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Abstract5

In this manuscript we propose and analyze an inexact iterated-Tikhonov method with rela-6

tive error tolerance (ret-iT method) for obtaining, in a stable way, approximate solutions to linear7

ill-posed operator equations. Convergence analysis is provided. Numerical experiments are pre-8

sented for an exponentially ill-posed elliptic problem, demonstrating significant improvement in9

performance compared to standard implementations of the iterated-Tikhonov (iT) method.10
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1 Introduction13

sec:intro

The problem we are interested in consists of determining an unknown quantity x⋆ ∈ X from a set of14

data y⋆ ∈ Y , where X, Y are Hilbert spaces. This is the tipical setting of inverse problems [1, 23, 26],15

where an unknown quantity of interest x⋆ must be determined, based on information obtained from16

some set of measured data.17

In practical situations, we do not know the data y⋆ ∈ Y exactly. Instead, only approximate measured18

data yδ ∈ Y satisfying19

∥yδ − y⋆∥ ≤ δ , (1.1) eq:noisy-i

is at hand. Here δ > 0 represents the (known) level of noise, i.e. the accuracy of the measurements20

is known. The available noisy data yδ ∈ Y are obtained by indirect measurements of the (unknown)21

parameter, this process is described by the mathematical model22

Ax = yδ , (1.2) eq:inv-probl

where A : X → Y , is a bounded linear ill-posed operator, whose inverse A−1 : Y → X either do not23

exist, or is not continuous.24
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�LNCC, Av.Getúlio Vargas 333, P.O. Box 95113, 25651-070 Petrópolis, Brazil
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The iterated-Tikhonov (iT) method1

The starting point of our approach is the iterated-Tikhonov (iT) method [1, 8, 23]. The iT method is2

an efficient alternative for obtaining approximate solutions to the linear ill-posed problem (1.1), (1.2).3

The step of this iterative method reads4

xδiT,k := argminx
{
λk∥Ax− yδ∥2 + ∥x− xδiT,k−1∥2

}
, (1.3) eq:it-exact

where (λk) > 0 is an appropriately chosen sequence of Lagrange multipliers [2]. This is equivalent to5

compute xδiT,k ∈ X such that6

λkA
∗(AxδiT,k − yδ) + xδiT,k − xδiT,k−1 = 0 , (1.4) eq:it-exact-aux

here A∗ is the adjoint operator to A. The literature on the iT method is extense and focus on distinct7

aspects, e.g., regularization properties [7, 12, 22, 21], rates of convergence [15, 28], a posteriori strategies8

for choosing the Lagrange multipliers [2], ciclic iT type methods [5].9

An inexact iT method with relative error tolerance (ret-iT)10

In this article we propose and analyze an inexact version of the iT method (1.3). The step of our11

iterative method is defined by relaxing (1.4) and computing an approximate solution to this equation12

(a relative error is allowed); see (2.3) for details.13

The motivation for adopting this strategy is clear: computationaly, it is less expensive to obtain a14

solution to a relaxed problem than to calculate the exact solution (up to the computer precision) to the15

original problem.16

We are able to estimate the progress towards the solution of the iterate in the ret-iT method, and17

compare this progress with the one obtained in the iT method (see Section 2). We observe that they18

exhibit comparable quality. The numerical findings presented in Section 5 support this conclusion.19

Inexact Newton methods for the stable solution of nonlinear ill-posed problems have been considered20

in the literature (see, e.g., Rieder [25, 27] and Hanke [17, 18]). In all these approaches the criteria for21

computing an inexact Newton step are based on relative residual tolerance. The careful reader observes22

that the ret-iT method is not a reduction of those algorithms to the linear setting.23

Outline of the manuscript24

In Section 2 we define the inexact step for the iterated-Tikhonov type method considered in this article;25

see (2.3). Some preliminary inequalities are established and a gain estimate is derived (Lemma 2.4).26

The relative error tolerant iterated-Tikhonov (ret-iT) method is presented in Section 3. First the27

exact data case is considered (see Algorithm 1); a monotonicity result is proved (Proposition 3.1) as well28

as a convergence result (Theorem 3.3). In the sequel, the noisy data case is addressed (Algorithm 2);29

finiteness of the stopping index is proved (Proposition 3.7) as well as monotonicity of the iteration30

error (Lemma 3.5). Under appropriate assumptions (Assumption 3.9, existence of an inner iteration)31

we prove stability and semiconvergence results for the proposed method (Theorems 3.10 and 3.11). In32

Section 4 we prove that the Conjugate Gradient (CG) method, combined with a particular stoping33

rule, satisfies Assumption 3.9. Section 5 is devoted to numerical experiments. The Inverse Potential34
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Problem (IPP) is used to test the efficiency of the proposed method. Conclusions and final remarks are1

presented in Section 6.2

2 Defining the inexact step of the ret-iT method3

sec:method-step

In this section we introduce the step of the relative error tolerant inexact iterated-Tikhonov method4

(ret-iT) considered in these notes.5

We discuss first a single step of the proposed method. Let xδk−1 be the current iterate and λk > 0 be6

an appropriately choosen Lagrange multiplier. In the iT method (1.3), the next iterate is the solution7

of8

λkA
∗(Ax− yδ) + x− xδk−1 = 0 . (2.1) eq:it-g1

For our aims, it is convenient to rewrite this equation as9

x = xδk−1 − λkA
∗(Ax− yδ) . (2.2) eq:it-g2

The method proposed in this work is based on a relaxation of equation (2.1) combined with a10

modified update rule. More precisely, given the current iterate xδk−1 ∈ X, one computes an auxiliary11

point x̃δk ∈ X such thatdef:step-inexact12

∥λkA∗(Ax̃δk − yδ) + x̃δk − xδk−1∥ ≤ σ∥x̃δk − xδk−1∥ , (2.3a) eq:txk

where 0 ≤ σ < 1. This auxiliary point x̃δk is used to define the next iterate xδk ∈ X as13

xδk := xδk−1 − λkA
∗(Ax̃δk − yδ) (2.3b) eq:xk

(compare with (2.2)). Observe that, for 0 < σ < 1, (2.3a) is a relaxation of (2.1) with relative error14

tolerance.15

The motivation for the definition of the inexact step in (2.3) is twofold. First: it is very often easyer16

to obtain a solution x̃δk ∈ X of (2.3a), than to compute the exact solution of (2.1) (up to the computer17

precision) as in the iT method. Second: the progress towards the solution of the iterate in (2.3b) is18

quantitatively “almost as good” as the one obtained in the iT method (as shown in Lemma 2.4).19

For the remaining of this section we consider the exact data case yδ = y⋆ (i.e. δ = 0) and write xk,20

x̃k instead of xδk, x̃
δ
k. For any 0 ≤ σ < 1, the solution of (2.1) is also a solution (2.3a). Moreover, it21

is easy to verify that if either Axk−1 = y⋆ or σ = 0, then the unique solution of (2.3a) is the unique22

solution of (2.1).23

In what concerns the method we are proposing, the case of interest is Axk−1 ̸= y⋆ and 0 < σ < 1.24

Any iterative method for solving (2.1) generates a sequence (zj) which converges to the solution of this25

problem. In this case, whenever xk−1 is not already a solution of Ax = y⋆ and 0 < σ < 1, the iterates26

x̃k = zj will eventually satisfy (2.3a), as shown in the next proposition.27

Proposition 2.1. Suppose that xk−1 is not a solution of Ax = y⋆, and let x+ be the solution of (2.1),28

i.e.29

x+ = (λkA
∗A+ I)−1(xk−1 + λkA

∗y⋆) .30

For any 0 < σ < 1 the solution set of (2.3a) contains x+ in its interior.31
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Proof. Let1

f(x̃) := ∥λkA∗(Ax̃− y⋆) + x̃− xk−1∥ − σ∥x̃− xk−1∥ (x̃ ∈ X).2

The solution set of (2.3a) is the level set f ≤ 0. It follows from the assumption Axk−1 ̸= y⋆ that3

x+ ̸= xk−1; therefore, f(x
+) = −σ∥x+−xk−1∥ < 0. To end the proof, observe that f is continuous.4

Corollary 2.2. Suppose that Axk−1 ̸= y⋆, 0 < σ < 1. If (zi) is a sequence in X which converges to5

the solution of (2.1), then for i large enough, x̃k = zi is a solution of (2.3a).6

In the next lemma, some basic inequalities relating xk−1, x̃k and xk are established.7

lem:prelim Lemma 2.3. Let σ ∈ [0, 1), xk−1 ∈ X. If x̃k, xk satisfy (2.3a) and (2.3b), then:8

it:a a) ∥x̃k − xk∥ ≤ σ∥x̃k − xk−1∥;9

it:b b) (1− σ)∥x̃k − xk−1∥ ≤ ∥xk − xk−1∥ ≤ (1 + σ)∥x̃k − xk−1∥.10

Proof. To prove item (a), substitute xk with its definition at (2.3b) in ∥x̃ − xk∥ and use (2.3a). To

prove item (b), observe that

∥x̃k − xk−1∥ − ∥x̃k − xk∥ ≤ ∥xk − xk−1∥ ≤ ∥x̃k − xk−1∥+ ∥x̃k − xk∥

and use item (a).11

Let x⋆ ∈ X be an exact solution of Ax = y⋆. In the next lemma we estimate the “gain” ∥x⋆ −12

xk−1∥2 − ∥x⋆ − xk∥2 obtained after a single step of the ret-iT method. The proof of this result will be13

simplifyed using the identity14

∥a∥2 − ∥b∥2 = ∥a− c∥2 − ∥b− c∥2 + 2 ⟨a− b, c⟩ , (2.4) eq:aux-bs

for a, b, c ∈ X. This identity will also be used in the next section.15

lem:gain-exact-new Lemma 2.4. Let k ≥ 1, λk > 0, 0 ≤ σ < 1 and xk−1 ∈ X. If x̃k and xk are as in (2.3a) and (2.3b),

then

∥x⋆ − xk−1∥2 − ∥x⋆ − xk∥2 ≥ 2λk ∥Ax̃k − y⋆∥2 + (1− σ2) ∥x̃k − xk−1∥2,

for any x⋆ solution of Ax = y⋆.16

Proof. Using (2.4) for a = x⋆ − xk−1, b = x⋆ − xk and c = x⋆ − x̃k; together with (2.3b) we obtain

∥x⋆ − xk−1∥2 − ∥x⋆ − xk∥2 = ∥x̃k − xk−1∥2 − ∥x̃k − xk∥2

+ 2 ⟨xk − xk−1, x
⋆ − x̃k⟩

= ∥x̃k − xk−1∥2 − ∥λkA∗(Ax̃k − y⋆) + x̃k − xk−1∥2

+ 2λk ⟨A∗(Ax̃k − y⋆), x̃k − x⋆⟩ .

To end the proof, use (2.3a) to estimate the second norm at the right-hand side of the last equality and17

observe that ⟨A∗(Ax̃k − y⋆), x̃k − x⋆⟩ = ∥Ax̃k − y⋆∥2.18

This lemma is a key result, from where many relevant consequences (e.g., monotonicity of the ret-iT19

method) can be derived, as we shall see in the next section.20
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3 The ret-iT method1

sec:method-alg

In what follows we introduce and analyze the ret-iT method for computing stable approximate solutions2

to ill-posed problems of the form (1.1), (1.2). The exact data case (δ = 0) is considered in Section 3.1,3

where our method is defined based on the inexact step in Section 2. In Section 3.2 the noisy data case4

is addressed.5

3.1 The exact data case6

ssec:method-exact

The inexact step discussed in (2.3) leads us to the following conceptual algorithm:7

[1] choose an initial guess x0 ∈ X;

[2] choose σ ∈ (0, 1) and a sequence (λk) > 0;

[3] for k ≥ 1 do

[3.1] find x̃k ∈ X solution of (2.3a), i.e.

∥λkA∗(Ax̃k − y⋆) + x̃k − xk−1∥ ≤ σ∥x̃k − xk−1∥;

[3.2] define the next iterate xk ∈ X

xk := xk−1 − λkA
∗(Ax̃k − y⋆);

end foralg:IIT-concept

Algorithm 1: The ret-iT method in the exact data case.

prop:estimates Proposition 3.1. Let σ ∈ (0, 1), (λk) > 0 and the sequences (xk), (x̃k) be defined as in Algorithm 1.8

The following assertions hold true:9

a) ∥x̃k − xk∥ ≤ σ∥x̃k − xk−1∥.10

b) (1− σ)∥x̃k − xk−1∥ ≤ ∥xk − xk−1∥ = ∥λkA∗(Ax̃k − y⋆)∥ ≤ (1 + σ)∥x̃k − xk−1∥11

c) For any x⋆ ∈ X solution of Ax = y⋆,

∥x⋆ − xk−1∥2 − ∥x⋆ − xk∥2 ≥ 2λk ∥Ax̃k − y⋆∥2 + (1− σ2) ∥x̃k − xk−1∥2, ∀ k ≥ 1 .

d) The following series are summable:12

∞∑
k=0

λk ∥Ax̃k − y⋆∥2,
∞∑
k=0

∥x̃k − xk−1∥2,
∞∑
k=0

λ2k ∥A∗(Ax̃k − y⋆)∥2. (3.1) eq:series

e) Adittionaly, if (λk) ≥ λmin > 0, the following series are summable:

∞∑
k=0

∥Ax̃k − y⋆∥2,
∞∑
k=0

∥A∗(Ax̃k − y⋆)∥2.

f) The set Rk := {z ∈ X; ∥λkA∗(Az − y⋆) + z − xk−1∥ ≤ σ∥z − xk−1∥} is uniformly bounded for13

all k (Rk is the solution set of the problem in Step [3.1]).14

Proof. Assertions (a), (b) and (c) were proved in Lemmata 2.3 and 2.4. In Assertion (d), the summabil-

ity of the first two series in (3.1) follow from Assertion (c), a telescopic-sum argument, and 0 < σ < 1.

Moreover, Assertion (b) implies

(1 + σ) ∥x̃k − xk−1∥ ≥ ∥xk − xk−1∥ = λk ∥A∗(Ax̃k − y⋆)∥ ,
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from where the summability of the last series in (3.1) follows.1

Assertion (e) follows from (d). Moreover, Assertion (f) follows from (c) (indeed, Assertion (c) implies2

∥x⋆ − x0∥2 ≥ ∥x⋆ − xk−1∥2 ≥ (1− σ2)∥z − xk−1∥2, for all z ∈ Sk).3

rem:stationary Remark 3.2. Notice that Axk = y⋆ for some k ≥ 0 if and only if Ax̃k+1 = y⋆. In this case, both4

sequences become stationary, i.e. xj = x̃j = xk, for j ≥ k + 1.5

The proof the next theorem is based on the classical proof presented in [16, Theorem 2.3] using6

Cauchy sequence argument to establish convergence of the nonlinear Landweber iteration in the exact7

data case.8

th:conv-exact Theorem 3.3 (Convergence for exact data). Let (xk) and (x̃k) be sequences defined by Algorithm 1,9

with σ ∈ (0, 1) and (λk) ≥ λmin > 0. Then (xk) converges strongly to some x̄ ∈ X. Moreover, x̄ is a10

solution of Ax = y⋆.11

The careful reader observes that the linear problem Ax = y⋆ admits a x0-minimal norm solution,12

i.e. an element x† ∈ X satisfying Ax† = y⋆ and ∥x† − x0∥ = inf{∥x− x0∥; Ax = y⋆} (see, e.g., [1, 8]).13

Moreover, x† is the only solution of Ax = y⋆ with this property. On the other hand, from Step [3.2] of14

Algorithm 1 follows xk+1−xk ∈ R(A∗) ⊂ N(A)⊥. An inductive argument shows that x̄ in Theorem 3.315

satisfies x̄ ∈ x0 +N(A)⊥ and, consequently, x̄ = x†.16

Proof. (of Theorem 3.3) We divide the proof in two separate cases:17

Case I: Ax̃k0
= y⋆ for some k0 ∈ N.18

It follows from Remark 3.2, that xk = x̃k = x̃k0
for all k > k0. Thus the strong convergence of (xk) to19

x̄ := x̃k0
(which, in this case, is a solution of Ax = y⋆) follows.20

Case II: Ax̃k ̸= y for all k ∈ N.21

In this case (∥Ax̃k − y⋆∥) is a strictly positive sequence. Moreover, it follows from Proposition 3.1 (e)22

that limk ∥Ax̃k − y⋆∥ = 0. Thus, there is a strictly monotone increasing sequence (ℓj) ∈ N such that23

∥Ax̃k − y⋆∥ ≥ ∥Ax̃ℓj − y⋆∥ , 0 ≤ k ≤ ℓj . (3.2) eq:sseq-min

Notice that, given k ≥ 1 and z ∈ X, it follows from (2.4) with a = xk−1 − z, b = xk − z and c = x̃k − z24

that25

∥xk−1 − z∥2 − ∥xk − z∥2 = ∥xk−1 − x̃k∥2 − ∥xk − x̃k∥2 + 2 ⟨xk−1 − xk, x̃k − z⟩

≤ ∥xk−1 − x̃k∥2 + 2 ⟨xk−1 − xk, x̃k − z⟩ .

Thus, it follows from Step [3.2] of Algorithm 126

∥xk−1 − z∥2 − ∥xk − z∥2 ≤ ∥xk−1 − x̃k∥2 + 2 ⟨λkA∗(Ax̃k − y⋆), x̃k − z⟩ .

= ∥xk−1 − x̃k∥2 + 2λk ⟨Ax̃k − y⋆, A(x̃k − z)⟩

= ∥xk−1 − x̃k∥2 + 2λk ⟨Ax̃k − y⋆, (Ax̃k − y⋆) + (y⋆ −Az)⟩

≤ ∥xk−1 − x̃k∥2 + 2λk

[
∥Ax̃k − y⋆∥2 + ∥Ax̃k − y⋆∥∥Az − y⋆∥

]
.
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Thus, choosing z = x̃ℓj in the above inequality and arguing with (3.2) we obtain1

∥xk−1 − x̃ℓj∥2 − ∥xk − x̃ℓj∥2

≤ ∥x̃k − xk−1∥2 + 2λk∥Ax̃k − y⋆∥2 + 2λk∥Ax̃k − y⋆∥∥Ax̃ℓj − y⋆∥

≤ ∥x̃k − xk−1∥2 + 4λk∥Ax̃k − y⋆∥2,

for k = 1, . . . , ℓj . Adding the above inequality for k = m+ 1,m+ 2, . . . , ℓj we conclude that

∥xm − x̃ℓj∥2 ≤
ℓj∑

k=m+1

[
∥x̃k − xk−1∥2 + 4λk∥Ax̃k − y⋆∥2

]
≤ sm ,

where sm :=
∑∞

k=m

[
∥x̃k − xk−1∥2 + 4λk∥Ax̃k − y⋆∥2

]
; notice that Proposition 3.1 (d) guarantees2

lim
m→∞

sm = 0.3

Now, for n > m we choose ℓj > n and estimate4

∥xn − xm∥ ≤ ∥xn − x̃ℓj∥+ ∥x̃ℓj − xm∥ ≤ √
sn +

√
sm ≤ 2

√
sm5

(the sequence (sm) is monotone decreasing). Thus, (xk) is a Cauchy sequence and converges to some6

element x̄ ∈ X.7

To prove that x̄ is a solution of Ax = y⋆, it sufices to show that the residuals ∥Axk − y⋆∥ converge8

to zero as k → ∞. Since limk ∥Ax̃k − y⋆∥ = limk ∥xk−1 − x̃k∥ = 0 (see Proposition 3.1 (d) and (e)), it9

follows that limk ∥Axk − y⋆∥ = 0 concluding the proof.10

3.2 The noisy data case11

ssec:method-noise

In the noisy data case, δ > 0, the step of the ret-iT method is defined by (2.3). Based by the inexact12

step in (2.3a), (2.3b) we propose in Algorithm 2 the ret-iT method for the noisy data case.13

[1] choose an initial guess x0 ∈ X; set k := 1; set xδ0 = x0;

[2] choose constants σ ∈ (0, 1), τ > 1 and a sequence (λk) > 0;

[3] repeat

[3.1] compute x̃δk ∈ X as a solution of (2.3a), i.e.

∥λkA∗(Ax̃δk − yδ) + x̃δk − xδk−1∥ ≤ σ∥x̃δk − xδk−1∥;

[3.2] if
(
∥Ax̃δk − yδ∥ > τδ

)
then

xδk := xδk−1 − λkA
∗(Ax̃δk − yδ);

k := k + 1;

else

EXIT LOOP;

end if

end repeat

[4] k∗(δ) := k − 1;alg:IIT-method

Algorithm 2: The ret-iT method in the noisy data case.

Observe that Algorithm 2 generates sequences (xδk)
k∗

k=0 and (x̃δk)
k∗+1
k=1 . Some relevant remarks folllow:14

15

7



— The iterates x̃δ1, . . . , x̃
δ
k∗+1 (and xδ1, . . . , x

δ
k∗) are computed solving in1

each iteration a feasible problem.2

— If δ = 0, Algorithm 2 reduces to the ret-iT method for exact data.3

— The stopping criterion used in Algorithm 2 (see Step [3.2]) is based on4

the discrepancy principle applied to x̃δk, i.e. the iteration is stopped at5

step k∗ = k∗(δ) ∈ N satisfying6

k∗ := max{k ∈ N; ∥Ax̃δj − yδ∥ > τδ, j = 1, . . . , k}.

— For k∗ ∈ N defined in Step [4] it holds ∥Ax̃δk∗ − yδ∥ > τδ as well as7

∥Ax̃δk∗+1 − yδ∥ ≤ τδ.8

Remark 3.4. A result analog to the one stated in Proposition 2.1 holds true in the noisy data case.9

Notice that if x̃ ∈ X satisfies ∥Ax̃− yδ∥ > δ, then Ax̃− yδ ̸∈ Ker(A∗). Thus, arguing as in the proof of10

Proposition 2.1 we conclude that if ∥Axδk−1 − yδ∥ > δ, xδ+ is the solution of (2.1) and σ ∈ (0, 1) then11

the solution set of (2.3a) contains xδ+ in its interior.12

Consequently, a conclusion analog to the one discussed in Corollary 2.2 holds true in the noisy data13

case.14

Monotonicity results15

In the sequel we establish a result, which is analog to the one discussed in Lemma 2.4.16

lem:gain-noise Lemma 3.5. Let λk > 0 and 0 ≤ σ < 1. Given xδk−1 ∈ X, let x̃δk and xδk be defined as in (2.3a), (2.3b)

respectively. If ∥Ax̃δk − yδ∥ > δ, then for any x⋆ ∈ X solution of Ax = y it holds

∥x⋆ − xδk−1∥2 − ∥x⋆ − xδk∥2 ≥ λk
[
∥Ax̃δk − yδ∥2 − δ2 + ∥Ax̃δk − y∥2

]
+ (1− σ2) ∥x̃δk − xδk−1∥2.

Consequently, ∥x⋆ − xδk−1∥2 − ∥x⋆ − xδk∥2 ≥ λk
[
∥Ax̃δk − yδ∥2 − δ2

]
.17

Proof. Due to (2.3) it holds ∥x̃δk − xδk∥ ≤ σ∥x̃δk − xk−1∥δ. From this inequality together with (2.4) for

a = x⋆ − xδk−1, b = x⋆ − xδk and c = x⋆ − x̃δk we obtain

∥x⋆ − xδk−1∥2 − ∥x⋆ − xδk∥2 ≥ 2 ⟨xδk − xδk−1, x
⋆ − x̃δk⟩+ (1− σ2) ∥x̃δk − xδk−1∥2.

Thus, to prove the lemma it suffices to prove that

⟨xδk − xδk−1, x
⋆ − x̃δk⟩ ≥ 1

2λk
[
∥Ax̃δk − yδ∥2 − δ2 + ∥Ax̃δk − y∥2

]
.

Define the quadratic functional fδ(x) :=
1
2∥Ax−y

δ∥2. Notice that fδ(x̃
δ
k) =

1
2∥Ax̃

δ
k−yδ∥2,∇fδ(x̃δk) =

λ−1
k (xδk−1 − xδk) and fδ(x

⋆) ≤ 1
2δ

2. Therefore, it follows from

fδ(x
⋆) = fδ(x̃

δ
k) + ⟨∇fδ(x̃δk), x⋆ − x̃δk⟩ + 1

2 ⟨(x
⋆ − x̃δk), A

∗A(x⋆ − x̃δk)⟩

that 1
2δ

2 ≥ 1
2∥Ax̃

δ
k − yδ∥2 + ⟨λ−1

k (xδk−1 − xδk), x
⋆ − x̃δk⟩+ 1

2∥A(x
⋆ − x̃δk)∥2. Therefore,18

λ−1
k ⟨xδk − xδk−1, x

⋆ − x̃δk⟩ ≥ 1
2∥Ax̃

δ
k − yδ∥2 − 1

2δ
2 + 1

2∥Ax̃
δ
k − y∥2,

8



concluding the proof.1

The next result is an imediate consequence of Lemma 3.5 and (2.3a); it will be used in the proof of2

the stability Theorem 3.10.3

cor:new Corollary 3.6. Under the assumptions of Lemma 3.5, for all 0 ≤ k ≤ k∗(δ),

∥x⋆ − xδk∥ ≤ ∥x⋆ − x0∥

and for all 1 ≤ k ≤ k∗(δ) + 1, ∥x⋆ − x̃δk∥ ≤
(
λk∥A∥2∥x0 − x⋆∥+ δ

)
(1− σ)−1.4

The stopping index5

In what follows we establish the finiteness of the stopping index k∗ defined in Section 3.2. The next6

result is a direct consequence of Lemma 3.5.7

prop:k-finite Proposition 3.7. Let the sequences (xδk) and (x̃δk), and k
∗ ∈ N be defined by Algorithm 2 with τ > 1,8

σ ∈ (0, 1) and (λk) > 0. If
∑

k λk = ∞ then Algorithm 2 stops after a finite number of steps k∗(δ) ∈ N.9

Additionaly, if (λk) ≥ λmin > 0, then10

k∗(δ) ≤ ∥x⋆ − xδ0∥2
(
λmin(τ

2 − 1)δ2
)−1

.

Proof. Adding up the inequality in Lemma 3.5 for k = 1, . . . , k∗, and observing Step [3.2] of Algorithm 2,

we derive the estimate

∥x⋆ − xδ0∥2 ≥
k∗∑
k=1

λk
[
∥Ax̃δk − yδ∥2 − δ2

]
≥ (τ2 − 1)δ2

k∗∑
k=1

λk ,

from where the finiteness of k∗ follows.11

Additionaly, if the assumption (λk) ≥ λmin > 0 holds, we derive from the last inequality the estimate12

∥x⋆ − xδ0∥2 ≥ λmin(τ
2 − 1)δ2 k∗, concluding the proof.13

rem:stop-k Remark 3.8. Step [3.2] of Algorithm 2 allow us to detect the first indek k ≥ 1 such that the corre-14

sponding x̃δk ∈ X satisfies ∥Ax̃δk − yδ∥ ≤ τδ. Notice that this x̃δk is not used to compute xδk+1. Instead,15

the iteration is terminated at xδk∗ with k∗ := k − 1.16

The reason for this choice becomes evident from Lemma 3.5. Namely, the “gain inequality” in this17

corollary holds only if x̃δk ∈ X obtained in Step [3.2] satisfies ∥Ax̃δk − yδ∥ > τδ.18

The careful reader notices that it would be possible to terminate the ret-iT method with k∗ := k in19

Step [4] and xδk := x̃δk, since x̃
δ
k is the first point produced by Algorithm 2 which belongs to the level-set20

{x ∈ X; ∥Ax− yδ∥ ≤ τδ}.21

Stability and semiconvergence22

In the noisy data case, to ensure stability and semiconvergence we need additional assuptions on how23

x̃δk is computed; next we discuss and formalize these assumptions.24

We will suppose that an “inner” iterative procedure is used to compute x̃δk for all k, choosing it as

the first iterate which satisfies the error criterion (2.3a). That is, given λk, x
δ
k−1 and yδ, an iterative

procedure generates a sequence

(zn)n=0,1,... = (zn,λk,xδ
k−1,y

δ)n=0,1,... with z0,λk,xδ
k−1,y

δ = xδk−1 ,

9



which converges to the exact solution of λkA
∗(Az − yδ) + z − xδk−1 = 0; the next “outer” iterate x̃δk is

the first element genarated by this iterative procedure that satisfies the error criterion

x̃δk = znδ
k
where nδk = min{n : ∥λkA∗(Azn − yδ) + zn − xδk−1∥ ≤ σ∥zn − xδk−1∥}.

We make two aditional assumptions:1

— for each n, the iterate zn depends continuously on xδn−1 and yδ;2

— for each k, the number of inner steps nδk is uniformly bounded for 0 < δ < δ3

(where δ > 0 is fixed).4

These assumptions are formalized below.5

ass:method Assumption 3.9. In Step [3.1] of Algorithm 2, each x̃δk is computed by an “inner” iterative method

whose iterates are modeled as a family of mappings on (xδk−1, y
δ)

Tn,λk
: X × Y → X (n = 0, 1, . . . ) (3.3) def:Tn

with the following properties:6

1) T0,λk
(xδk−1, y

δ) = xδk−1;7

2) For each n and λk, the mapping Tn,λk
is continuous;8

3) for each 1 ≤ k ≤ k∗(δ) + 1, there exists nδk ∈ N such that

x̃δk = Tnδ
k,λk

(xδk−1, y
δ).

Additionaly, let (δj) ∈ R be a given zero sequence, and (yδj ) ∈ Y a corresponding sequence of noisy data9

satisfying (1.1); and let (x
δj
k ) and (x̃

δj
k ) be (finite) sequences generated by Algorithm 2, for each j ∈ N.10

4) For each k ∈ N, x̃δjk is generated by the ”inner” iterative method with at most Nk steps, i.e. Nk

does not depend on j. That is, for each k ∈ N

Nk = sup{nδjk : for j = 1, 2, . . . with k∗(δj) ≥ k} < ∞.

We are now ready to state and prove a stability result for the ret-iT method.11

th:stabil Theorem 3.10 (Stability). Let (δj) be a zero sequence and (yδj ) ∈ Y a corresponding sequence of noisy12

data satisfying (1.1). For each j ∈ N, let
(
x
δj
k

)k∗(δj)

k=0
and

(
x̃
δj
k

)k∗(δj)+1

k=1
be finite sequences generated by13

Algorithm 2.14

If Assumption 3.9 holds, then there exist K∗ ∈ N∪ {∞}, a subsequence of (δj) (denoted again by (δj)),15

and a pair of sequences (xk) and (x̃k) generated by Algorithm 1; such that x
δj
k → xk, x̃

δj
k+1 → x̃k+1, as16

j → ∞, for all k ∈ N with k ≤ K∗.17

Proof. There exists a subsequence (denoted again by (δj)) s.t.

k∗(δ1) ≤ k∗(δ2) ≤ k∗(δ3) ≤ . . .

Denote

K∗ = lim
j→∞

k∗(δj), K∗ ∈ N ∪ {∞},

10



and let Jk ⊂ N be the set of indices j ∈ N for which x
δj
k is defined, i.e.

Jk = {j ∈ N : k∗(δj) ≥ k} (1 ≤ k ≤ K∗ + 1).

Note that each Jk is an unbounded set of consecutive natural numbers.1

Fix 1 ≤ k ≤ K∗ + 1. It follows from Assumption 3.9, item 3, and Corollary 3.6 that (n
δj
k )j∈Jk

, as

defined in Assumption 3.9, item 2, is bounded. Using a diagonal process for subsequence extraction,

we conclude that there exists a subsequence again denoted by (δj) and a sequence (finite or otherwise)

(nk){k∈N : 1≤k≤K∗+1} such that

n
δj
k = nk, (1 ≤ k ≤ K∗ + 1 and j ∈ Jk). (3.4) eq:aux1

Observe that

x̃
δj
k = Tnk,λk

(x
δj
k−1, y

δj ) (1 ≤ k ≤ K∗ + 1 and j ∈ Jk). (3.5) eq:aux2

We claim that for any 1 ≤ k ≤ K∗ + 1,

∃ lim
j→∞

x
δj
k−1, ∃ lim

j→∞
x̃
δj
k .

For k = 1, in view of Step [1], the first above limit exists. Suppose that the first above limit exists for2

some 1 ≤ k ≤ K∗ + 1. Since Tnk,λk
is continuous, it follows from (3.5) (and the assumption δj → 0)3

that the second limit also exists. If k < K∗, then the first above limit also exists for k′ = k + 1 ≤ K∗,4

because k′ − 1 = k and x
δj
k′ depends continuously on x

δj
k′−1, x̃

δj
k′ and yδj .5

Let

xk = lim
j→∞

x
δj
k 1 ≤ k ≤ K∗, x̃k = lim

j→∞
x̃
δj
k 1 ≤ k ≤ K∗ + 1. (3.6)

In view of Algorithm 2 we have

∥λkA∗(Ax̃
δj
k − yδj ) + x̃

δj
k − x

δj
k−1∥ ≤ σ∥x̃δjk − x

δj
k−1∥ 1 ≤ k ≤ K∗ + 1;

x
δj
k = x

δj
k−1 − λkA

∗(Ax̃
δj
k − yδj ) 1 ≤ k ≤ K∗.

Therefore, taking the limit j → ∞ we conclude that

∥λkA∗(Ax̃k − y) + x̃k − xk−1∥ ≤ σ∥x̃k − xk−1∥ 1 ≤ k ≤ K∗ + 1; (3.7a)

xk = xk−1 − λkA
∗(Ax̃k − y) 1 ≤ k ≤ K∗. (3.7b)

6

We conclude this section addressing a regularization property of the ret-iT method.7

th:semiconv Theorem 3.11 (Semi-convergence). Let (δj) be a zero sequence and (yδj ) ∈ Y a corresponding se-8

quence of noisy data satisfying (1.1). For each j ∈ N, let (x
δj
k ) and (x̃

δj
k ), for 0 ≤ k ≤ k∗(δj), be9

sequences defined by Algorithm 2.10

If Assumption 3.9 holds, then (x
δj
k∗(δj)

)j and (x̃
δj
k∗(δj)+1)j converge strongly to x†, the x0-minimal norm11

11



solution of Ax = y.1

Proof. It sufices to prove that every subsequence of (x
δj
k∗(δj)

)j has itself a subsequence converging2

strongly to x†, the same holding for (x̃
δj
k∗(δj)+1)j .3

We denote an arbitrary subsequence of (δj) again by (δj). Two distinct cases must be considered,4

depending on the corresponding subsequence
(
k∗(δj)

)
j
∈ N.5

Case I: The subsequence
(
k∗(δj)

)
j
is bounded.

Notice that
(
k∗(δj)

)
j
is a bounded sequence of natural numbers. Therefore there exists K ∈ N and a

subsequence (δjm) of (δj) such that

k∗(δjm) = K m = 1, 2, . . .

It follows from Theorem 3.10 –applied to (δjm), (yδjm ), (x
δjm
k )

k∗(δjm )
k=0 , (x̃

δjm
k )

k∗(δjm )+1
k=1 – that there exists6

a subsequence of (δjm) –denoted again by (δjm)– and a pair of sequences (xk) and (x̃k) generated by7

Algorithm 1, such that x
δjm
k → xk, x̃

δjm
k+1 → x̃k+1, as jm → ∞, for k = 1, . . . K.8

We claim that x̃K+1 is a solution of Ax = y. Indeed, since k∗(δjm) = K for all indices jm, we have

∥Ax̃δjmK+1 − yδjm ∥ ≤ τδjm (see Step [3.2] of Algorithm 2). Thus,

∥Ax̃K+1 − y∥ ≤ lim
jm→∞

[
∥Ax̃δjmK+1 − yδjm ∥+ ∥yδjm − y∥

]
≤ lim

jm→∞
(τ + 1)δjm = 0

and Ax̃K+1 = y. Now, it follows from Remark 3.2 that xK = x̃K+1. By Algorithm 2, xK − x0 is in the9

range of A∗, concluding the proof of Case I.10

Case II: The subsequence
(
k∗(δj)

)
j
is not bounded.11

In this case, there exists a monotone increasing (sub)subsequence k∗(δ1) ≤ k∗(δ2) ≤ . . . , again denoted12

by
(
k∗(δj)

)
j
, such that k∗(δj) → ∞ as j → ∞.13

Notice that the subsequence (δj) and the corresponding sequences (yδj ), (x
δj
k ) and (x̃

δj
k ) satisfy the14

assumptions of Theorem 3.10. Denote by (δj), (xk) and (x̃k) the subsequence and sequences specified15

in the conclusion part of that theorem. In particular x
δj
k → xk as j → ∞.16

Fix ε > 0. From Theorem 3.3 we know that xk → x† as k → ∞; hence, there exists Kε ∈ N s.t.

∥xk − x†∥ ≤ 1
2ε for k ≥ Kε. On the other hand, from the choice of

(
k∗(δj)

)
j
, follows the existence of

J ∈ N s.t. k∗(δj) ≥ Kε, for all j ≥ J . Thus, From Lemma 3.5 follows

∥xδjk∗(δj)
− x†∥ ≤ ∥xδjKε

− x†∥ , ∀ j ≥ J .

As x
δj
k → xk as j → ∞, there exists L ∈ N, L > J , such that

∥xδjKε
− xKε∥ ≤ 1

2ε , ∀ j ≥ L .

Thus, for j ≥ L follows

∥xδjk∗(δj)
− x†∥ ≤ ∥xδjKε

− x†∥ ≤ ∥xδjKε
− xKε

∥+ ∥xKε
− x†∥ ≤ ε .

Since ε > 0 is arbitrary, it follows that x
δj
k∗(δj)

→ x†, as j → ∞ concluding the proof of Case II.17

12



4 The CG method as inner iteration1

sec:cg

To prove stability and semiconvergence of Algorithm 2 (Theorems 3.10 and 3.11) we required As-2

sumption 3.9. This assumption concerns existence and properties of an inner iterative method for the3

computation of x̃δk, k = 1, . . . , k∗(δ) + 1, as specified in Step [3.1] of Algorithm 2. We will prove that4

the Conjugate Gradient (CG) method [11, 13, 8, 14] combined with a particular stopping rule, as this5

inner iterative method, satisfies Assumption 3.9.6

We begin by presenting in Algorithm 3 the CG method with a relative error stopping rule for finding7

∆xk ∈ X such that x̃δk = xδk−1 +∆xk satisfies (2.3a). Fix k ≥ 1 and let8

Qk := λkA
∗A+ I and bk := λkA

∗yδ + xδk−1 . (4.1) def:qb

Notice that x̃δk is an approximate solution of the linear equation Qkx − bk = 0 satisfying the relative9

error tolerance10

∥Qk x̃
δ
k − bk∥ ≤ σ∥x̃δk − xδk−1∥ (4.2) eq:probl_step

(compare with (2.3a)). Observe that the norm of that linear equation’s residual at x̃δk is at the left hand11

side of (4.2). Thus, we use this inequality as stopping rule of the proposed variant of the CG method.12

Recall that σ ∈ (0, 1).13

Remark 4.1. Equivalently, ∆xk = x̃δk − xδk−1 satisfies14

∥Qk ∆xk − ck∥ ≤ σ∥∆xk∥ , (4.3) eq:probl_step2

with ck = λkA
∗(yδ − Axδk−1). I.e. ∆xk is an approximate solution of Qkx = ck satisfying the relative15

error tolerance (4.3).16

[1] n := 0; s0 := 0; r0 := ck; p0 = r0;

[2] if
(
r0 = 0

)
then EXIT end if;

[3] repeat

αn := ⟨rn, rn⟩/⟨pn, Qkpn⟩;
sn+1 := sn + αn pn;

rn+1 := rn − αnQkpn;

if
(
∥rn+1∥ > σ∥sn+1∥

)
then

pn+1 := rn+1 +
⟨rn+1,rn+1⟩

⟨rn,rn⟩ pn;

n := n+ 1;

else

GOTO [4];

end if

end repeat

[4] n‡ := n+ 1; ∆xk = sn‡ ; x̃δk := xδk−1 +∆xk; EXITalg:CG-method

Algorithm 3: CG method for solving (4.3) with relative error stopping rule.
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Direct use of (4.1) shows that for all x ∈ X,

∥x∥2 ≤ ⟨x,Qkx⟩ ≤ (λk∥A∥2 + 1)∥x∥2.

Therefore, using the notation cond(Qk) for the condition number of Qk, we have

cond(Qk) ≤ λk∥A∥2 + 1 .

The norm on X induced by Qk is defined as1

∥x∥Qk
:=

√
⟨x,Qkx⟩, x ∈ X . (4.4) def:normQ

First we prove finite termination of Algorithm 3.2

lem:fin-term Lemma 4.2 (Finite termination). Algorithm 3 has finite termination and3

n‡ ≤

⌈
ln
( (λk∥A∥2 + 1) + σ

√
λk∥A∥2 + 1

σ/2

) [
ln

(√κ+ 1√
κ− 1

)]−1
⌉

(4.5) eq:nddag-estim

where κ := cond(Qk).
1

4

Proof. Notice that A ̸= 0 is ill-posed and 1 < κ ≤ λk∥A∥2 +1. Consequently, (
√
κ+1)(

√
κ− 1)−1 > 1,5

and there exists a smallest n0 ∈ N such that6

1

2

(√κ+ 1√
κ− 1

)n0

≥
(λk∥A∥2 + 1) + σ

√
λk∥A∥2 + 1

σ
> 1 , (4.6) eq:nddag-estim-aux

i.e.7

n0 =

⌈
ln
( (λk∥A∥2 + 1) + σ

√
λk∥A∥2 + 1

σ/2

) [
ln

(√κ+ 1√
κ− 1

)]−1
⌉
. (4.7) eq:nddag-estim-aux2

Since s0 = 0 in Algorithm 3, it follows from Lemma A.3 for n = n0, Q = Qk and c = ck that

∥s+∥Qk

∥sn0 − s+∥Qk

≥ 1

2

(√κ+ 1√
κ− 1

)n0

,

where s+ is the solution of Qkx = ck. Combining (4.6) and the last inequality we obtain

∥s+∥Qk

σ

(λk∥A∥2 + 1) + σ
√
λk∥A∥2 + 1

≥ ∥sn0 − x+∥Qk
.

Thus, it follows from Lemma A.1 (see Remark A.2) that

∥(λkA∗A+ I)sn0
− λkA

∗(yδ −Axδk−1)∥ ≤ σ∥sn0
∥ .

Therefore, rn0 in Algorithm 3 satisfies

∥rn0∥ = ∥Qksn0 − ck∥ = ∥(λkA∗A+ I)sn0 − λkA
∗(yδ −Axδk−1)∥ ≤ σ∥sn0∥,

1Here ⌈x⌉ = ceiling(x) denotes the least integer that is greater than or equal to x.
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from where we conclude that n‡ ≤ n0. The estimate in (4.5) is a direct consequence of this fact and1

(4.7).2

We conclude this section verifying Assumption 3.9 for Algorithm 3.3

Item 1) From Step [1] of Algorithm 3 follows T0,λk
(xδk−1, y

δ) = xδk−1 + s0 = xδk−1;4

Item 2) The continuity of Tn,λk
: X×Y → X follows from the continuity of the mapping ck : X×Y ∋5

(x, y) 7→ ck(x, y) = λkA
∗(y −Ax) ∈ X and Lemma A.4.6

Item 3) From Step [4] of Algorithm 3 and Lemma 4.2 follow the existence of nδk = n‡, satisfying7

estimate (4.5), such that x̃δk = xδk−1 + snδ
k
= Tnδ

k,λk
(xδk−1, y

δ) for each 1 ≤ k ≤ k∗(δ) + 1;8

Item 4) Let (δj), (y
δj ), (x

δj
k ) = x

δj
0 , . . . , x

δj
nk,j and (x̃

δj
k ) = x̃

δj
1 , . . . , x̃

δj
nk,j+1 be given as in Assump-

tion 3.9; for each j ∈ N and 1 ≤ k ≤ k∗(δj) we denote by nk,j ∈ N the number of iterations required by

Algorithm 3 (with yδ = yδj , xδk−1 = x
δj
k−1, Qk = λkA

∗A+ I and ck = λkA
∗(yδj − Ax

δj
k−1) to reach the

stop criteria (see Step [4] in Algorithm 3).

Define κ := cond(Qk). Since k ∈ N is fixed, it follows from (4.5)

nk,j ≤ Nk :=

⌈
ln
( (λk∥A∥2 + 1) + σ

√
λk∥A∥2 + 1

σ/2

) [
ln
(√κ+ 1√

κ− 1

)]−1
⌉

for j = 1, 2, . . . with k∗(δj) ≥ k, proving item 4 of Assumption 3.9.9

5 Numerical experiments10

sec:numerics

In what follows the Inverse Potential Problem [19, 9, 4, 29] is used to test the numerical efficiency11

of the ret-iT method. All computations are performed using MATLAB®R2017a, running on an12

Intel® CoreTM i9-10900CPU.13

The 2D Inverse Potential Problem14

Let Ω ⊂ R2 be an open bounded domain with Lipschitz-continuous boundary ∂Ω, and assume that15

u ∈ H1
0 (Ω) is the weak solution of the elliptic boundary value problem (BVP)16

−∆u = x , in Ω , u = 0 , on ∂Ω , (5.1) eq:ipp

where x ∈ L2(Ω) is a source function. See [24] for the solution theory of this particular problem.17

The corresponding inverse problem is known as Inverse Potential Problem (IPP) [19]. It consists of18

recovering an L2–function x, from measurements of the Neumann data of its corresponding potential19

on the boundary of Ω, i.e. we aim to recover x ∈ L2(Ω) from y := uν |∂Ω (the normal derivative of u20

at the boundary ∂Ω). Generalizations of this linear inverse problem lead to distinct applications, e.g.,21

Inverse Gravimetry [20, 29], EEG [6], and EMG [30].22

Given the usual Sobolev space H1(Ω), let H1/2(∂Ω) be the space of boundary traces of functions in23

H1(Ω), and H−1/2(∂Ω) the dual of H1/2(∂Ω). The linear direct problem is modeled by the operator24

A : L2(Ω) → H−1/2(∂Ω), where Ax := uν |∂Ω and u ∈ H1
0 (Ω) is the unique solution of (5.1) Using25

this notation, the IPP can be modeled in the form (1.2), where the available noisy data yδ ∈ L2(∂Ω)26

satisfies (1.1).27

15



Let A∗ : H1/2(∂Ω) → L2(Ω) be the harmonic extension operator, i.e. given v ∈ H1/2(∂Ω), A∗v1

solves2

−∆(A∗v) = 0 , in Ω , A∗v = v , on ∂Ω . (5.2) eq:harmonic

Note that A∗ is the dual of A since, from the above definitions, given x ∈ L2(Ω) and v ∈ H1/2(∂Ω),∫
∂Ω

Axv =

∫
Ω

∇u · ∇A∗v +

∫
Ω

xA∗v =

∫
Ω

xA∗v,

as expected.3

We next rewrite (5.1) and (5.2) in a single formulation. Consider ϕ ∈ H1(Ω) weak solution of4

−∆ϕ = f in Ω and ϕ = g on ∂Ω for given f ∈ L2(Ω) and g ∈ H1/2(∂Ω). The primal-mixed formulation5

states that (ϕ, ψ) ∈ H1(Ω)×H−1/2(∂Ω) is such that [10]6 ∫
Ω

∇ϕ · ∇v +
∫
∂Ω

ψv =

∫
Ω

fv for all v ∈ H1(Ω),∫
∂Ω

µϕ = g for all µ ∈ H−1/2(∂Ω).

(5.3) eq:pmf

Above, the “integrals” involving elements of H1/2(∂Ω) and H−1/2(∂Ω) actually denote the duality7

between these spaces. Integrating by parts the first equation in (5.3), we see that −∆ϕ = f and that8

ψ = ∂ϕ/∂n over the boundary. The second equation in (5.3) imposes the Dirichlet boundary condition9

ϕ = g weakly.10

In what follows, we assume that (5.1) is regular in the sense that the normal derivative of the solution11

in L2(∂Ω) and not only in H−1/2(∂Ω), i.e. an extra regularity holds [3].12

Discretization using finite elements13

To discretize the above problems, we use finite element methods as described in [10]. Consider a regular,14

quasi-uniform triangulation Th with elements of characteristic length h > 0. Note that Th defines a15

partion on ∂Ω, and we define a new boundary partition Γh such that each edge of Γh is the union of16

two edges of Th.17

We define the spaces of piecewise linear and piecewise constant functions18

Vh = {vh ∈ C(Ω) : vh|K ∈ P1(K), K ∈ Th},

Qh = {µh ∈ L2(∂Ω) : vh|K ∈ P0(e), e ∈ Γh},

and search for (uh, ψh) ∈ Vh ×Qh such that∫
Ω

∇uh · ∇vh +

∫
∂Ω

ψvh =

∫
Ω

xvh for all vh ∈ Vh,∫
∂Ω

µhuh = 0 for all µh ∈ Qh.

Such formulation computes the approximation ψh of the normal derivative of the exact solution without19

post-processing.20

16
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Figure 1: Inverse Potential Problem setup. (LEFT) Ground truth x⋆; (RIGHT) Finite element mesh used to
solve the inverse problem. fig:IPP-setup

Experiments with noisy data1

The numerical tests discussed in this section follow [2, 4] in the experimental setup. Here, d = 2 and2

Ω = (0, 1)×(0, 1). Moreover, the unknown ground truth x⋆ is assumed to be an H1-function with sharp3

gradients (see Figure 1). The setup of our experiments is as follows:4

— Problem (5.1) is solved for x = x⋆ and data y⋆ are computed.5

— We added to data y⋆ a normally distributed noise with zero mean and suit-6

able variance for achieving a prescribed relative noise level.7

— Two distinct noise scenarios are considered, where the relative noise level8

∥y⋆ − yδ∥/∥y⋆∥ corresponds to 0.1% and 2%.9

— The constant function x0 ≡ 1.5 is used as initial guess.10

— We set τ = 1.5, σ = 0.9 and λk = ( 32 )
k in the ret-iT method (Algorithm 2).11

— Algorithm 3 is used to compute x̃δk in Step [3.1] of the ret-iT method.12

The finite element mesh used to solve the inverse problem (see Figure 1) is coarser than the one13

used to generate the data y⋆. This strategy is adopted in order to avoid inverse crimes [1, 8].14

Noisy level of 0.1% The ret-iT method (Algorithm 2) is implemented using the above described setup.15

For comparison purposes, the iT method is implemented for solving the IPP (the same experimental16

setup is used). In order to compute the step of the iT method, see (2.1), the CG method with standard17

stopping rule is used (i.e. Algorithm 3 with stopping rule ∥ri+1∥ > tol in Step [3]).2 The discrepancy18

principle is used as stopping rule for the iT method, i.e. the iteration stops when ∥AxδiT,k − yδ∥ ≤ τδ19

for the first time.20

The ret-iT reaches the stop criteria after k∗(δ) = 11 steps. The iterate xδ11 as well as the correspond-21

ing relative iteration error |x⋆−xδ11|/|x⋆| are depicted in Figure 2. The iT method is implemented with22

τ = 1.5, λk = ( 32 )
k and initial guess x0; it reaches the stop criteria after k∗(δ) = 11 steps.23

2We choose tol := 10−6, which is the default MATLAB tolerance.
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Figure 2: Noise level 0.1%. The ret-iT method reaches the stop criteria after k∗(δ) = 11 steps. (LEFT) Iterate
xδ
11; (RIGHT) Relative iteration error |x⋆ − xδ

11|/|x⋆|. fig:IPP-noise01

In Figure 3 we compare the performances of ret-iT and iT methods. In this figure, the evolution1

of the relative iteration error (TOP) and the evolution of the relative residual (BOTTOM) are plotted2

for the ret-iT and iT methods (both plots are in logarithmic scale). Additionaly, in order to compare3

the numerical effort of these two methods, the number of accumulated CG-steps computed in the inner4

iterations is plotted (CENTER). In Table 1 the number of CG-steps needed in each iteration of the5

ret-iT method is comapred with the number of CG-steps needed in each iteration of the iT method, for6

k = 1, . . . , 11 = k∗(δ).7

Iteration number
1 2 3 4 5 6 7 8 9 10 11

ret-iT method 1 1 1 1 1 1 2 2 1 2 3
iT method 4 4 5 5 6 7 8 8 9 10 12

Table 1: Noise level 0.1%. Number of CG-steps required to compute x̃δ
k in each iteration of the ret-iT method

vs. number of CG-steps required to compute xδ
iT,k in the iT method. tab:CG-steps

Noisy level of 2% The ret-iT and iT methods are implemented using the above described setup.8

Both methods reach the stop criteria after k∗(δ) = 7 steps. In Figure 4 the performances of ret-iT and9

iT methods are compared. In Table 2 the number of CG-steps needed in each iteration of the ret-iT10

and iT methods is plotted.11

Iteration number
1 2 3 4 5 6 7

ret-iT method 1 1 1 1 1 1 2
iT method 4 4 5 5 6 7 8

Table 2: Noise level 2%. Number of CG-steps in each iteration of ret-iT and iT methods. tab:CG-steps2

Comparison with other inexact iT method (relative residual tolerant)12

Inexact Newton type methods are a well established alternative for solving nonlinear ill-posed opera-13

tor equations of the type F (x) = yδ, e.g., the REGINN iteration [25, 27] or the inexact Levenberg-14

18



Marquardt (LM) method [17]. In both REGINN and inexact LM methods the iterative step xδk =1

xδk−1 + sk is computed using updates sk satisfying ∥F ′(xδk−1)s − yδ + F (xδk−1)∥ < σk∥F (xδk−1) − yδ∥2

for apropriately chosen σk < 1.3 In particular, in the inexact LM method the update sk,LM is an3

aproximate solution of the equation (λkF
′(xδk−1)

∗F ′(xδk−1) + I)s = λkF
′(xδk−1)

∗(yδ − F (xδk−1)).
4

4

In the linear setting (1.2) the inexact LM method above reduces to an inexact iT type method with5

update sk,iT satisfying ∥(λkA∗A+ I)s− λkA
∗(yδ −Axδk−1)∥ ≤ σk∥λkA∗(yδ −Axδk−1)∥ (compare with6

the update of the ret-iT method in (4.1), (4.2) and (4.3)). Such an uptade sk,iT can be obtained using7

a slight variation of CG in Algorithm 3, where the stop criterion of the repeat-loop is substituted by:8

“if
(
∥rn+1∥ > µn∥ck∥

)
then”, with ck = λkA

∗(yδ−Axk−1) and µn ∈ (0, 1) chosen as in [25, Lemma 3.2].9

We refer to this inexact iT method as rr-iT, since the calculation of the inexact update sk,iT is based10

on relative residual tolerance. In the sequel we revisit the experiment with noise level 0.1% and compare11

the numerical performance of both inexact iT methods, ret-iT and rr-iT. The discrepancy principle is12

used as stopping rule for both methods.13

In Figure 5 the evolution of residual and iteration error for both inexact iT methods ret-iT and14

rr-iT are plotted. In Table 3 the number of CG-steps needed in each iterative step of ret-iT and rr-iT15

is plotted. The rr-iT method requires 12 iterations to reach the stop criterion (one more than ret-iT).16

Notice that rr-iT requires 37% more CG-steps than ret-iT in order to reach the same stop criterion.17

Iteration number
1 2 3 4 5 6 7 8 9 10 11 12

ret-iT method 1 1 1 1 1 1 2 2 1 2 3
rr-iT method 1 1 2 2 2 2 2 2 2 2 2 2

Table 3: Noise level 0.1%. Number of CG-steps required in the implementation of the ret-iT method vs.
number of CG-steps required in the implementation of the rr-iT method.tab:inexact-iT

6 Conclusions18

sec:conclusion

In this notes we propose an inexact iterated-Tikhonov method with relative error tolerance, here called19

ret-iT, for solving linear ill-posed problems.20

The advantage of adopting the relative error tolerant strategy in the computation of the iterative21

step of the iT method is evident: computationaly, it is less expensive to obtain a solution to the relaxed22

problem (2.3a) than to calculate the exact solution (up to the computer precision) to the original23

problem (2.1). In the first numerical experiment (noise level of 0.1%) the ret-iT method required a24

total of 16 CG-steps to reach the stop criteria, while the iT method required 78 CG-steps (see Table 125

and Figure 3 (CENTER)). In the second experiment (noise level of 2%) the ret-iT method required 826

CG-steps to reach the stop criteria, while the iT method required 39 CG-steps (see Table 2 and Figure 427

(CENTER)). In the third experiment (noise level of 0.1% revisited) the ret-iT method is compared with28

the rr-iT method (an inexact relative residual tolerant iT method). The rr-iT required a total of 2229

CG-steps, 37% more than the ret-iT method (see Table 3 and Figure 5 (CENTER)).30

An additional benefit of this strategy lies in the fact that the progress towards the solution of the31

iterate in (2.3b) is quantitatively “almost as good” as the one obtained in the iT method (2.2); see32

Lemma 2.4 and the pictures on the (TOP) of Figures 3 and 4.33

3Clearly, sk is an approximation for the exact Newton step s†k, which satisfies ∥F ′(xk)s− yδ + F (xk)∥ = 0.
4Here (λk) > 0 is an appropriately chosen sequence of Lagrange multipliers [17].

19



Appendix (auxiliary results)1

In order to prove that the CG method in Algorithm 3 satisfies Assumption 3.9, three auxiliary results2

are required. The first auxiliary result gives a sufficient condition for x̃ to satisfy the error criterion in3

(2.3a), using the norm defined by the quadratic form to be minimized by the CG method.4

lem:sol-set Lemma A.1. Given xδk−1 ∈ X and λk > 0; define Qk, bk as in (4.1), and ∥ · ∥Qk
as in (4.4). Let x+5

be the solution of Qkx = bk, i.e.6

x+ = xδk−1 −Q−1
k λkA

∗(Axδk−1 − yδ).7

For σ ≥ 0, if x̃ ∈ X and8

∥x̃− x+∥Qk
≤ σ

(λk∥A∥2 + 1) + σ
√
λk∥A∥2 + 1

∥x+ − xδk−1∥Qk
, (A.1) eq:suf-cond

then ∥λkA∗(Ax̃− yδ) + x̃− xδk−1∥ ≤ σ∥x̃− xδk−1∥.9

Proof. To prove this lemma, it suffices to show that β := σ∥x̃−xδk−1∥−∥λkA∗(Ax̃−yδ)+ x̃−xδk−1∥ ≥ 0,10

whenever x̃ ∈ X satisfies (A.1). First observe that, for any z ∈ X11

∥Qkz∥ ≤
√
λk∥A∥2 + 1 ∥z∥Qk

, ∥z∥ ≤ ∥z∥Qk
, ∥z∥Qk

≤
√
λk∥A∥2 + 1 ∥z∥ . (A.2) eq:bi

It follows from the definition of x+ and the operator Qk that12

λkA
∗(Ax̃− yδ) + x̃− xδk−1 = Qk(x̃− x+).13

Combining this identity with the above definition of β, the triangle inequality, and (A.2), we obtain14

β = σ∥x̃− xδk−1∥ − ∥Qk(x̃− x+)∥

≥ σ(∥x+ − xδk−1∥ − ∥x̃− x+∥)− ∥Qk(x̃− x+)∥

≥ σ√
λk∥A∥2 + 1

∥x+ − xδk−1∥Qk
−
[
σ +

√
λk∥A∥2 + 1

]
∥x̃− x+∥Qk

.

Thus, it follows from (A.1) that β ≥ 0, concluding the proof.15

An immediate consequence of Lemma A.1 is the fact that x̃δk = x̃ satisfies (2.3a), the problem in16

Step [3.1] of Algorithm 2.17

rem:sol-set Remark A.2. In the context of (4.3), Lemma A.1 reads:18

Given xδk−1 ∈ X and λk > 0; define Qk as in (4.1) and ck = λkA
∗(yδ −Axδk−1). Let s+ be the solution19

of Qkx = ck, i.e. s
+ = Q−1

k λkA
∗(yδ −Axδk−1). For σ ≥ 0, if s̃ ∈ X and20

∥s̃− x+∥Qk
≤ σ

(λk∥A∥2 + 1) + σ
√
λk∥A∥2 + 1

∥s+∥Qk
(A.3) eq:suf-cond2

then ∥(λkA∗A+ I)s̃− λkA
∗(yδ −Axδk−1)∥ ≤ σ∥s̃∥.21

The second auxiliary result in this appendix provides a convergence rate for the CG method. For a22

proof we refer the reader to [11, 13].23

lem:CG Lemma A.3. Let Q be a bounded, self-adjoint, coercive operator with condition number κ, let s+ be

20



the solution of Qx = c, and let (sn) be the sequence generated by CG method. Then

∥sn − s+∥Q
∥s0 − s+∥Q

≤ 2
[(√κ− 1√

κ+ 1

)n

+
(√κ+ 1√

κ− 1

)n]−1

≤ 2
(√κ− 1√

κ+ 1

)n

, n = 1, 2, . . .

Here ∥ · ∥Q is defined as in (4.4).1

The last auxiliary result in this appendix addresses the continuity of the nth step of the CG method2

for each fixed n ∈ N.3

lem:CG-c Lemma A.4. Let {ci} be a sequence in X, c ∈ X, and let Q be a self-adjoint, coercive, and bounded4

linear operator on X. Define, for n = 0, 1, . . . ,5

sin = argmin 1
2 ⟨x,Qx⟩ − ⟨x, ci⟩ for x ∈ Kn(Q, c

i) , i = 1, 2, . . . ;

sn = argmin 1
2 ⟨x,Qx⟩ − ⟨x, c⟩ for x ∈ Kn(Q, c) .

Here Kn(Q, c) are the Krylov spaces generated by Q and c, i.e. K0(Q, c) = {0}, Kn(Q, c) = span(c, . . . ,6

Qn−1c), n = 1, 2, . . . If7

ci → c as i→ ∞8

then9

sin → sn as i→ ∞ for n = 0, 1, . . . (A.4)

Proof. Fix n. There are ξ ∈ Rn and ξi ∈ Rn, for i = 1, 2, . . . , such that

sn =

n∑
j=1

ξjQ
j−1c , sin =

n∑
j=1

ξijQ
j−1ci (A.5) eq:ssi

We shall consider whether c, . . . , Qn−1c are linearly independent (LI) or not.10

a) Suppose first that c, . . . , Qn−1c are LI.11

Under this assumption, ξi as in (A.5) is univocally determined12

Define M ∈ Rn×n and η ∈ Rn as13

Mjk = ⟨Qj−1c,Qkc⟩ 1 ≤ j, k ≤ n ; ηj = ⟨Qj−1c, c⟩ 1 ≤ j ≤ n.14

Since Qsn − c ⊥ Qj−1c for j = 1, . . . , n15

n∑
k=1

Mjkξk = ⟨Qsn, Qj−1c⟩ = ηj j = 1, . . . , n16

Hence Mξ = η. As c, . . . , Q−1c are LI, M is non-singular and17

ξ =M−1η.18

Define M i ∈ Rn×n and ηi ∈ Rn, for i = 1, 2, . . . , as

M i
jk = ⟨Qj−1ci, Qkci⟩ 1 ≤ j, k ≤ n ; ηij = ⟨Qj−1ci, ci⟩ 1 ≤ j ≤ n.

By the same token, Qsin − ci ⊥ Qj−1ci for j = 1, . . . , n, and M iξi = ηi. Since M i → M , for i large

enough M i is non-singular. Therefore,

ξi = (M i)−1ηi (for i large enough). (A.6) eq:

Since M i →M and ηi → η as i→ ∞,

ξi → ξ and sin =
∑

ξijQ
j−1ci →

∑
ξjQ

j−1c = sn

21



as i→ ∞.1

b) Suppose that c, . . . , Qn−1c are linearly dependent (LD).2

Define

s̃in =

n∑
j=1

ξjQ
j−1ci

and let φi : X → X, for i = 1, 2, . . . , and φ : X → X be

φ(x) = 1
2 ⟨x,Qx⟩ − ⟨x, c⟩, φi(x) = 1

2 ⟨x,Qx⟩ − ⟨x, ci⟩ (A.7)

As s̃in ∈ Kn(c
i, Q) and sin minimizes φi on Kn(c

i, Q)

φi(Q−1ci) + 1
2

∥∥sin −Q−1ci
∥∥2
Q
= φi(sin) ≤ φi

(
s̃in

)
Since c, . . . , Qn−1 are LD, sn is the global minimizer of φ and sn = Q−1c. To end the proof, observe

that

s̃in → sn, φi
(
s̃in

)
→ φ(sn), (A.8)

Q−1ci → Q−1c = sn, φi
(
Q−1ci

)
→ φ(sn). (A.9)
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Figure 3: Noise level 0.1%. Comparison betwen ret-iT method and iT method. (TOP) Relative iteration error;
(CENTER) Accumulated number of CG-steps computed in the inner iterations; (BOTTOM) Relative residual. fig:IPP-evolution1
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Figure 4: Noise level 2%. Comparison betwen ret-iT method and iT method. (TOP) Relative iteration error;
(CENTER) Accumulated number of CG-steps computed in the inner iterations; (BOTTOM) Relative residual. fig:IPP-evolution2
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Figure 5: Noise level 0.1% revisited. Comparison betwen inexact iT methods ret-iT and rr-iT. (TOP) Relative
iteration error; (CENTER) Accumulated number of CG-steps computed in the inner iterations; (BOTTOM)
Relative residual. fig:inexact-methods
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