moreover, (αk) ∈ [0, α) for some α ∈ (0, 1), and (λk) ∈ R+ are given sequences.
Notice that, if αk ≡ 0 then wk = xk in (5a); thus, (5b) reduces to the standard LM iteration
for exact data, i.e. xk+1 is defined as the solution of

(
A∗

kAk +λkI
)
(x−xk) = A∗

k

(
y−F (xk)

)
,

for k = 0, 1, . . . .
The careful reader observes that (5b) is essentially the LM iterative step (3) starting from

the extrapolation point wk instead of xk. Notice that (5b) is equivalent to computing

sk :=
(
A∗

kAk + λkI
)−1

A∗
k

(
y − F (wk)

)
and setting xk+1 := wk + sk (6) def:sk

(sk is the iterative step of the inLM method). It is straightforward to see that the first equation
in (6) is equivalent to Gk sk = A∗

k(y−F (wk)), where Gk := (A∗
kAk+λkI) : X → X is a positive

definite operator with spectrum contained in the interval [λk, λk + ∥A∥2]. Consequently, since
λk > 0, the iterate xk+1 is uniquely defined by (5b).

We present the inLM method in algorithmic form in Algorithm 1.

rem:station Remark 2.1 (Comments on Algorithm 1). This algorithm generates infinite sequences (xk)k∈N
and (wk)k∈N if and only if F (wk) ̸= y, for all k ∈ N. Indeed, if F (wk0) = y for some k0 ∈ N in
Algorithm 1, the iteration stops at Step [2.4] after computing x0, . . . , xk0+1 and w0, . . . , wk0.

The operators Ak := F ′(wk) ∈ L(X,Y ) and A∗
k ∈ L(Y,X) do not have to be explicitely

known (see the inverse problem in Section 3.2). The linear system in Step [2.1] can be solved,
e.g., using the Conjugate Gradient (CG) mehthod; in this case it is enough to know only the
action of Ak and A∗

k.

In the remaining of this subsection we establish preliminary properties of the sequences
(xk), (wk) generated by Algorithm 1. The first result, stated in Lemma 2.2, follows directly
from the definition of wk in (5a) (see also Step [2.4] of Algorithm 1), while in Lemma 2.3 some
useful inequalities are derived.

lemma:aux Lemma 2.2. Let (A1) hold and (xk), (wk) be sequences generated by Algorithm 1. Thus

∥wk − x∥2 = (1 + αk)∥xk − x∥2 − αk∥xk−1 − x∥2 + αk(1 + αk)∥xk − xk−1∥2, k ≥ 1 (7) eq:w

for x ∈ X.
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[0] choose an initial guess x0 ∈ X; w0 = x0; k := 0;

[1] choose α ∈ [0, 1) and (λk)k≥0 ∈ R+;

[2] for k = 0, 1, . . . do

if
(
∥F (wk)− y∥ > 0

)
then

[2.1] Ak := F ′(wk); compute sk ∈ X as the solution of(
A∗

kAk + λkI
)
sk = A∗

k

(
y − F (wk)

)
;

[2.2] xk+1 := wk + sk;

[2.3] choose αk+1 ∈ [0, α]; wk+1 := xk+1 + αk+1(xk+1 − xk);

else

[2.4] sk := 0; xk+1 := wk; break;

end if;

end for;
alg:init-exact

Algorithm 1: Inertial Levenberg-Marquardt method in the exact data case.

Proof. See [24, Lemma 2.2] for a complete proof.

lemma:dk-and-ineq Lemma 2.3. Let (A1) hold and (xk), (wk) be sequences generated by Algorithm 1. Define
Ak := F ′(wk) and Dk := F (wk) +Ak(xk+1 − wk)− y. The following assertions hold true:

a) Dk = λk(AkA
∗
k + λkI)

−1(F (wk)− y);

b) wk − xk+1 = λ−1
k A∗

k [F (wk) +Ak(xk+1 − wk)− y];

c) Additionally, if (A4) holds, we have q∥F (wk)− y∥ ≤ ∥Dk∥ ≤ ∥F (wk)− y∥;
d) Additionally, if (A2) holds and wk, xk+1 ∈ Bρ(x0), we have

(1− η)∥F (xk+1)− y∥ ≤ (1 + η)∥F (wk)− y∥.

Proof. Assertions (a) and (b): From Steps [2.1] and [2.2] of Algorithm 1 follow

A∗
k [F (wk) +Ak(xk+1 − wk)− y] + λk(xk+1 − wk) = 0 (8) eq:stepLM

(see also (4)). Consequently, AkA
∗
k Dk + λkAk(xk+1 − wk) = 0, from where we obtain

AkA
∗
k Dk + λkAk(xk+1 − wk) + λk(F (wk)− y)− λk(F (wk)− y) = 0 .

Thus, (AkA
∗
k + λkI)Dk = λk(F (wk)− y) and Assertion (a) follows.

Assertion (b) is an immediate consequence of (8).

Assertion (c): If (A1) and (A4) hold, we conclude from Assertion (a) together with the fact
σ(AkA

∗
k + λkI) ⊂ [λk, λk + C2] that

λk

λk + C2
∥F (wk)− y∥ ≤ ∥Dk∥ = ∥λk(AkA

∗
k + λkI)

−1(F (wk)− y)∥ ≤ ∥F (wk)− y∥ .

From this inequality Assertion (c) follows.

Assertion (d): From the definition of Dk follows

∥F (xk+1)− y∥ ≤ ∥F (xk+1)− F (wk)−Ak(xk+1 − wk)∥+ ∥Dk∥ .

Thus, it follows from (A2) and Assertion (c)

∥F (xk+1)− y∥ ≤ η ∥F (xk+1)− F (wk)∥+ ∥F (wk)− y∥
≤ η ∥F (xk+1)− y∥+ (1 + η)∥F (wk)− y∥),
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proving Assertion (d).

ass:alpha Assumption 2.4. Given α ∈ [0, 1) and a convergent series
∑

k θk of nonnegative terms, let

αk :=

 min

{
θk

∥xk − xk−1∥2
,
min{θk, ρ− ∥xk − x0∥}

∥xk − xk−1∥
, α

}
, if ∥xk − xk−1∥ > 0

0 , otherwise

, k ≥ 1 .

For simplicity of the presentation we assume, for the rest of this section, that θk = 1/k2.

rem:alpha Remark 2.5. Should the sequence (αk) of inertial parameters be chosen in accordance with
Assumption 2.4, two immediate consequences ensue, namely:

a) If xk−1, xk ∈ Bρ(x0), then wk ∈ Bρ(x0) as well. Indeed, from (5a) follows

∥wk − x0∥ ≤ ∥xk − x0∥+ αk∥xk − xk−1∥ < ∥xk − x0∥+
ρ− ∥xk − x0∥
∥xk − xk−1∥

∥xk − xk−1∥ = ρ

(if xk−1 = xk holds, then (5a) implies wk = xk ∈ Bρ(x0)).

b)
∑

k≥0 αk∥xk − xk−1∥2 is summable since by αk ≤ θk/∥xk − xk−1∥2 it holds that αk∥xk −
xk−1∥2 ≤ θk and

∑
k≥0 θk is summable by assumption.

In the next proposition we compare the squared distances ∥wk − x∗∥2 and ∥xk+1 − x∗∥2,
where x∗ is any solution of F (x) = y inside the ball Bρ(x0).

prop:gain Proposition 2.6. Let (A1) – (A4) hold and (xk), (wk) be sequences generated by Algorithm 1
(with (λk) and (αk) chosen as in Steps [1] and [2.3] respectively). If wk ∈ Bρ(x0) then

∥wk − x∗∥2 − ∥xk+1 − x∗∥2 ≥ ∥wk − xk+1∥2 + 2(q − η)λ−1
k ∥Dk∥∥F (wk)− y∥ , k ≥ 0

for any x∗ ∈ Bρ(x0) solution of F (x) = y,

Proof. From Lemma 2.3 (b) follows

∥wk − x∥2 − ∥xk+1 − x∥2 = ∥wk − xk+1∥2 + 2⟨wk − xk+1, xk+1 − x⟩
= ∥wk − xk+1∥2 + 2λ−1

k ⟨A∗
k[F (wk) +Ak(xk+1 − wk)− y], xk+1 − x⟩

= ∥wk − xk+1∥2 + 2λ−1
k ⟨Dk, Ak(xk+1 − x)⟩

= ∥wk − xk+1∥2 + 2λ−1
k ⟨Dk, Ak (xk+1 − x± wk)± F (wk)± y⟩

= ∥wk − xk+1∥2 + 2λ−1
k

[
∥Dk∥2 + ⟨Dk, Ak (wk − x)− F (wk) + y)⟩

]
,

for x ∈ X and k ≥ 0. From this equation with x = x∗, (A2) and Lemma 2.3 (c) follows

∥wk − x∥2 − ∥xk+1 − x∥2 = ∥wk − xk+1∥2 + 2λ−1
k

[
∥Dk∥2 + ⟨Dk, F (x∗)− F (wk)−Ak (x

∗ − wk)⟩
]

≥ ∥wk − xk+1∥2 + 2λ−1
k ∥Dk∥

[
∥Dk∥ − η∥y − F (wk)∥

]
≥ ∥wk − xk+1∥2 + 2λ−1

k ∥Dk∥ (q − η) ∥y − F (wk)∥ ,

completing the proof.

In the following proposition, we examine the boundedness of the sequences (xk) and (wk)
generated by Algorithm 1.

prop:bound Proposition 2.7. Let (A1) – (A4) hold and (xk), (wk) be sequences generated by Algorithm 1
(with (λk) and (αk) chosen as in Steps [1] and [2.3] respectively). If (αk) satisfies Assump-
tion 2.4 then (xk) and (wk) are contained in Bρ(x0).
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Proof. We present here a proof by induction, with inductive step stated as follows:

Assume that (wk)
l−1
k=0, (xk)

l
k=0 ∈ Bρ(x0), and conclude that wl, xl+1 ∈ Bρ(x0).

For l = 1, it holds w0 = x0 ∈ Bρ(x0) and x1 := w0+s0, where
(
A∗

0A0+λ0I
)
s0 = A∗

0[y−F (w0)].
Thus, from Proposition 2.6, (A3), (A4) follows ∥w0−x⋆∥ ≥ ∥x1−x⋆∥, hence x1 ∈ Bρ(x0). Now,
the fact x0, x1 ∈ Bρ(x0) together with Assumption 2.4 imply w1 ∈ Bρ(x0) (see Remark 2.5)).

For l > 1, the inductive assumption ensures xl−1, xl ∈ Bρ(x0). Consequently, Assumption 2.4
implies wl ∈ Bρ(x0). Thus, arguing with Proposition 2.6, (A3), (A4) and the inductive as-
sumption we obtain ∥wl − x⋆∥ ≥ ∥xl+1 − x⋆∥. Therefore, xl+1 ∈ Bρ(x0), concluding the
proof.

In the upcoming proposition we discuss the summability of three series related to inLM, a
crucial element for proving a convergence theorem (see Theorem 2.9).

prop:series Proposition 2.8. Assume that αk fulfills Assumption 2.4, that (A1)-(A4) are fulfilled and
that (xk) and (wk) are generated by Algorithm 1. Then it holds that the limit ∥xk − x∗∥ exist
for all solutions x∗ and that

∞∑
k=0

∥xk+1 − wk∥2 < ∞ ,
∞∑
k=0

λ−1
k ∥F (wk)− y∥2 < ∞ and

∞∑
k=0

λ−1
k ∥F (xk)− y∥2 < ∞.

Proof. From (7) with x = x⋆ and Proposition 2.6 we conclude that1

(1 + αk)∥xk − x∗∥2 − αk∥xk−1 − x∗∥2 + αk(1 + αk)∥xk − xk−1∥2 − ∥xk+1 − x∗∥2 =
= ∥wk − x∗∥2 − ∥xk+1 − x∗∥2 ≥ ∥wk − xk+1∥2 + 2λ−1

k (q − η) ∥Dk∥ ∥F (wk)− y∥ , k ≥ 0 .

Thus, defining φk := ∥xk − x∗∥2 and ηk := αk∥xk − xk−1∥2, we obtain

αk(φk − φk−1)− (φk+1 − φk) + (1 + αk)ηk ≥
≥ ∥xk+1 − wk∥2 + 2λ−1

k (q − η) ∥Dk∥ ∥F (wk)− y∥ , k ≥ 0 . (9) eq:gamma

Since αk < 1 we get from there that

φk+1 − φk − αk(φk − φk−1) ≤ (1 + αk)ηk − ∥wk − xk+1∥2 − 2(q−η)
λk

∥Dk∥∥F (wk)− y∥

≤ 2ηk.

We abbreviate ζk := φk − φk−1 and write [ζk]+ for the positive part and get

ζk+1 ≤ αk[ζk]+ + 2ηk

and hence with αk ≤ α < 1

[ζk+1]+ ≤ αk[ζk]+ + 2ηk ≤ · · · ≤ αk[ζ1]+ + 2

k−1∑
j=0

αjηk−j .

We sum this inequality from k = 0, . . . ,∞ and get

∞∑
k=0

[ζk+1]+ ≤ 1
1−α [ζ1]+ + 2

∞∑
k=0

k−1∑
j=0

αjηk−j . (10) eq:sum-theta-k-+

1Notice that in Algorithm 1 we define xk for k ≥ 0 and αk for k ≥ 1. For this proof we additionally define
x−1 := x0 and α0 := 0; thus, (7) holds trivially for k = 0.
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The latter sum can be calculated by swapping the order and substitution:

∞∑
k=0

k−1∑
j=0

αjηk−j =

∞∑
j=0

∞∑
k=j+1

αjηk−j

∞∑
j=0

αj
∞∑
l=1

ηl =
1

1−α

∞∑
l=1

ηl .

Thus (10) turns into

∞∑
k=0

[ζk+1]+ ≤ 1
1−α

(
[ζ1]+ + 2

∞∑
l=1

ηl

)
.

The series on the right hand side is convergent by assumption and hence
∑∞

k=0[ζk]+ < ∞.

Now we define γk = φk −
∑k

j=1[ζj ]+ which is bounded from below since φk ≥ 0 and the
series is convergent. Moreover we have (recalling the definition of ζk)

γk+1 = φk+1 − [ζk+1]+ −
k∑

j=1

[ζj ]+

≤ φk+1 − φk+1 + φk −
k∑

j=1

[ζj ]+ = γk .

We see that γk is non-increasing and bounded from below, hence convergent. This implies that
the limits

lim
k→∞

φk = lim
k→∞

γk +
∞∑
j=1

[ζj ]+

all exist and since φk = ∥xk − x∗∥2 we get that limk→∞ ∥xk − x∗∥ exists.
Now we start at (9) again and write it as

2λ−1
k (q − η)∥Dk∥ ∥F (wk)− y∥+ ∥xk+1 − wk∥2 ≤ 2ηk + φk − φk+1 + αk[ζk]+ .

Using Lemma 2.3 c) we get

2λ−1
k q(q − η)∥F (wk)− y∥2 + ∥xk+1 − wk∥2 ≤ 2ηk + φk − φk+1 + αk[ζk]+ .

Summing from k = 0, . . . ,∞ gives

∞∑
k=0

(
2λ−1

k q(q − η)∥F (wk)− y∥2 + ∥xk+1 − wk∥2
)
≤ φ1 +

∞∑
k=0

(αk[ζk]+ + 2ηk)

and since the right hand side of this inequality is bounded, we get that
∑

k ∥xk+1 −wk∥2 < ∞
and

∑
k λ

−1
k ∥F (wk) − y∥2 < ∞. Lemma 2.3 d) implies that the last series is convergent as

well.

2.2 A strong convergence result
ssec:2.2

In what follows we prove a (strong) convergence result for the inLM method (Algorithm 1) in
the exact data case. To prove this result we use two additional assumptions:

(A5) There exists λmax > 0 s.t. λk ≤ λmax, for k ≥ 0;

(A6) (αk) is monotone non-increasing (see Step [2.3] of Algorithm 1).
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th:conv Theorem 2.9 (Convergence). Let (A1) – (A6) hold and (xk), (wk) be sequences generated by
Algorithm 1 (with (λk) and (αk) chosen as in Steps [1] and [2.3] respectively). Additionally,
assume that (αk) complies with Assumption 2.4. Then, either the sequences (xk), (wk) stop
after a finite number k0 ∈ N of steps (in this case it holds xk0+1 = wk0 and F (wk0) = y), or
there exists x̄ ∈ Bρ(x0), solution of F (x) = y, s.t. limk xk = limk wk = x̄.

Proof. We consider two cases.

Case I: F (wk0) = y for some k0 ∈ N.
In this case, the sequences (xk), (wk) read x0, . . . , xk0+1 and w0, . . . , wk0 . Moreover, it holds
xk0+1 = wk0 and F (wk0) = y (see Remark 2.1).

Case II: F (wk) ̸= y, for every k ≥ 0.
Notice that, in this case, the real sequence

(
∥F (xk)−y∥

)
is strictly positive. Moreover, it follows

from (A5) and Proposition 2.8 (see second series) that limk ∥F (wk)− y∥ = 0. Therefore, there
exists a strictly monotone increasing sequence (lj) ∈ N satisfying

∥F (wlj )− y∥ ≤ ∥F (wk)− y∥ , for k = 0, . . . , lj . (11) eq:min

Notice that, given k > 0 and z ∈ Bρ(x0), it holds

∥wk − z∥2 − ∥xk+1 − z∥2 = −∥xk+1 − wk∥2 − 2⟨xk+1 − wk, wk − z⟩
≤ 2⟨wk − xk+1, wk − z⟩
= 2⟨λ−1

k A∗
k(F (wk) +Ak(xk+1 − wk)− y), wk − z⟩

= 2λ−1
k ⟨−F (xk+1) + F (wk) +Ak(xk+1 − wk) + F (xk+1)− y,Ak(wk − z)⟩

≤ 2λ−1
k

[
η∥F (xk+1)− F (wk)∥+ ∥F (xk+1)− y∥

]
∥Ak(wk − z)∥

≤ 2λ−1
k (1 + η)

[
η∥F (xk+1)− F (wk)± y∥+ ∥F (xk+1)− y∥

]
∥F (wk)− F (z)± y∥

≤ 2λ−1
k (1 + η)2

[
∥F (xk+1)− y∥∥F (wk)− y∥+ ∥F (xk+1)− y∥∥F (z)− y∥

]
+2λ−1

k η(1 + η)
[
∥F (wk)− y∥2 + ∥F (wk)− y∥∥F (z)− y∥

]
(in the second inequality we used (A2); in the third inequality we used [10, Eq.(11.7)]). Taking
z = wlj in the last inequality and arguing with Lemma 2.3 (d) and (11) it follows

∥wk − wlj∥
2 − ∥xk+1 − wlj∥

2 ≤ 2(1 + η)
[
2
(1 + η)2

1− η
+ 2η

]
λ−1
k ∥F (wk)− y∥2 =: µk , (12) eq:muk

for k = 0, . . . , lj . Next we estimate the second term on the left-hand-side of (12). Lemma 2.2
(with x = wlj ) implies

∥wk+1 − wlj∥
2 = (1 + αk+1)∥xk+1 − wlj∥

2 − αk+1∥xk − wlj∥
2 + αk+1(1 + αk+1)∥xk+1 − xk∥2,

for k = 0, 1, . . . ; from where we conclude that

0 ≤ ∥xk+1 − wlj∥
2 ≤ ∥wk+1 − wlj∥

2 + αk+1

(
∥xk − wlj∥

2 − ∥xk+1 − wlj∥
2
)
, k ≥ 0 . (13) eq:xlj

Now, combining (12) with (13), and arguing with (A6), we obtain

∥wk − wlj∥
2 − ∥wk+1 − wlj∥

2 ≤ αk+1

(
∥xk − wlj∥

2 − ∥xk+1 − wlj∥
2
)
+ µk

≤ αk∥xk − wlj∥
2 − αk+1∥xk+1 − wlj∥

2 + µk , (14)

9



for k = 0, . . . , lj . Let 0 ≤ m ≤ lj . Adding up (14) for k = m, . . . , lj − 1 follows

∥wm − wlj∥
2 − ∥wlj − wlj∥

2 ≤ αm∥xm − wlj∥
2 − αlj∥xlj − wlj∥

2 +
lj−1∑
k=m

µk ,

from where we derive that, for any ε > 0 it holds

∥wm − wlj∥
2 ≤ αm∥xm − wlj ± wm∥2 +

lj−1∑
k=m

µk

≤ αm

(
(1 + ε)∥xm − wm∥2 + (1 + 1

ε )∥wm − wlj∥
2
)
+

lj∑
k=m

µk

≤ (1 + ε)
lj∑

k=m

αk∥xk − wk∥2 + (1 + 1
ε )αm∥wm − wlj∥2 +

lj∑
k=m

µk .

Consequently, whenever m ≤ lj − 1, it holds

(1− ε+1
ε αm)∥wm − wlj∥

2 ≤ (1 + ε)
lj∑

k=m

αk∥xk − wk∥2 +
lj∑

k=m

µk .

Now we choose ε > 0 such that ε+1
ε α0 < 1, define β := (1 − ε+1

ε α0)
−1, it follows from (A6)

and (5a)

∥wm − wlj∥
2 ≤ 2β

∞∑
k=m

αk∥xk − wk∥2 + β
∞∑

k=m

µk

≤ 2βα3
∞∑

k=m

∥xk − xk−1∥2 + β
∞∑

k=m

µk , m < lj (15)

(notice that β > 0 and αk ≤ α due to (A6)).
Notice that (A2) together with Proposition 2.8 guarantee the summability of both series∑

k µk and
∑

k ∥xk−xk−1∥2. Thus, defining sm := 2βα3
∑

k≥m ∥xk−xk−1∥2+β
∑

k≥m µk, for
m ∈ N, follows sm → 0 as m → ∞.

Let n > m be given. Choosing lj > n, it follows from (15)

∥wn − wm∥ ≤ ∥wn − wlj∥+ ∥wlj − wm∥ ≤
√
sn +

√
sm ≤ 2

√
sm ,

from where we conclude that (wk) is a Cauchy sequence. Consequently, (wk) converges to some
x̄ ∈ X. From Proposition 2.8 (see first series) it follows limk xk = limk wk = x̄.

It remais to prove that x̄ is a solution of F (x) = y. It suffices to verify that ∥F (wk)−y∥ → 0
as k → ∞. This fact, however, is a consequence of Proposition 2.8 (see second series) together
with Assumption (A5).

2.3 Regularization properties
ssec:2.3

In this section we address the noisy data case, i.e. δ > 0, and investigate regularization
properties of the inertial Levenberg-Marquardt method. For noisy data the inLM method
reads is stated in Algorithm 2.

rem:alg2 Remark 2.10 (Comments regarding Algorithm 2).
The discrepancy principle is used as stopping criterion in Algorithm 2. i.e. the loop in Step [2]
terminates at step k∗ = k∗(δ, yδ) s.t. k∗ := min{k ∈ N; ∥F (wδ

k)− yδ∥ ≤ τδ}, where τ > 1.
Note that Algorithm 2 generate sequences (xδk)

k∗+1
k=0 and (wδ

k)
k∗
k=0. The finiteness of the

stopping index k∗ in Step [2.5] is addressed in Proposition 2.13.
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[0] choose an initial guess x0 ∈ X; set wδ
0 := x0; k := 0; flag := ’FALSE’;

[1] choose τ > (η + 1)(q − η)−1, α ∈ [0, 1) and (λk)k≥0 ∈ R+;

[2] repeat

if
(
∥F (wδ

k)− yδ∥ > τδ
)

then

[2.1] Aδ
k := F ′(wδ

k); compute sδk ∈ X as the solution of(
(Aδ

k)
∗Aδ

k + λkI
)
sδk = (Aδ

k)
∗ (yδ − F (wδ

k)
)
;

[2.2] xδk+1 := wδ
k + sδk;

[2.3] k := k + 1;

[2.4] choose αδ
k ∈ [0, α]; wδ

k := xδk + αδ
k(x

δ
k − xδk−1);

else

[2.5] sδk := 0; xδk+1 := wδ
k; k∗ := k; flag := ’TRUE’;

end if

until
(
flag = ’TRUE’

)
alg:init-noise

Algorithm 2: Inertial Levenberg-Marquardt method in the noisy data case.

For each 0 ≤ k ≤ k∗, define Dδ
k := F (wδ

k) + Aδ
k(x

δ
k+1 − wδ

k) − yδ. It is straightforward to
verify that the results stated in Lemma 2.2 and Lemma 2.3 remain valid in the noisy data case
(the corresponding proofs are analogous and will be omitted).

Additionally, if the sequence of inertial paramenters (αδ
k) in Algorithm 2 is chosen in ac-

cordance with

αδ
k :=

 min

{
θk

∥xδk − xδk−1∥2
,
min

{
θk, ρ− ∥xδk − x0∥

}
∥xδk − xδk−1∥

, α

}
, if ∥xδk − xδk−1∥ > 0

0 , otherwise

(16) def:alphakdelta

(where (θk) is chosen as in Assumption 2.4), then Remark 2.5 (a) holds true for k = 1, . . . , k∗.

In the sequel we extend the “gain estimate” in Proposition 2.6 to the noisy data case.

prop:gainN Proposition 2.11. Let (A1) – (A4) hold and (xδk), (w
δ
k) be sequences generated by Algorithm 2

(with (λk) and (αδ
k) chosen as in Steps [1] and [2.4] respectively). If wδ

k ∈ Bρ(x0) for some
0 ≤ k ≤ k∗, then

∥wδ
k − x∗∥2 − ∥xδk+1 − x∗∥2 ≥ ∥wδ

k − xδk+1∥2 + 2λ−1
k ∥Dδ

k∥
[
(q − η)∥yδ − F (wδ

k)∥ − (η + 1)δ
]
,

for any x∗ ∈ Bρ(x0) solution of F (x) = y.

Proof. Since Lemma 2.3 remains valid in the noise data case (see Remark 2.10), we make a

11



similar argument as in the proof of Proposition 2.6 to establish that

∥wδ
k − x∗∥2 − ∥xδk+1 − x∗∥2 = ∥wδ

k − xδk+1∥2 + 2
〈
wδ
k − xδk+1, x

δ
k+1 − x∗

〉
= ∥wδ

k − xδk+1∥2 + 2λ−1
k

〈
(Aδ

k)
∗[F (wδ

k) +Aδ
k(x

δ
k+1 − wδ

k)− yδ
]
, xδk+1 − x∗

〉
= ∥wδ

k − xδk+1∥2 + 2λ−1
k

〈
Dδ

k, A
δ
k(x

δ
k+1 − x∗)

〉
= ∥wδ

k − xδk+1∥2 + 2λ−1
k

〈
Dδ

k, A
δ
k(x

δ
k+1 − x∗)±Aδ

kw
δ
k ± F (wδ

k)± yδ
〉

= ∥wδ
k − xδk+1∥2 + 2λ−1

k

[
∥Dδ

k∥2 +
〈
Dδ

k, A
δ
k(w

δ
k − x∗)− F (wδ

k) + yδ
〉]

= ∥wδ
k − xδk+1∥2 + 2λ−1

k

[
∥Dδ

k∥2 +
〈
Dδ

k, F (x∗)− F (wδ
k)−Aδ

k(x
∗ − wδ

k) + yδ − y
〉]

≥ ∥wδ
k − xδk+1∥2 + 2λ−1

k

[
∥Dδ

k∥2 − η∥Dk∥∥y − F (wδ
k)∥ − ∥Dδ

k∥δ
]

≥ ∥wδ
k − xδk+1∥2 + 2λ−1

k ∥Dδ
k∥
[
∥Dδ

k∥ − η∥yδ − F (wδ
k)∥ − (η + 1)δ

]
≥ ∥wδ

k − xδk+1∥2 + 2λ−1
k ∥Dδ

k∥
[
(q − η)∥yδ − F (wδ

k)∥ − (η + 1)δ
]
,

completing the proof.

cor:boundN Corollary 2.12. Due to the choice τ > (η+ 1)(q− η)−1 in Step [1] of Algorithm 2, it follows
from Proposition 2.11

∥wδ
k − x⋆∥2 − ∥xδk+1 − x⋆∥2 ≥ ∥wδ

k − xδk+1∥2 + 2λ−1
k ∥Dδ

k∥
[
(q − η)τδ − (η + 1)δ

]
≥ 0,

for k = 0, . . . k∗. Consequently, under the assumptions of Proposition 2.11, if (αδ
k) satisfies

(16) then xδk, w
δ
k ∈ Bρ(x0) for k = 0, . . . k∗ (the proof of this assertion follows the lines of the

proof of Proposition 2.7 and is omitted).

In the sequel we address the finiteness of the stopping index k∗ as defined in Step [2.5] of
Algorithm 2.

prop:kstar Proposition 2.13. Let (A1) – (A4) hold and (xδk), (w
δ
k) be sequences generated by Algorithm 2

(with (λk) and (αδ
k) chosen as in Steps [1] and [2.4] respectively). Assume that (αδ

k) satisfies
(16). If

∑
k λ

−1
k = ∞ the stopping index k∗ defined in Step [2.5] is finite. Additionaly, if

λk ≤ λmax then

k∗ ≤ λmax

(
2qτδ2

[
(q − η)τ − (η + 1)

])−1[
ρ2 + 2

∑
k θk

]
.

Proof. Recall that Lemma 2.2 and Lemma 2.3 remain valid in the noisy data case (see Re-
mark 2.10). We claim that, if k∗ is not finite the sequence of partial sums (σn) defined by
σn :=

∑n
k=0 α

δ
k

(
∥xδk−1 − x⋆∥2 − ∥xδk − x⋆∥2

)
is bounded (here xδ−1 := xδ0). Indeed, from

Lemma 2.2 (with x = x⋆) and Proposition 2.11 follow

(1 + αδ
k)∥xδk − x⋆∥2 − αδ

k∥xδk−1 − x⋆∥2 + αδ
k(1 + αδ

k)∥xδk − xδk−1∥2 − ∥xk+1 − x⋆∥2 =

= ∥wδ
k − x⋆∥2 − ∥xδk+1 − x⋆∥2 ≥ 0 , k ≥ 0 .

Thus, αδ
k

(
∥xδk − x⋆∥2 − ∥xδk−1 − x⋆∥2

)
+ ∥xδk − x⋆∥2 + 2αδ

k∥xδk − xδk−1∥2 − ∥xδk+1 − x⋆∥2 ≥ 0.

Consequently, αδ
k

(
∥xδk−1−x⋆∥2−∥xδk −x⋆∥2

)
≤ ∥xδk −x⋆∥2−∥xδk+1−x⋆∥2+2αδ

k∥xδk −xδk−1∥2,
for k ≥ 0. Adding the last inequality for k = 0, . . . n, and using (16) we obtain

σn ≤ ∥xδ0 − x⋆∥2 − ∥xδn+1 − x⋆∥2 + 2
n∑

k=0

αδ
k∥xδk − xδk−1∥2 ≤ ρ2 + 2

∞∑
k=0

θk . (17) eq:sigmaN

The boundedness of sequence (σn) follows from the summability of (θk), proving our claim.
For each 0 ≤ k ≤ k∗ we derive from Proposition 2.11 and Lemma 2.3 (c)

2λ−1
k qτδ2[(q − η)τ − (η + 1)] ≤ 2λ−1

k ∥Dδ
k∥
[
(q − η)∥yδ − F (wδ

k)∥ − (η + 1)δ
]

≤ ∥wδ
k − x⋆∥2 − ∥xδk+1 − x⋆∥2.
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This inequality, Lemma 2.2 (with x = x⋆), (16) and Corollary 2.12 allow us to conclude that

2λ−1
k qτδ2[(q − η)τ − (η + 1)] ≤ ∥xδk − x⋆∥2 − ∥xδk+1 − x⋆∥2 + αδ

k∥xδk − x⋆∥2

− αδ
k∥xδk−1 − x⋆∥2 + αδ

k(1 + αδ
k)∥xδk − xδk−1∥2

≤ ∥xδk − x⋆∥2 − ∥xδk+1 − x⋆∥2 + αδ
k

(
∥xδk − x⋆∥2 − ∥xδk−1 − x⋆∥2

)
+ 2θk

for 0 ≤ k ≤ k∗. Summing up the last inequality for k = 0, . . . , n with n ≤ k∗ gives us

2qτδ2
[
(q − η)τ − (η + 1)

] n∑
k=0

λ−1
k ≤ ∥x0 − x⋆∥2 + σn + 2

n∑
k=0

θk . (18) eq:finitek

If k∗ is not finite, it follows from the boundedness of (σn) and the summability of (θk) that
the right hand side of (18) is bounded. However, this contradicts the assumption

∑
k λ

−1
k =

∞. Thus, k∗ has to be finite. To prove last assertion, note that the additional assumption
λk ≤ λmax together with (18) and (17) imply 2qτδ2

[
(q−η)τ − (η+1)

]
λ−1
max k

∗ ≤ 2ρ2+4
∑

k θk,
concluding the proof.

In the sequel we present the main results of this section, namely a stability result (see
Theorem 2.14) and a semi-convergence result (see Theorem 2.15).

th:stabil Theorem 2.14 (Stability). Let (A1) hold, (δj) be a sequence of positive numbers converging
to zero and (yδ

j
) be a sequence of noisy data satisfying ∥yδj − y∥ ≤ δj, where y ∈ Rg(F ). For

each j ∈ N, let (xδjl )
k∗j+1

l=0 and (wδj

l )
k∗j
l=0 be the corresponding sequences generated by Algorithm 2,

with (λk) and (αδj

k ) chosen as in Steps [1] and [2.4] respectively (here k∗j represent the stopping

indices defined in Step [2.5]). Additionaly, assume that (αδj

k ) complies with (16).
Let (xk) and (wk) be the sequences generated by Algorithm 1 with (αk) satisfying Assump-

tion 2.4. For each k ≥ 0 it holds

lim
j→∞

xδ
j

k = xk and lim
j→∞

wδj

k = wk (19) eq:stabil

(in view of Remark 2.1, if (xk) and (wk) are finite then the first limit in (19) holds for k =
0, . . . , k0 + 1, while the second limit holds for k = 0, . . . , k0).

2

Proof. We give an inductive proof. In what follows we adopt the simplifying notation Aj
k :=

F ′(wδj

k ). Notice that wδj
0 = w0 = x0 = xδ

j

0 for all j ∈ N. Thus, (19) holds for k = 0. Next,
assume the existence of (xl)l≤k and (wl)l≤k generated by Algorithm 1 (and corresponding

(αl)l≤k satisfying Assumption 2.4) such that limj x
δj

l = xl and limj w
δj

l = wl, for l = 0, . . . , k.
If F (wk) = y then k0 := k, xk0+1 = wk0 and (19) holds only for a finite number of indexes

(i.e. (xk) and (wk) are finite). If F (wk) ̸= y, it follows from Algorithms 1 and 2 that

sk = (A∗
kAk + λkI)

−1A∗
k(y − F (wk)) and sδ

j

k = [(Aj
k)

∗Aj
k + λkI]

−1(Aj
k)

∗(yδ
j − F (wδj

k )).

Thus (A1), the assumption limj y
δj = y, the inductive assumption limj w

δj

k = wk, and the fact

min
{
∥A∗

kAk + λkI∥, minj ∥(Aj
k)

∗Aj
k + λkI∥

}
≥ λk > 0 allow us to conclude that limj s

δj

k = sk.
Consequently,

lim
j→∞

xδ
j

k+1 = lim
j→∞

(wδj

k + sδ
j

k ) = wk + sk = xk+1 . (20) eq:Lxkm1

At this point, two distinct cases must be considered:
Case I: xk+1 ̸= xk. Choose αk+1 according to Assumption 2.4. From limj x

δj

k = xk, (20)

2In this case xk0+1 = wk0 and F (wk0) = y.
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and (16) it follows that limj α
δj

k+1 = αk+1. Defining wk+1 as in Step [2.3] of Algorithm 1, we
conclude that

lim
j→∞

wδj

k+1 = lim
j→∞

(
xδ

j

k+1 + αδj

k+1(x
δj

k+1 − xδ
j

k )
)

= xk+1 + αk+1(xk+1 − xk) = wk+1 .

Case II: xk+1 = xk. Assumption 2.4 implies αk+1 = 0. Define wk+1 as in Step [2.1] of
Algorithm 1 (in this case wk+1 = xk+1). From limj x

δj

k = xk, supj α
δj

k+1 ≤ α, (20), and
Step [2.4] of Algorithm 2, it follows that

lim
j→∞

wδj

k+1 = lim
j→∞

[
xδ

j

k+1 + αδj

k+1(x
δj

k+1 − xδ
j

k )
]

= xk+1 = wk+1 .

Thus, in either case it holds limj w
δj

k+1 = wk+1, concluding the inductive proof.

th:semi-conv Theorem 2.15 (Semi-convergence). Let (A1) - (A6) hold, (δj) be a sequence of positive num-
bers converging to zero, and (yδ

j
) be a sequence of noisy data satisfying ∥yδj − y∥ ≤ δj, where

y ∈ Rg(F ). For each j ∈ N, let (xδjl )
k∗j+1

l=0 and (wδj

l )
k∗j
l=0 be sequences generated by Algorithm 2,

with (λl) and (αδj

l ) chosen as in Steps [1] and [2.4] respectively, and (αδj

l )
k∗j
l=0 complying with

(16) (here, k∗j = k∗(δj , yj) is the stopping index defined in Step [2.5]).

The sequence (xδ
j

k∗j
)j converges strongly to some x̄ ∈ Bρ(x0), such that F (x̄) = y.

Proof. Let (xk), (wk) be sequences generated by Algorithm 1 with exact data y and (αk)
satisfying Assumption 2.4. Since (A1) - (A6) hold, it follows from Theorem 2.9 the existence
of x̄ ∈ Bρ(x0), solution of F (x) = y, s.t. limk xk = limk wk = x̄. We aim to prove that

limj x
δj

k∗j
= x̄. It suffices to prove that every subsequence of (xδ

j

k∗j
)j has itself a subsequence

converging strongly to x̄.
Denote an arbitrary subsequence of (xδ

j

k∗j
)j again by (xδ

j

k∗j
)j , and represent by (k∗j )j ∈ N the

corresponding subsequence of indices. Two cases are considered:

Case 1. (k∗j )j has a finite accumulation point.
In this case, we can extract a subsequence (k∗jm) of (k

∗
j ) such that k∗jm = n, for some n ∈ N and

all indices jm. Applying Theorem 2.14 to (δjm) and (yδ
jm

), we conclude that wδjm
k∗jm

= wδjm
n →

wn and xδ
jm

k∗jm+1 = xδ
jm

n+1 → xn+1, as jm → ∞. We claim that F (wn) = y. Indeed, ∥F (wn)−y∥ =

limjm ∥F (wδjm
n )− y∥ ≤ limjm

(
∥F (wδjm

n )− yδ
jm∥+ ∥yδjm − y∥

)
≤ limjm(τ + 1) δjm = 0. I.e. in

this case, the second assertion of Theorem 2.9 holds with k0 = n. Thus, xn+1 = wn = x̄.

Case 2. (k∗j )j has no finite accumulation point.
In this case we can extract a monotone strictly increasing subsequence, again denoted by (k∗j )j .
Take ε > 0. From Theorem 2.9 follows the existence of K1 = K1(ε) ∈ N such that

∥xk − x̄∥ < 1
3ε , k ≥ K1 . (21) eq:eps3-1

Since
∑

k θk is finite (see Assumption 2.4), there exists K2 = K2(ε) ∈ N such that∑
k≥K2

θk ≤ 1
3ε . (22) eq:eps3-2

Define K = K(ε) := max{K1,K2}. Due to the monotonicity of (k∗j )j , there exists J1 ∈ N such
that k∗j > K for j ≥ J1.

Theorem 2.14 applied to the subsequences (δj)j and (yδ
j
)j , corresponding to (k∗j )j , implies

the existence of J2 ∈ N s.t.
∥xδjK − xK∥ ≤ 1

3ε , j > J2 . (23) eq:eps3-3
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Set J := max{J1, J2}. From Proposition 2.11 (with x∗ = x̄) and Step [2.4] of Algorithm 2
follow ∥xδjk+1 − x̄∥ ≤ ∥wδj

k − x̄∥ ≤ ∥xδjk − x̄∥+αδj

k ∥xδjk − xδ
j

k−1∥, for j ≥ J and k = 0, . . . , k∗j − 1.
Consequently,

∥xδjk+1 − x̄∥ − ∥xδjk − x̄∥ ≤ αδj

k ∥xδjk − xδ
j

k−1∥ , (24) eq:telescopic

for j ≥ J and k = 0, . . . , k∗j − 1. Adding (24) for k = K, . . . , k∗j − 1 we obtain

∥xδjk∗j − x̄∥ ≤ ∥xδjK − x̄∥ +
k∗j−1∑
k=K

αδj

k ∥xδjk − xδ
j

k−1∥ , j ≥ J .

Thus, arguing with (16), together with (21), (22) and (23), we obtain

∥xδjk∗j − x̄∥ ≤ ∥xδjK − x̄∥+
k∗j−1∑
k=K

θk ≤ ∥xδjK − xK∥+ ∥xK − x̄∥+
∑
k≥K

θk ≤ 1
3ε+

1
3ε+

1
3ε,

for j ≥ J . Repeating the above argument for ε = 1, 12 ,
1
3 , . . . we generate a sequence of indices

j1 < j2 < j3 < . . . such that ∥xδjmk∗jm
− x̄∥ ≤ 1

m , for m ∈ N. This concludes Case 2, and completes

the proof of the theorem.

3 Numerical experiments
sec:numerics

In this section two distinct ill-posed problems are used to investigate the numerical efficiency
of the inLM method.

3.1 Parameter identification in an elliptic PDE

We aim to identify the coefficient c ≥ 0 in the elliptic PDE on the unit square Ω = (0, 1)2 with
Dirichlet boundary condition

−∆u+ cu = g, in Ω u = ū on ∂Ω (25) eqn:PDE_reco_problem_continuous

from the knowledge of u on the full domain S ⊂ Ω. Here the right-hand side g ∈ L2(Ω) and
boundary conditions ū ∈ H3/2(Ω) are known. This is a typical benchmark inverse problem,
see [14, Example 4.2]. If u has no zeroes in Ω, then c can be recovered explicitly by

c = (g +∆u)/u. (26) eqn:c_from_simple_division

However, for u given with noise, this operation is expected to be unstable as the application
of the Laplacian is ill-conditioned. We rearrange and discretize (25) with a uniform grid of
size n × n and use the standard five-point stencil ∆n with fineness 1/n in both dimensions
as a discretization of the Laplacian ∆. We associate functions on Ω with column vectors by
assembling its values on the grid and traversing row-wise. We state the discretized inverse
problem as asking for a reconstruction of cδ ∈ Rn2

from a given noisy solution uδ ∈ Rn2
and a

vector z ∈ Rn2
, which contains the discretized right-hand side g as well as boundary conditions

ū from (25), such that

F (cδ) :=
(
−∆n + diag(cδ)

)−1
(z) = uδ, (27) eqn:PDE_reco_problem_discrete

where diag(cδ) denotes the diagonal matrix with entries from cδ. The mapping F from (27) is
known to fulfill assumption (A2) locally. For g and ū we set

g(x, y) = 200 · e−10
(
x−1

2

)2
−10
(
y−1

2

)2
,

ū(x, y) = 0, (x, y) ∈ ∂Ω
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and c† = c†0 ∗ φ with

c†0(x, y) =

{
10, if min

( √
(x− 0.25)2 + (y − 0.5)2,

√
(x− 0.75)2 + (y − 0.5)2

)
< 1

10 ,

0, otherwise,

φ(x, y) =
1

20
√
π
· e−

x2+y2

200 , x, y ∈ (0, 1)

and compute uδ by a forward evaluation of the operator F from (27). We choose n = 100,
which means that all vectors have size 104. We approximate the linear solve in step [2.1] of
Algorithm 2 by two steps of the conjugate gradient method with initial value zero for the
s-variable.

We first examine the noiseless case. We depict our chosen c† and the corresponding solu-
tion u† of the forward problem in Figure 1. The vector u† is everywhere nonzero and hence we
could recover c† exactly by division as in (26). The rightmost subfigure in Figure 1 shows that
this is perfectly possible in our case. Nevertheless, we test how well the iterates wk of Algo-
rithm 1 are able to approximate the coefficient c†. We choose w0 = 0 and consider α = k/10
for k = 0, 2, ..., 10, where α = 0 corresponds to the non-accelerated Levenberg-Marquardt
method and α = 1 is not covered by our theory. To investigate convergence, we keep track
of the residuals ∥F (wk) − u†∥ and the distances ∥ck − c†∥. The corresponding results can be
seen in Figure 2. We observe that all methods converge, where convergence is faster for larger
acceleration parameters α except for α = 1. In Figure 3 we see that after 10 iterations, larger
values of α proceed much faster in reconstruction and α = 1 gives the best guess. Figure 4
shows that after 500 iterations the reconstructions look decent for α < 1, but the peak shape
is not fit for α = 1.

Next, we add 1% of relative noise to the forward solution u†, which yields a noisy vector uδ

with no visible difference from u† (left subfigures in Figure 1 and Figure 5). Here, the naive
calculation of cδ by (26) fails drastically, as one sees from the right subfigure in Figure 5. We
compute reconstructions using Algorithm 2, where we again initialize by w0 = 0 and choose
α = k/10 for k = 0, 2, ..., 10. Figure 6 shows the typical semi-convergence phenomenon. As
one can see, the closest distance to the true coefficient is achieved earlier for larger values of α,
which even includes α = 1. We illustrate stopping by Morozov’s discrepancy principle with the
horizontal line in the right subfigure of Figure 6 and with bullet points on the graphs, where
we set τ = 1. From both Figure 6 (left subfigure) and from Figure 7 one can see that stopping
happens too early even though we set τ = 1. Indeed, we see that for α < 1 the residuals decay
even slightly below the absolute noise level, where the approached residual value does not
depend of the concrete value of α < 1. After 100 iterations, the reconstruction looks decent for
α ≤ 0.8, but breaks down for α = 1, see Figure 8. In Figure 9 we see that the reconstruction
at the respective iterations where wk is closest to c† in Euclidean norm do not look different
for varying α (cf. Figure 6).
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Figure 1: Left to right: exact PDE solution u† (exact solution to the forward problem), c†

(exact solution to the inverse problem), reconstruction of c† by (26) fig:noiseless_exact_solutions
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Figure 9: Results with 1% of relative noise, left to right: iterates wk∗(α) for α = k/10 for

k = 0, 2, ..., 10, where k∗(α) is the index where wk is closest to c† in Euclidean norm fig:noisy_recos_100_iter_closest

3.2 An inverse problem in neural network training
ssec:num-nnp

In this section, the problem of forecasting the concentration of CO in a gas sensor array is
considered. Since we already used this model problem for numerical experiments in [25, 26],
we are here brief in the description.

We utilize a dataset obtained from a gas delivery platform facility at the ChemoSignals
Laboratory in the BioCircuits Institute at the University of California, San Diego (the ac-
tual data utilized here can be accessed on the UC Irvine Machine Learning Repository at
https://archive.ics.uci.edu/ml/index.php, specifically under the dataset titled Gas sensor ar-
ray under dynamic gas mixtures).

Formulation of the inverse problem. This dataset comprises readings from 16 different
chemical sensors exposed to varying concentrations of a mixture of Ethylene and CO in the
air. The measurements were obtained through continuous acquisition of signals from the 16-
sensor array over approximately 12 hours without interruption; each sensor data consists of
N = 4, 188, 262 scalar measurements (for a comprehensive description of the experiment, please
see [11, 25]).

We address the inverse problem proposed in [25, 26] namely, to predict the reading from
sensor #16, the last sensor, by leveraging the readings from the preceding sensors (see [25,
Figure 3] for scatter plots of sensor #i readings against sensor #16 readings, for i ≤ 15). As
in [26], we employ a neural network (NN) in this context, which takes the readings from the
first sensors as input and produces a scalar value as output, predicting the reading of the last
sensor. Following [26], the structure of the NN used in our experiments reads:

— Input: z ∈ R14, readings of the first 14 sensors;3

3Sensor #2 readings are excluded due to significant lack of accuracy; see [25].
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— Output: NN(z;W, b) = σ(Wz + b) ∈ R.
Here W ∈ R1×14 is a matrix of weights, b ∈ R is a scalar bias, and σ : R → R is the activation
function defined by

σ(t) =


c+ a(t− c) , t ≥ c

t , −c < t < c
−c+ a(t+ c) , t ≤ −c

, (28) eq:sigma

where 0 < a < 1 and c > 0. This is a variation of the saturated linear activation function [7]
(the constants a and c should be chosen s.t. the range of σ contains all possible readings of
sensor #16).

This is a shallow NN with only one layer (the output layer); the dimention of the cor-
responding parameter space is 15, the dimention of (W, b). For linear σ, this NN approach
simplifies to the multiple linear regression approach considered in [25]. The inverse problem
under consideration is a NN training problem, i.e. one aims to find an approximate solution
to the nonlinear system

Fi(W, b) = yδi , i = 0, . . . , Nt − 1,

where Fi(W, b) := NN(zi;W, b) = σ(Wzi + b). Here Nt < N is the size of the training set and
zi ∈ R14 contains the readings of sensors (#1,#3,#4, . . . ,#15), for i = 0, . . . , Nt − 1. To suit
our objectives, it is advantageous to express the preceding system in the form

F(W, b) = yδ , (29) eq:ip-nn

where F(W, b) :=
[
Fi(W, b)

]Nt−1

i=0
and yδ =

[
yδi
]Nt−1

i=0
.

rem:wTCC Remark 3.1 (On the choice of the activation function). The real function σ(t) in (28) is not
differentiable at t = −c and t = c. Consequently, the theoretical findings discussed in Section 2
cannot be applied to the inverse problem in (29) (indeed, the operator F does not satisfy (A1),
(A2)). However, one observes that:

Defining s(t) := ∂+σ(t), the right derivative of σ at t ∈ R, a direct calculation shows that

∥σ(t′)− σ(t)− s(t)(t′ − t)∥ ≤ η̃∥σ(t′)− σ(t)∥ for all t, t′ ∈ R (30) eq:tcc-s

with η̃ = (1 − a)a−1. Therefore, for each 0 ≤ i < Nt the operator Fi : (W, b) 7→ σ(Wzi + b),
with σ as in (28), satisfies (A2) in R14 × R with F ′

i (W, b) replaced by F̃ ′
i (W, b) : R14 ×

R ∋ (Wh, bh) 7→ s(Wzi + b)(Whzi + bh) ∈ R; the corresponding constant in (A2) reads
ηi = (1 − a)a−1max{∥zi∥, 1}. An immediate consequence of these facts is that F : (W, b) 7→[
Fi(W, b)

]Nt−1

i=0
in (29) satisfies (A2) in R14 × R, with F ′

i replaced by F̃ ′, for η = maxi{ηi}.
It is well known that convergence proofs of nonlinear Landweber and LM methods can be

derived under assumption (A2) where F ′ does not necessarily have to be the derivative of F
(see [15]); it only needs to be a linear operator that is uniformly bounded in a neighborhood of
the initial guess x0. We conjecture that the results obtained in Section 2 can be extended to
the framework described above. This is part of our ongoing work.

For a given pair of parameters (W, b), the performance P of the corresponding neural
network NN(·;W, b) is defined by

P(NN(·;W, b)) := 1− 1

NT

Nt+NT−1∑
i=Nt

∥NN(zi;W, b)− yδi ∥
∥yδi ∥

, (31) def:perf

were NT ∈ N is the size of the test set. The sum in the above definition gives the average
misfit betwen the predicted value NN(zi;W, b) and yδi , evaluated over the test set {zi, Nt ≤
i < Nt +NT − 1}. Notice that 0 ≤ P(NN(·;W, b)) ≤ 1 for all (W, b), while P(NN(·;W, b)) = 1
is the best possible performance.
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Remark 3.2 (The training set and test set). The ’training set’ and ’test set’ are comprised
of samples with sizes of Nt and NT respectively. In our numerical experiments we use Nt =
4, 000, 000 and NT = 100, 000 (notice that Nt+NT < N).

Numerical implementations. In what follows the inLM method is implemented for solving
the NN training problem (29). In view of Remark 3.1 we choose a = 2

3 and c = 8 in (28).
Consequently, we generate an activation function σ̄ of the form (28), satisfying (30) for η = 0.5.

The sensor readings (zi, y
δ
i ) ∈ R14×R on the training set are scaled by the factor maxi≤Nt ∥zi∥.

An analogous procedure is performed on the test set. Consequently, after scaling, it holds
∥zi∥ ≤ 1, for i = 0, . . . , Nt+NT . From Remark 3.1 it follows that, for σ̄ as above, all operators
Fi(W, b) satisfy (A2) (with F ′

i replaced by F̃ ′
i ) for the same constant η = 0.5; the same holds

for the operator F in (29).
In our experiments the initial guess (W0, b0) is a random vector with coordinate values

ranging in (−1, 1). We approximate the linear solve in step [2.1] of Algorithm 2 by three
steps of the conjugate gradient method with zero initial value. Three different runs of the
inLM method are presented, each one for a different choice of (constant) inertial parameter
αk, namely {0.05, 0, 10, 0.20}.
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Figure 10: Neural Network training problem. (TOP) Evolution of relative residual for different meth-
ods; (BOTTOM) Prediction error of the trained NN for the test-set: LM method (left) and inLM
method (right). fig:inertial-LM

For comparison purposes the classical LM method (αk = 0) was also implemented. Since
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the noise level δ is not known, all methods are computed for ten steps;4 after the tenth step the
residual evolution stagnates for all methods. The obtained results are summarized in Figure 10:

� (TOP) Evolution of relative residual
∑Nt−1

i=0
∥NN(zi;Wk,bk)−yδi ∥
∥NN(zi;W0,b0)−yδi ∥

on the training set – all

methods.

� (BOTTOM-RIGHT) inLMmethod: relative prediction error ∥NN(zi;Wk∗ , bk∗)−yδi ∥/∥yδi ∥
is plotted for the test set {zi, Nt ≤ i < Nt +NT − 1} (BLUE); the average value (RED)
is 0.026. The performance of the trained Neural Network amounts to 97%.

� (BOTTOM-LEFT): For comparison, the prediction accuracy of the NN trained by the
LM method is plotted for the same test set (BLUE), the average value is 0.037 (RED).
The performance of the trained Neural Network amounts to 96%.

Here are a few observations from our numerical experiments:

� For constant choices of αk, small values yield the best results (in our experiments αk =
0.05 and 0.10). For even smaller constant values, such as αk = 0.01, the performance of
the inLM method becomes very similar to that of the LM method (which corresponds to
αk = 0).

� For larger constant values of αk, e.g. αk = 0.20, the inLM method becomes unstable and
its performance deteriorates compared to that of the LM method.

� The Neural Network trained using the inLM method outperforms the one trained with
the LM method. Additionally, the inLM method converges faster. The residual decay for
the inLM method stagnates after 6 steps, whereas it takes 10 steps for the LM method
(see Figure 10).

4 Final remarks and conclusions
sec:conclusions

In this manuscript we propose and analyze an implicit inertial type iteration, namely the iner-
tial Levenberg Marquardt (inLM) method, as an alternative for obtaining stable approximate
solutions to nonlinear ill-posed operator equations. This new method can be considered as an
extension of the classical Levenberg Marquardt (LM) method (indeed, if the inertial parameters
αk are set to zero the inLM reduces to the LM method).

The main results discussed in this notes are: boundedness of the sequences (xk) and (wk)
generated by the inLM method (Propositions 2.6 and 2.7), strong convergence for exact data
(Theorem 2.9), stability and semi-convergence for noisy data (Theorems 2.14 and 2.15 respec-
tively). We also provide a bound for the stopping index in the noisy data case (Proposi-
tion 2.13).

In Section 3 two distinct ill-posed problems are used to investigate the numerical efficiency
of the proposed inLM method: A parameter identification problem in an elliptic PDE and an
inverse problem in neural network training.

The preliminary results obtained in our numerical experiments indicate a better perfor-
mance (faster convergence) of the inLM method when compared to the LM method. The
inLM method not only converges faster than the LM method (as shown in Figures 6 and 10),
but it also attains an approximate solution with a significantly smaller residual in the second
inverse problem.

4Each step corresponds to an epoch.
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