
On projective stochastic-gradient type methods for solving large

scale systems of nonlinear ill-posed equations: Applications to

machine learning

J.C. Rabelo† Y. Saporito‡ A. Leitão ‡§

August 26, 2023

Abstract

We propose and analyze a stochastic-gradient type method for solving systems of non-
linear ill-posed equations. The method considered here extends the SGD type iteration
introduced in [2022, Rabelo et al., Inv. Probl. 38 025003] for solving linear ill-posed systems.

A distinctive feature of our method resides in the a posteriori choice of the stepsize, which
promotes a relaxed orthogonal projection of the current iterate onto a conveniently chosen
convex set. This characteristic distinguish our method from other SGD type methods in
the literature (where the stepsize is typically chosen a priori) and accounts for the faster
convergence observed in the numerical experiments conducted in this manuscript.

The convergence analysis discussed here includes: monotonicity and mean square con-
vergence of the iteration error (exact data case), stability and semi-convergence (noisy data
case). In the later case, our method is coupled with an a priori stopping rule.

Numerical experiments are presented for two large scale nonlinear inverse problems in
machine learning (both with real data): (i) we address, using neural networks, the big data
problem of CO-concentration prediction considered in the above cited article; (ii) we tackle
the classification problem for the MNIST database (http://yann.lecun.com/exdb/mnist/).
The obtained numerical results demonstrate the efficiency of the proposed method.

Keywords. Ill-posed problems; Nonlinear equations; SGD method; Landweber method; Projective

method.

AMS Classification: 65J20, 47J06.

1 Introduction

In these notes we extend to nonlinear ill-posed problems the projective stochastic-gradient type
method proposed in [25, 24] for solving large scale systems of linear equations.

Problems under consideration

The inverse problem under consideration consist of determining an unknown quantity x ∈ X
from a set of data (y0, . . . , yN−1) = (yi) ∈ Y N , where X and Y are (infinite dimensional) Hilbert
spaces. The data (yi) correspond to indirect observations of the parameter x, this process being

†Department of Mathematics, Federal Univ. of Piaui, 64049-550 Teresina, Brazil
‡EMAp, Getulio Vargas Fundation, Praia de Botafogo 190, 22250-900 Rio de Janeiro, Brazil
§On leave from Department of Mathematics, Federal Univ. of St. Catarina, 88040-900 Floripa, Brazil
Emails: joelrabelo@ufpi.edu.br, yuri.saporito@gmail.com, acgleitao@gmail.com.

1

http://yann.lecun.com/exdb/mnist/
mailto:joelrabelo@ufpi.edu.br
mailto:yuri.saporito@gmail.com
mailto:acgleitao@gmail.com

described by the model yi = Fi(x), for i = 0, . . . , N−1; where Fi : D(Fi) ⊂ X → Y are ill-posed
nonlinear operators [8, 10].

We are particularly interested in the situation where N >> 1 is large, and the exact data
(yi) are not available; instead, only approximate data (yδi) satisfying

‖yδi − yi‖Y ≤ δi , i = 0, . . . , N − 1 , (1)

are available. Here δi > 0 are known noise levels; we write δ := (δ0, . . . , δN−1) ∈ RN .
The abstract formulation of the problems under consideration can be summarized as follows:

Given inexact data (yδi) and the levels of noise (δi) as in (1), find an approximate solution to
the large scale system of nonlinear operator equations

Fi(x) = yδi , i = 0, . . . , N − 1 . (2)

A straightforward approach for solving the inverse problem (1), (2) consists in rewriting
(2) as a single operator equation F(x) = yδ, with F := (F0, . . . , FN−1) : X → Y N and
yδ :=

(
yδ0, . . . , y

δ
N−1

)
, and using standard regularization methods; e.g., Iterative regularization

[1, 8, 14, 18, 19] or Tikhonov regularization [8, 23, 27, 28, 29, 26]. When using this functional ana-
lytical formulation, dealing with the numerical challenges of solving a high-dimensional ill-posed
equation becomes inevitable. Specifically, when applied to F(x) = yδ, the above mentioned
regularization methods often become numerically inefficient when N >> 1.

In what follows we briefly discuss alternative approaches for solving the nonlinear inverse
problem (1), (2) in a stable manner:
•Kaczmarz type methods (cyclic iterations): this technique is considered in [13, 11], [7], [12],
[2], [22] and [3] for the Landweber iteration, the Steepest-Descent iteration, the Expectation-
Maximization iteration, the Levenberg-Marquardt iteration, the REGINN-Landweber iteration,
and the Iteratively Regularized Gauss-Newton iteration respectively;
• SGD type methods (non-cyclic iterations): this stochastic technique is considered in [17]
with a priori chosen stepsize and a priori stopping rule (see [16] for the linear case); in [15] with
a priori chosen stepsize and a posteriori stopping rule; in this manuscript a posteriori chosen
stepsize and a priori stopping rule (see [25] for the linear case).

The rationale behind our method

The stochastic-gradient (SGD) type method considered in this manuscript aims to compute,
in a stable way, approximate solutions to (1), (2). Our method stands out due to the stepsize
selection, which is inspired by the projective Landweber (PLW) method [21] and the projective
Landweber-Kaczmarz (PLWK) method [20]. In the sequel, we briefly address these two methods:

• The PLW method was proposed in [21] for solving (1), (2) with N = 1, i.e. F0(x) = yδ0 with
‖y0 − yδ0‖ ≤ δ. A sequence (xδk) is generated as follows: at each iteration k, a half space

Hxδk
:=
{
z ∈ X,

〈
z − xδk, F ′0(xδk)∗Fδ(xδk)

〉
≤ −‖Fδ(xδk)‖

(
(1− η)‖Fδ(xδk)‖ − (1 + η)δ

)}
is defined, where Fδ(x) := F0(x)− yδ0 (see (A2) in Section 2.1 for the definition of the constant
η). Under appropriate assumptions, it is proven that Hxδk

contains all solutions of F0(x) = y0;

moreover, if the norm of the residual ‖Fδ(xδk)‖ is above the trashold (1 + η)(1− η)−1δ then Hxδk

does not contain the iterate xδk.
1 The next iterate xδk+1 is defined as a (relaxed) orthogonal

projection of xδk onto Hxδk
(see [21, Eq. (8)] for details). Summarizing, PLW corresponds to a

Landweber type iteration [19, 8] with stepsize defined by (relaxed) orthogonal projections onto

1In this situation we say that the set Hxδ
k
separates the iterate xδk from the solution set F−1

0 (y0); in

other words F−1
0 (y0) ⊂ Hxδ

k
, while xδk 6∈ Hxδ

k
.

2

the separating sets Hxδk
.

• The PLWK method was proposed in [20] for solving systems of nonlinear ill-posed equations
as in (1), (2) with N > 1. It consists in coupling the PLW method with the Kaczmarz strategy
and incorporating a bang-bang parameter. The corresponding iteration formula reads

xδk+1 := xδk − θk λk ωk F ∗[k](x
δ
k)
(
F[k](x

δ
k)− yδ[k]

)
,

where [k] := (k mod N) ∈ {0, . . . , N − 1}, θk ∈ (0, 2) is a relaxation parameter and ωk ∈ {0, 1}
is a bang-bang parameter (see [20, Eq. (6)]). Moreover, λk ≥ 0 (see [20, Eq. (12)]) gives the
exact orthogonal projection of xδk onto the half space H[k],xδk

, where

Hi,xδk
:=

{
z ∈ X,

〈
z − xδk, F ′i (xδk)∗Fi,δ(xδk)

〉
≤ −‖Fi,δ(xδk)‖

(
(1− η)‖Fi,δ(xδk)‖ − (1 + η)δ

)}
,

for i = 0, . . . , N − 1; here Fi,δ(x) := Fi(x)− yδi (see [20, Eq. (11)]). Summarizing, PLWK corre-
sponds to a Landweber-Kaczmarz (cyclic) type iteration [13] with stepsize defined by (relaxed)
orthogonal projections onto the separating sets H[k],xδk

.

In [25, 24] the projective step of the PLW and PLWK iterations was used as starting point
to derive a SGD type method for solving large scale systems of linear ill-posed equations.

The projective stochastic-gradient (pSGD) method

In this manuscript we build upon a well-established nonlinear assumption, namely the weak
tangential cone condition (wTCC) [14, 8], to expand the method in [25, 24]. As a result, we
create a new approach capable of efficiently solving large-scale systems of nonlinear equations of
the form (1), (2). For obvious reasons, the method considered in these notes is named projective
stochastic-gradient (pSGD) method.

Unlike the majority of SGD type methods found in the literature, our approach employs a
posteriori stepsize selection (see (6)). Additionally, in the noisy data case, our iterative method
is combined with an a priori stopping rule (see (A6)), classifying pSGD as a regularization
method as defined in [8].

Outline of the manuscript

In Section 2 we introduce the pSGD method; the main assumptions used in our analysis are
presented. Section 3 is dedicated to convergence analysis of pSGD. In Section 3.1 the exact data
case is considered: We estimate the average gain (Proposition 3.2), and prove monotonicity of
the average iteration error (Corollary 3.3) as well as square summability of the average residuals
(Corollary 3.4). Additionally, a convergence result is proven (Theorem 3.5). Section 3.2 is
devoted to analyzing the noisy data case and regularization properties of pSGD. The key findings
include a stability result (Theorem 3.9) and a semi-convergence result (Theorem 3.11).

In Section 4 numerical experiments are presented for solving two large scale systems of
nonlinear equations with real data. Both inverse problems relate to parameter identification in
neural network training, in detail:
• In Section 4.1 we tackle the big data problem of CO-concentration prediction in a gas

sensor array [9, 25]. A special neural-network (NN) is used to model the related inverse problem
(a variation of the saturated linear activation function is used). We prove in Lemma 4.2 that
the nonlinear function modeling this NN satisfies the wTCC.
• In Section 4.2 we address the well-known classification problem for the MNIST database,

consisting of images of handwritten digits (see https://en.wikipedia.org/wiki/MNIST database).
Section 5 is devoted to final remarks and conclusions.

3

https://en.wikipedia.org/wiki/MNIST_database

2 The method under investigation

This section presents the nonlinear pSGD method under consideration in this notes. We begin by
addressing the main assumptions necessary for the analysis derived in the forthcoming sections.

2.1 Main assumptions

Throughout this work we assume that
⋂
i D(Fi) has nonempty interior, where D(Fi) ⊂ X is the

domain of definition of Fi. Additionally, the initial guess x0 ∈ X satisfies Bρ(x0) ⊂
⋂N−1
i=0 D(Fi)

for some ρ > 0. Moreover, the following assumptions are used:

(A1) Each operator Fi is Fréchet differentiable with continuous derivative F ′i . Moreover, there
exists a constant C > 0 such that

‖F ′i (x)‖ ≤ C , i = 0, . . . , N − 1 , ∀ x ∈ Bρ(x0); (3)

(A2) The weak Tangential Cone Condition (wTCC) holds at Bρ(x0), with 0 < η < 1, i.e.

‖Fi(x̄)− Fi(x)− F ′i (x)(x̄− x)‖Y ≤ η ‖Fi(x̄)− Fi(x)‖Y , (4)

for i = 0, . . . , N − 1 and ∀ x, x̄ ∈ Bρ(x0);

(A3) There exists x? ∈ Bρ/2(x0) such that Fi(x
?) = yi for i = 0, . . . , N − 1, i.e. x? is a (non

necessarily unique) solution of (2) with exact data;

(A4) (θk) ∈ R+ is a sequence satisfying 0 < infk θk and supk θk < 2;

(A5) γ > 0 is a constant satisfying γ >
1 + η

1− η
C, whith C as in (A1) and η as in (A2);

(A6) The stopping index k∗δ = k∗(δ) ∈ N, satisfies lim
j→∞

k∗δj =∞ and lim
j→∞

‖δj‖2k∗δj = 0.

The following inequalities are immediate consequences of (A2):

(1− η)‖Fi(x̄)− Fi(x)‖ ≤ ‖F ′i (x)(x̄− x)‖ ≤ (1 + η)‖Fi(x̄)− Fi(x)‖ , (5)

for i = 0, . . . , N − 1 and x, x̄ ∈ Bρ(x0) (see [8, Chapter 11] for further discussion).

2.2 Introducing the nonlinear pSGD iteration

Here we present the nonlinear pSGD method for solving (1), (2). In what follows we adopt the
simplified notation: F δi (x) := Fi(x)−yδi , for i = 0, . . . , N−1; and define the polynomial function
pδ(t) := t[(1− η)t− (1 + η)δ].

Given x0, γ > 0 and (θk) as in Section 2.1, the iteration formula of the pSGD method reads

xδk+1 = xδk − θk λ
δ
Ik
F ′Ik(xδk)

∗ F δIk(xδk) , k = 0, 1, . . . , k∗δ − 1. (6a)

Here the stepsize λδIk ≥ 0 is a function of (xδk, y
δ
Ik
, δIk) and is defined by

λδIk :=

 pδIk (‖F δIk(xδk)‖)/‖F ′Ik(xδk)
∗ F δIk(xδk)‖2 , if ‖F ′Ik(xδk)

∗ F δIk(xδk)‖ > γδIk

0 , otherwise.
(6b)

The (Ik) is an independent and identically distributed sequence of random indexes, taking values
in {0, . . . , N − 1}, in a fixed probability space (Ω,F ,P). For simplicity of the presentation we
assume that P(Ik = i) = 1

N for i = 0, . . . , N − 1.

4

Remark 2.1. In the exact data case, we write F 0
i (x) := Fi(x)− yi and p0(t) := (1− η)t2. The

iteration formula of the pSGD method reads

xk+1 = xk − θk λIk F
′
Ik

(xk)
∗ F 0

Ik
(xk) , k = 0, 1, . . . (7a)

where the stepsize λIk ≥ 0 is a function of (xk, yIk) and is defined by

λIk :=

 p0(‖F 0
Ik

(xk)‖)/‖F ′Ik(xk)
∗ F 0

Ik
(xk)‖2 , if ‖F ′Ik(xk)

∗ F 0
Ik

(xk)‖ > 0

0 , otherwise.
(7b)

Remark 2.2 (Exact projections). If one takes θk ≡ 1 in (6a), then xδk+1 corresponds to the

orthogonal projection of xδk onto Hδ
Ik,x

δ
k

, where

Hδ
i,x :=

{
z ∈ X | 〈z − x, F ′i (x)∗F δi (x)〉 ≥ ‖F δi (x)‖

(
(1− η)‖F δi (x)‖ − (1 + η)δi

)}
.

Alternatively, if θk ∈ (0, 2) xδk+1 can be interpreted as a relaxed projection of xδk onto HIk,x
δ
k
.

Remark 2.3 (Lower bound for the stepsizes).

• In the exact data case, it holds λIk ≥ (1 − η)C−2 whenever ‖F ′Ik(xk)
∗ F 0

Ik
(xk)‖ > 0. I.e.

λIk in (7b) is bounded by below, whenever xk is not a solution of FIk(x) = yIk .

• In the noisy data case, Assumption (A5) implies λδIk ≥ C
−2 (1− η − C(1 + η)/γ) =: λmin,

whenever ‖F ′Ik(xδk)
∗ F δIk(xδk)‖ > γδIk .

3 Convergence analysis

In this section, analytical properties of the nonlinear pSGD method in (6) are investigated. We
start the discussion by considering the case of exact data, i.e. δi = 0 for i = 0, . . . , N − 1.

3.1 The exact data case

In this case, the inverse problem (1), (2) can be written in the form

Fi(x) = yi , i = 0, . . . , N − 1 , (8)

or simply F(x) = y. Next we introduce relevant notation used in this manuscript.

Remark 3.1 (Notation).

• For x∗ ∈ X a solution of (8), the mean square iteration error E
[
‖x∗ − xk‖2

]
is defined

by the average error over all possible realizations of I0, . . . , Ik−1 that define xk. E.g., for
k = 0 and k = 1, it holds

E
[
‖x∗ − x0‖2

]
= ‖x∗ − x0‖2, E

[
‖x∗ − x1‖2

]
= 1

N

N−1∑
i=0
‖x∗ − [x0 − θ1λiF ′i (x0)∗F 0

i (x0)]‖2.

• Let k ∈ N be fixed, and denote by Fk the σ-algebra generated by I0, . . . , Ik−1. It holds

E
[
λI‖F 0

I (xk)‖2|Fk
]

= 1
N

N−1∑
i=0

λi ‖F 0
i (xk)‖2, E

[
‖x∗ − xk‖2|Fk

]
= ‖x∗ − xk‖2,

E
[
‖x∗ − xk+1‖2 − ‖x∗ − xk‖2|Fk

]
= 1

N

N−1∑
i=0

[
‖x∗ − [xk − θkλiF ′i (xk)∗F 0

i (xk)]‖2 − ‖x∗ − xk‖2
]
.

Moreover, by the law of iterated expectation, we have

E
[
λI‖F 0

I (xk)‖2
]

= E
[
E
[
λI‖F 0

I (xk)‖2|Fk
]]

= 1
N

N−1∑
i=0

E
[
λi‖F 0

i (xk)‖2
]
,

5

where the last expectation averages the residual of equation i times λi over all possible re-
alizations of xk. It is worth noticing that λi is a random variable (indeed, λi depends on
the realization of xk; see (7b)).

In the next proposition we estimate the difference E[‖x∗ − xk+1‖2] − E[‖x∗ − xk‖2], where
x∗ ∈ X is a solution of (8). This is a quintessential result in the forthcoming analysis.

Proposition 3.2. Let assumptions (A1), (A2) and (A3) hold and (xk) be a sequence generated
by the nonlinear pSGD method (7). If xk ∈ Bρ(x0), then for any x∗ solution of (8) it holds

E
[
‖x∗ − xk+1‖2

]
− E

[
‖x∗ − xk‖2

]
≤ θk(θk − 2)(1− η)E

[
λI‖F 0

I (xk)‖2
]
. (9)

Proof. If F ′Ik(xk)
∗F 0

Ik
(xk) 6= 0, we obtain from (7a) and (7b)

‖x∗ − xk+1‖2 − ‖x∗ − xk‖2 = 2〈xk+1 − xk, xk+1 − x∗〉 − ‖xk − xk+1‖2

= −2θkλIk〈F
′
Ik

(xk)
∗F 0

Ik
(xk), xk+1 − x∗〉 − θ2kλ2Ik‖F

′
Ik

(xk)
∗F 0

Ik
(xk)‖2

= −2θkλIk〈F
0
Ik

(xk),−F 0
Ik

(xk)− F ′Ik(xk)(x
∗ − xk) + F ′Ik(xk)(xk+1 − xk) + F 0

Ik
(xk)〉

−θ2kλ2Ik‖F
′
Ik

(xk)
∗F 0

Ik
(xk)‖2

= 2θkλIk
[
〈−F 0

Ik
(xk),−F 0

Ik
(xk)− F ′Ik(xk)(x

∗ − xk)〉+ θkp
0(‖F 0

Ik
(xk)‖)− ‖F 0

Ik
(xk)‖2

]
− θ2kλIkp

0(‖F 0
Ik

(xk)‖) .

Since −F 0
Ik

(xk) = FIk(x∗)− FIk(xk) and xk ∈ Bρ(x0), we argue with (A2) to obtain

‖x∗ − xk+1‖2 − ‖x∗ − xk‖2

≤ 2θkλIk

[
(η − 1)‖F 0

Ik
(xk)‖2 + θkp

0(‖F 0
Ik

(xk)‖)
]
− θ2kλIkp

0(‖F 0
Ik

(xk)‖)

= 2θkλIk

[
(η − 1)‖F 0

Ik
(xk)‖2 +

1

2
θk(1− η)‖F 0

Ik
(xk)‖2

]
= θk(θk − 2)(1− η)λIk‖F

0
Ik

(xk)‖2. (10)

Otherwise, if F ′Ik(xk)
∗F 0

Ik
(xk) = 0 then xk+1 = xk and FIk(xk) = yIk . Consequently, (10) holds

also in this case.
Denoting by Fk the σ-algebra generated by (I0, . . . , Ik−1), we conclude that xk is measurable

with respect to Fk (while Ik is independent of it). Consequently, we derive from (10) the estimate

E
[
‖x∗ − xk+1‖2 − ‖x∗ − xk‖2|Fk

]
≤ θk(θk − 2)(1− η)E

[
λI‖F 0

I (xk)‖2|Fk
]
.

Taking the full conditional in the last inequality yields (9).

If, additionally to (A1), . . . , (A3), assumption (A4) holds, then (10) implies that any sequence
(xk) generated by the pSGD method (7) satisfies xk ∈ Bρ/2(x?) ⊂ Bρ(x0), for k = 0, 1, . . . Thus,
under this additional assumption, Proposition 3.2 implies the monotonicity of the mean square
iteration error E[‖x∗ − xk‖2], where x∗ ∈ X is a solution of (8). This fact is summarized in

Corollary 3.3. Let assumptions (A1), . . . , (A4) hold true and (xk) be a sequence generated by
the nonlinear pSGD method (7). For any solution x∗ of (8) it holds

E[‖x∗ − xk+1‖2] ≤ E[‖x∗ − xk‖2] , k = 0, 1, . . . (11)

An important consequence of Proposition 3.2 is discussed in the sequel (this result is used
in the proof of the main convergence Theorem 3.5).

6

Corollary 3.4. Let assumptions (A1),. . . ,(A4) hold true and (xk) be a sequence generated by
the nonlinear pSGD method (7). The series

∞∑
k=0

θk(2− θk)(1− η)E[λI‖F 0
I (xk)‖2] ,

∞∑
k=0

θk E[λI‖F 0
I (xk)‖2] and

∞∑
k=0

E[‖F 0
I (xk)‖2]

are summable.

Proof. The summability of the first series follows from Proposition 3.2. The summability of the
second and third series follows from (A4) together with the summability of the first series.

We are now ready to state and prove a convergence result for the pSGD method in (7).

Theorem 3.5 (Convergence for exact data). Let assumptions (A1),. . . ,(A4) hold. Any sequence
(xk) generated by the nonlinear pSGD method (7) converges in mean square to some element
x∗ ∈ Bρ(x0), i.e. E[‖xk − x∗‖2]→ 0 as k →∞, which is a solution of (8).

Proof. We claim that (xk) is a Cauchy sequence. It is enough to prove that ek := x? − xk is
Cauchy, where x? is defined as in (A3). From Corollary 3.3 follows

lim
k→∞

E[‖ek‖2] = ε ≥ 0 , (12)

Next we prove that

E[〈en − ek, en〉]→ 0 and E[〈el − en, en〉]→ 0 as k, l→∞, (13)

with k ≤ l for some k ≤ n ≤ l (compare with [14, Theorem 2.3]). Notice that E[〈· , · 〉X],
E[〈· , · 〉Y]) define inner products in L2(Ω;X) and L2(Ω;Y) respectively.2

Notice that, for any fixed k ≤ l, one can always choose an index n with k ≤ n ≤ l such that

E[λI‖F 0
I (xn)‖2] ≤ E[λI‖F 0

I (xj)‖2] , ∀ k ≤ j ≤ l . (14)

Next, arguing with (7a) and the Cauchy–Schwartz inequality (for random variables) we estimate

∣∣E[〈en − ek, en〉]
∣∣ =

∣∣∣ n−1∑
j=k

E[〈xj+1 − xj , x? − xn〉]
∣∣∣ =

∣∣∣ n−1∑
j=k

E[θj λI〈F ′I(xj)∗F 0
I (xj), xn − x?〉]

∣∣∣
=

∣∣∣ n−1∑
j=k

θj E[λI〈F 0
I (xj), F

′
I(xj)(xn − xj + xj − x?)〉]

∣∣∣
=

∣∣∣ n−1∑
j=k

θj E[〈λ
1
2
I F

0
I (xj), λ

1
2
I F
′
I(xj)(xn − xj)〉] + θj E[〈λ

1
2
I F

0
I (xj), λ

1
2
I F
′
I(xj)(xj − x?)〉]

∣∣∣
≤

n−1∑
j=k

(
θj E[λI‖F 0

I (xj)‖2]
1
2 E[λI‖F ′I(xj)(xn − xj)‖2]

1
2

+ θj E[λI‖F 0
I (xj)‖2]

1
2 E[λI‖F ′I(xj)(xj − x?)‖2]

1
2 〉]
)
.

Thus, it follows from (5) that

∣∣E[〈en − ek, en〉]
∣∣ ≤ (1 + η)

n−1∑
j=k

θj E[λI‖F 0
I (xj)‖2]

1
2 E[λI‖F 0

I (xn)− F 0
I (xj)‖2]

1
2

+ (1 + η)
n−1∑
j=k

θj E[λI‖F 0
I (xj)‖2] .

2L2(Ω;X) is the space of square integrable random variables defined on Ω and taking values in X.

7

The term E[λI‖F 0
I (xn)−F 0

I (xj)‖2]
1
2 on the right hand side of the last estimate can be estimated

using (14). Indeed, for each j = k, . . . , n− 1 it holds

E[λI‖F 0
I (xn)− F 0

I (xj)‖2]
1
2 ≤

(
2E[λI‖F 0

I (xn)‖2] + 2E[λI‖F 0
I (xj)‖2]

) 1
2

≤
√

2
(
E[λI‖F 0

I (xj)‖2] + E[λI‖F 0
I (xj)‖2]

) 1
2 ≤ 2

[
E[λI‖F 0

I (xj)‖2]
] 1

2
.

Consequently, ∣∣E[〈en − ek, en〉]
∣∣ ≤ 3(1 + η)

n−1∑
j=k

θj E[λI‖F 0
I (xj)‖2].

Now, Corollary 3.4 allow us to conclude that E[〈en− ek, en〉]→ 0 as k, l→∞. Analogously one
proves that E[〈el − en, en〉]→ 0 as k, l→∞, establishing (13).

Finally, one argues with (13), (12), inequality E[‖ej−ek‖2]
1
2 ≤ E[‖ej−el‖2]

1
2 +E[‖el−ek‖2]

1
2

and identities
E[‖ej − el‖2] = 2E[〈el − ej , el〉] + E[‖ej‖2]− E[‖el‖2],
E[‖el − ek‖2] = 2E[〈el − ek, el〉] + E[‖ek‖2]− E[‖el‖2],

to conclude that E[‖ej − ek‖2]→ 0, as k, l→∞, i.e. (ek) is a Cauchy sequence in L2(Ω;X).

Since (xk) is Cauchy in L2(Ω;X), it has an accumulation point x∗ ∈ X. On the other hand,
it follows from Corollary 3.4 that the mean square residuals E[‖F 0

I (xk)‖2] converge to zero as
k →∞. Consequently, E[‖F 0

I (x∗)‖2] = 0, i.e. x∗ satisfies ‖Fi(x∗)−yi‖2 = 0 for i = 0, . . . , N −1;
in other words, x∗ is a solution of (8).

3.2 The noisy data case

In this section we investigate regularization properties of the nonlinear pSGD method in (6)
coupled with the (a priori) stopping criterion in (A6).

In the next result, the nonlinear residual norm ‖F δi (x)‖ is compared with the norm of the
linearization ‖F δi (x) + F ′i (x)(x∗ − x)‖ for x ∈ Bρ(x0) and x∗ ∈ Bρ(x0) a solution of (8).

Lemma 3.6. Let Assumptions (A1), (A2) and (A3) hold. For all x, x̄ ∈ Bρ(x0) we have

‖ − F δi (x)− F ′i (x)(x̄− x)‖ ≤ η‖F δi (x)‖+ (1 + η)‖F δi (x̄)‖ , i = 0, . . . , N − 1.

In particular, if x̄ = x∗ ∈ Bρ(x0) is a solution of (2) it holds

‖ − F δi (x)− F ′i (x)(x∗ − x)‖ ≤ η‖F δi (x)‖+ (1 + η)δi , ∀x ∈ Bρ(x0).
Proof. Given x, x̄ ∈ Bρ(x0) we conclude from (A2) that

‖ − F δi (x)− F ′i (x)(x̄− x)‖ = ‖yδi − Fi(x)− F ′i (x)(x̄− x)‖
= ‖yδi − Fi(x̄) + Fi(x̄)− Fi(x)− F ′i (x)(x̄− x)‖
≤ η‖Fi(x̄)− Fi(x)‖+ ‖yδi − Fi(x̄)‖
≤ η‖yδi − Fi(x)‖+ (1 + η)‖yδi − Fi(x̄)‖ ,

proving the first assertion. The second assertion is a direct consequence of the first one.

In the sequel we estimate the difference E
[
‖x∗ − xδk+1‖2

]
− E

[
‖x∗ − xδk‖2

]
, extending the

estimate (9) in Proposition 3.2 to the noisy data case.

Proposition 3.7. Let Assumptions (A1), (A2) and (A3) hold, (xδk) be a sequence generated by
the nonlinear pSGD method (6), and x∗ ∈ Bρ(x0) be a solution of (8). If xδk ∈ Bρ(x0) for some
0 ≤ k ≤ k∗δ , then

E
[
‖x∗ − xδk+1‖2

]
− E

[
‖x∗ − xδk‖2

]
≤

θk(θk − 2)
[
(1− η)E

[
λδI‖F δI (xδk)‖2

]
− (1 + η)E

[
δIλ

δ
I‖F δI (xδk)‖

]]
. (15)

8

Proof. If ‖F ′Ik(xδk)
∗F δIk(xδk)‖ > γδIk , it follows from (6a) and (6b)

‖x∗− xδk+1‖2 − ‖x∗ − xδk‖2 = 2〈xδk+1 − xδk, xδk+1 − x∗〉 − ‖xδk+1 − xδk‖2

= 2θkλ
δ
Ik

〈
− F δIk(xδk),−F δIk(xδk)− F ′Ik(xδk)(x

∗ − xδk) + F ′Ik(xδk)(x
δ
k+1 − xδk) + F δIk(xδk)

〉
− ‖xδk+1 − xδk‖2

= 2θkλ
δ
Ik

[〈
− F δIk(xδk),−F δIk(xδk)− F ′Ik(xδk)(x

∗ − xδk)
〉

+
〈
− F ′Ik(xδk)

∗F δIk(xδk), x
δ
k+1 − xδk

〉
− ‖F δIk(xδk)‖2

]
− ‖xδk+1 − xδk‖2

= 2θkλ
δ
Ik

[〈
− F δIk(xδk),−F δIk(xδk)− F ′Ik(xδk)(x

∗ − xδk)
〉

+ θkp
δIk (‖F δIk(xδk)‖)− ‖F δIk(xδk)‖2

]
−θ2kλδIkp

δIk (‖F δIk(xδk)‖) .

Thus, arguing with the Cauchy-Schwartz inequality, Lemma 3.6 and the definition of pδ(·) follows

‖x∗− xδk+1‖2 − ‖x∗ − xδk‖2

≤ 2θkλ
δ
Ik

[
‖F δIk(xδk)‖ ‖ − F δIk(xδk)− F ′Ik(xδk)(x

∗ − xδk)‖+ 1
2θkp

δIk (‖F δIk(xδk)‖)− ‖F δIk(xδIk)‖2
]

≤ 2θkλ
δ
Ik

[
η‖F δIk(xδk)‖2 + (1 + η)δIk‖F

δ
Ik

(xδk)‖+ 1
2θkp

δIk (‖F δIk(xδk)‖)− ‖F δIk(xδIk)‖2
]

= 2θkλ
δ
Ik

[
(η − 1)‖F δIk(xδk)‖2 + (1 + η)δIk‖F

δ
Ik

(xδk)‖+ 1
2θk
(
(1− η)‖F δIk(xδk)‖2

−(1 + η)δIk‖F
δ
Ik

(xδk)‖
)]

= 2θkλ
δ
Ik

[
(1− η)(θ2 − 1)‖F δIk(xδk)‖2 + (1 + η)(1− θ

2)δIk‖F δIk(xδk)‖
]

= θk(θk − 2)λδIk

[
(1− η)‖F δIk(xδk)‖2 − (1 + η)δIk‖F

δ
Ik

(xδk)‖
]
. (16)

Otherwise, if ‖F ′Ik(xδk)
∗F δIk(xδk)‖ ≤ γδIk , then λδIk = 0 and xδk+1 = xδk (see (6a) and (6b)).

Therefore, (16) holds also in this case. By employing a similar reasoning as in the final part of
the proof of Proposition 3.2, we establish the validity of (15).

It is worth noticing that the right hand side of (16) can be rewriten in the form

θk(θk − 2)λδIk

[
(1− η)‖F δIk(xδk)‖2 − (1 + η)δIk‖F δIk(xδk)‖

]
= θk(θk − 2)λδIkp

δIk (‖F δIk(xδk)‖)

= θk(θk − 2)(λδIk)2‖F ′Ik(xδk)
∗F δIk(xδk)‖2 ≥ 0

(see Assumption (A4)), from where we conclude that ‖x∗ − xδk+1‖ ≤ ‖x∗ − xδk‖. This inequality

and (A3) allow us to conclude that (xδk) satisfies ‖x? − xδk+1‖ ≤ ‖x? − xδk‖ and xδk ∈ Bρ(x0), for
k = 0, . . . , k∗δ . Summarizing, we have

Corollary 3.8. Under the assumptions of Proposition 3.7 it holds ‖x∗−xδk+1‖ ≤ ‖x∗−xδk‖, for

k = 0, . . . , k∗δ . Consequently, (xδk) ⊂ Bρ(x0). Additionally, for any x∗ solution of (8) it holds

E
[
‖x∗ − xδk+1‖

]
≤ E

[
‖x∗ − xδk‖

]
, k = 0, . . . , k∗δ .

We are now ready to state and prove a stability result (Theorem 3.9) and a semi-convergence
result (Theorem 3.11) for the pSGD method in (6).

Theorem 3.9 (Stability). Let Assumptions (A1),(A2) and (A4) hold, (δj) = (δj0, . . . , δ
j
N−1) ∈

(R+)N be a sequence with ‖δj‖ → 0 as j → ∞, and (yδ
j
) = (yδ

j

0 , . . . , y
δj

N−1) ∈ Y N be a corre-

sponding sequence of noisy data satisfying (1). Moreover, let (xl)l∈N and (xδ
j

l)
k∗δ
l=0 be sequences

9

generated by the nonlinear pSGD method in the case of exact and noisy data respectively; all
sequences are generated using the same (I0, . . . , Ik, . . .). For each k ∈ N it holds

lim
j→∞

E
[
‖xδjk − xk‖2

]
= 0 . (17)

Prior to establishing this theorem, we examine an auxiliary result:

Lemma 3.10. Under assumptions of Theorem 3.9, if ‖F ′Ik(xk)
∗F 0

Ik
(xk)‖ > 0 and limj x

δj

k = xk

for some k ∈ N, then limj |λδ
j

Ik
− λIk | = 0.

Proof. From (A1), (1), limj ‖δj‖ = 0 and limj x
δj

k = xk follow

lim
j→∞

pδIk (‖F δjIk (xδ
j

k)‖) = p0(‖F 0
Ik

(xk)‖) . (18)

On the other hand, from (A1), (1), limj ‖δj‖ = 0 and limj x
δj

k = xk we conclude that

limj ‖F ′Ik(xδ
j

k)∗F δ
j

Ik
(xδ

j

k)‖ = ‖F ′Ik(xk)
∗F 0

Ik
(xk)‖.

Therefore, the hypothesis ‖F ′Ik(xk)
∗F 0

Ik
(xk)‖ > 0 (together with the fact limj δ

j
Ik

= 0) allow

us to conclude that ‖F ′Ik(xδ
j

k)∗F δ
j

Ik
(xδ

j

k)‖ > 1
2‖F

′
Ik

(xk)
∗F 0

Ik
(xk)‖ > γδjIk for sufficiently large j.

Consequently, the lemma follows from (18) together with the definitions of λδ
j

Ik
and λIk in (6b)

and (7b) respectively.

Proof. (of Theorem 3.9)
We give an inductive proof in k. Since x0 = xδ

j

0 for all j ∈ N, (17) trivially holds for k = 0.

Assume that limj E
[
‖xδjl −xl‖2

]
= 0 for l = 0, . . . k. We aim to prove limj E

[
‖xδjk+1−xk+1‖2

]
= 0.

The argumentation is divided in three steps:

Step 1: We claim that limj ‖xδ
j

l − xl‖2 = 0 for l = 1, . . . , k.
Arguing as in the proof of [25, Theorem 4.3] one proves that, for each realization (I0, . . . , Il−1)

the inequality ‖xδjl −xl‖
2 ≤ (1

N)lE
[
‖xδjl −xl‖

2
]

holds for l = 1, . . . , k and j ∈ N. Thus, for each

fixed l ∈ {1, . . . , k} the inductive hipothesis guarantees that limj ‖xδ
j

l − xl‖2 = 0.

Step 2: We claim that limj ‖xδ
j

k+1 − xk+1‖2 = 0. Two distinct cases are considered:
(I) ‖F ′Ik(xk)

∗F 0
Ik

(xk)‖ > 0. From the iteration formulas (6a) and (7a) follow

xδ
j

k+1−xk+1 =

= xδ
j

k − xk − θk
[
λδ

j

Ik
F ′Ik(xδ

j

k)∗F δ
j

Ik
(xδ

j

k)− λIkF
′
Ik

(xk)
∗F 0

Ik
(xk)

]
= xδ

j

k − xk − θk
[
(λδ

j

Ik
− λIk)F ′Ik(xk)

∗F 0
Ik

(xk) + λδ
j

Ik

(
F ′Ik(xδ

j

k)∗F δ
j

Ik
(xδ

j

k)− F ′Ik(xk)
∗F 0

Ik
(xk)

)]
.

Therefore, arguing with (A1) we estimate

‖xδjk+1 − xk+1‖ ≤

‖xδjk − xk‖+ 2C|λδjIk − λIk | ‖F
0
Ik

(xk)‖+ 2|λδjIk | ‖F
′
Ik

(xδ
j

k)∗F δ
j

Ik
(xδ

j

k)− F ′Ik(xk)
∗F 0

Ik
(xk)‖ .

Taking the limit j →∞ in the above inequality and arguing with Step 1 (for l = k), Lemma 3.10
and (A1), we conclude that the three terms on the right hand side do converge to zero;3 proving
our claim in Step 2, in case (I).

3Notice that Lemma 3.10 guarantees the boundedness of the sequence (λδ
j

Ik
)j .

10

(II) ‖F ′Ik(xk)
∗F 0

Ik
(xk)‖ = 0. In this case λIk = 0 and F 0

Ik
(xk) = 0. From (6a) and (7a) follow

‖xδjk+1 − xk+1‖ ≤ ‖xδ
j

k − xk‖+ 2λδ
j

Ik
‖F ′Ik(xδ

j

k)∗F δ
j

Ik
(xδ

j

k)‖ . (19)

Given j ∈ N, if ‖F ′Ik(xδ
j

k)∗F δ
j

Ik
(xδ

j

k)‖ ≤ γδjIk then λδ
j

Ik
= 0 and we derive from (19)

‖xδjk+1 − xk+1‖ ≤ ‖xδ
j

k − xk‖. (†)
Otherwise, if ‖F ′Ik(xδ

j

k)∗F δ
j

Ik
(xδ

j

k)‖ > γδjIk we argue with Lemma 3.6 to estimate

‖F δjIk (xδ
j

k)‖2 =
〈
FIk(xδ

j

k)− yδjIk ,−y
δj

Ik
+ FIk(xδ

j

k)− F ′Ik(xδ
j

k)(xk − xδ
j

k) + F ′Ik(xδ
j

k)(xk − xδ
j

k)
〉

≤ ‖F δjIk (xδ
j

k)‖ ‖ − F δjIk (xδ
j

k)− F ′Ik(xδ
j

k)(xk − xδ
j

k)‖+ ‖F ′Ik(xδ
j

k)∗F δ
j

Ik
(xδ

j

k)‖ ‖xk − xδ
j

k ‖

≤ ‖F δjIk (xδ
j

k)‖
[
η‖F δjIk (xδ

j

k)‖+ (1 + η)‖F δjIk (xk)‖
]

+ ‖F ′Ik(xδ
j

k)∗F δ
j

Ik
(xδ

j

k)‖ ‖xk − xδ
j

k ‖

= ‖F δjIk (xδ
j

k)‖
[
η‖F δjIk (xδ

j

k)‖+ (1 + η)‖yδjIk ± yIk − FIk(xk)‖
]

+ ‖F ′Ik(xδ
j

k)∗F δ
j

Ik
(xδ

j

k)‖ ‖xk − xδ
j

k ‖

≤ ‖F δjIk (xδ
j

k)‖
[
η‖F δjIk (xδ

j

k)‖+ (1 + η)(δjIk + ‖F 0
Ik

(xk)‖)
]

+ ‖F ′Ik(xδ
j

k)∗F δ
j

Ik
(xδ

j

k)‖ ‖xk − xδ
j

k ‖ .

Since F 0
Ik

(xk) = 0 holds in case (II), the last inequality and the definition of pδ(·) allow us to

conclude that p
δjIk (‖F δjIk (xδ

j

k)‖) ≤ ‖F ′Ik(xδ
j

k)∗F δ
j

Ik
(xδ

j

k)‖ ‖xk − xδ
j

k ‖. Thus, it follows from (6b)

λδ
j

Ik
‖F ′Ik(xδ

j

k)∗F δ
j

Ik
(xδ

j

k)‖ = p
δjIk (‖F δjIk (xδ

j

k)‖) ‖F ′Ik(xδ
j

k)∗F δ
j

Ik
(xδ

j

k)‖−1 ≤ ‖xδjk − xk‖ .

From this inequality and (19) follow
‖xδjk+1 − xk+1‖ ≤ 3‖xδjk − xk‖ . (‡)

From inequalities (†) and (‡) together with Step 1 (for l = k) follow limj ‖xδ
j

k+1 − xk+1‖ ≤
3 limj ‖xδ

j

k − xk‖ = 0, proving our claim in Step 2, in case (II).

Step 3: We claim that limj E
[
‖xδjk+1 − xk+1‖2

]
= 0, concluding the inductive proof.

Indeed, notice that

E
[
‖xδk+1 − xk+1‖2

]
=
(
1
N

)k+1
N∑
i0=0
...

ik=0

‖xδk;i0,...,ik − xk;i0,...,ik‖
2,

where xδk;i0,...,ik is defined by (6a) taking (I0, . . . , Ik−1) = (i0, . . . , ik−1), and xk;i0,...,ik−1
is defined

by (7a) analogously. Taking the average in Step 2 over all possible realizations (I0, . . . , Ik), one
concludes that limj E

[
‖xδjk+1 − xk+1‖2

]
= 0.

Theorem 3.11 (Semi-convergence). Let Assumptions (A1), . . . , (A6) hold true; (δj) = (δj0, . . . ,

δjN−1) ∈ RN be a sequence with limj ‖δj‖ = 0 and (yδ
j
) = (yδ

j

0 , . . . , y
δj

N−1) ∈ Y N be a correspond-

ing sequence of noisy data satisfying (1). Additionally, for each j ∈ N, let (xδ
j

k)
k∗(δj)
k=0 be the

corresponding sequence generated by the nonlinear pSGD method (6). There exists x∗ ∈ Bρ(x0),
solution of (8), such that

lim
j→∞

E
[
‖xδjk∗(δj) − x

∗‖2
]

= 0. (20)

Proof. Let x̂ ∈ Bρ(x0) be a solution of (8) (the existence of x̂ follows from (A3)). We claim
that, for every fixed k ∈ N it holds

‖x̂− xδjk+1‖2 − ‖x̂− xδ
j

k ‖2 ≤ λ2minγ
2(δjmin)2, (21)

for sufficiently large j. Here δjmin := mini∈{0,...,N−1} δ
j
i > 0.

11

From (A6) we conclude that k∗δj ≥ k for sufficiently large j. Consequently, xδ
j

k and xδ
j

k+1 are
defined for sufficiently large j.

If ‖F ′Ik(x
δj
k)∗F δIk(xδ

j

k)‖ ≤ γδjIk , then λδ
j

Ik
= 0, xδ

j

k+1 = xδ
j

k and (21) holds trivially. Otherwise,
it follows from Remark 2.3, (16) and (6b)

‖x̂− xδjk ‖2 − ‖x̂− xδ
j

k+1‖2 ≥ θk(2− θk)λIkp
δj (‖F δIk(xδ

j

k)‖)

= θk(2− θk) (λIk)2‖F ′Ik(xδ
j

k)∗F δIk(xδ
j

k)‖2

> θk(2− θk)λ2min(γ δjIk)2

≥ θk(2− θk)λ2minγ
2 (δjmin)2

(notice that Assumption (A4) guarantees θk(2− θk) > 0). Consequently,

‖x̂− xδjk+1‖2 − ‖x̂− xδ
j

k ‖2 < |θk(2− θk)|λ2minγ
2 (δjmin)2 < λ2minγ

2(δjmin)2

(Assumption (A3) implies |θk(2− θk)| < 1), establishing our claim (21).
Now, taking the average in (21) over all possible realizations (I0, . . . , Ik) and arguing with

Remark 3.1 we obtain

E
[
‖x̂− xδjk+1‖2

]
− E

[
‖x̂− xδjk ‖2

]
≤ λ2minγ

2(δjmin)2.

From (A6) we may assume that k∗
δj

increases strict monotonically with j. Given m < n, we
add the last inequality, with j = n, from k = k∗δm to k∗δn − 1, and adopt the simplified notation
k∗j = k∗

δj
, to obtain

E
[
‖x̂− xδnk∗n‖

2
]
≤ E

[
‖x̂− xδnk∗m‖

2
]

+
k∗n−1∑
k=k∗m

λ2minγ
2(δnmin)2

≤ 2E
[
‖x̂− xk∗m‖

2
]

+ 2E
[
‖xk∗m − x

δn

km‖
2
]

+ λ2minγ
2(δnmin)2

k∗n−1∑
k=k∗m

1

≤ 2E
[
‖x̂− xk∗m‖

2
]

+ 2E
[
‖xk∗m − x

δn

k∗m
‖2
]

+ λ2minγ
2 ‖δn‖2 k∗n. (22)

Here (xk) is the sequence generated by pSGD (7) using exact data and the same (I0, . . . , Ik, . . .)
as the sequences (xδ

j

k).
In (22) take x̂ = x∗, the solution of (8) satisfying limk E[‖x∗−xk‖2] = 0 (the existence of x∗

is ensured by Theorem 3.5). Therefore, there is a large enough m, s.t. the first term on the rhs
of (22) is smaller then ε/3. Additionally,
— from Theorem 3.9 with k = k∗m we conclude that the second term on the rhs of (22) becomes

smaller than ε/3 for large enough n;
— due to (A6) the last term on the rhs of (22) becomes smaller than ε/3 for large enough n.
This concludes the proof.

4 Numerical experiments

In this section the pSGD method in (6) is implemented for solving two large scale systems
of nonlinear operator equations with real data. The corresponding inverse problems relate
to parameter identification in neural network training. Computations are performed using
MATLAB R©R2017a, running in a Intel R© CoreTM i9-10900 CPU (10 cores, 20 threads).

In Section 4.1 we revisit, using neural networks, an inverse problem discussed in [25], namely
the big data problem of CO-concentration prediction in a gas sensor array.4 In Section 4.2 we
consider a well-known benchmark problem problem in machine learning, namely the classification
problem for the MNIST database (see https://en.wikipedia.org/wiki/MNIST database).

4Differently from the approach used here, in [25, Section 5.2] this inverse problem was modeled as a multiple
linear regression problem.

12

https://en.wikipedia.org/wiki/MNIST_database

4.1 Prediction of CO-concentration in a gas sensor array

For the application considered in this section, we use a data set collected in a gas delivery
platform facility at the ChemoSignals Laboratory in the BioCircuits Institute at University of
California, San Diego. The data set contains the readings of 16 distinct chemical sensors, which
were exposed to the mixture of Ethylene and CO at varying concentrations in air. For this gas
mixture, the measurement was constructed by the continuous acquisition of the 16-sensor array
signals for a duration of approximately 12 hours without interruption (we refer the reader to
[9, 25] for a detailed description of the experiment). The real data used in this section is available
at the UC Irvine Machine Learning Repository https://archive.ics.uci.edu/ml/index.php, data-
set Gas sensor array under dynamic gas mixtures.

In [25] the following experimental setting was considered: readings from the last sensor
(sensor #16) are used as the response variable, and readings from sensors {#1,#3,#4, . . . ,#15}
are used as covariates (readings from sensor #2 are disregarded due to strong lack of accuracy);
each sensor data consists of 4, 188, 262 scalar measurements.5 The inverse problem considered
in [25] is a multiple linear regression problem. It consists of finding an approximate solution to
the linear system Ax = yδ (with unknown noise level δ > 0), where A = (Ai)

N−1
i=0 ∈ RN×M ,

with N = 4 188 262 and M = 15. Here x ∈ RM is the unknown vector of regression coefficients,
yδ ∈ RN contains the readings from sensor #16, and Ai (the ith-row of A) is such that: the
first 14 columns of Ai contain the ith-readings from sensors {#1,#3,#4, . . . ,#15} and the last
column is equal to one.

An inverse problem in machine learning

In this section we consider the problem of predicting the reading from sensor #16 based on the
readings from the previous 14 sensors. However, differently from the multiple linear regression
approach in [25], we use here a neural network (NN) that inputs the readings from the first
sensors and outputs a scalar value, which predicts the reading of the last sensor.

The structure of proposed NN reads:
— Input: z ∈ R14, readings of the first 14 sensors;
— Output: NN(z;W, b) = σ(Wz + b) ∈ R, where W ∈ R1×14 is a matrix of weights, b ∈ R

is a scalar bias and σ : R→ R is an activation function.
Notice that this is a very simple NN with only one layer (the output layer); the dimention of
the corresponding parameter space is 15, the size of (W, b). If the activation function σ is linear,
this approach becomes equivalent to the multiple linear regression used in [25].6

The inverse problem under consideration is a NN training problem, i.e. one aims to find an
approximate solution (a pair of parameters (W, b)) to the nonlinear system

Fi(W, b) = yδi , i = 0, . . . , Nt − 1 , (23)

where Fi(W, b) := NN(zi;W, b) = σ(Wzi + b). Here Nt < N is the size of the training set and
zi = ((Ai)j)

14
j=1, where Ai is the ith-row of A.

Once the parameters (W, b) are chosen, the performance P of the corresponding neural
network NN(·;W, b) is defined by

P(NN(·;W, b)) := 1− 1

NT

Nt+NT−1∑
i=Nt

‖NN(zi;W, b)− yδi ‖
‖yδi ‖

. (24)

The sum in the above definition gives the average (relative) misfit betwen the predicted value
NN(zi;W, b) and yδi , evaluated over the test set {zi, Nt ≤ i < Nt + NT − 1}. Clearly it holds
0 ≤ P(NN(·;W, b)) ≤ 1 for all (W, b), and P(NN(·;W, b)) = 1 is the best possible performance.

5See [25, Figure 3] for scatter plots of sensor #i readings against sensor #16, for i = 1, . . . , 15.
6We choose the nonlinear activation function σ s.t. it’s range contains all possible readings of sensor #16.

13

https://archive.ics.uci.edu/ml/index.php

Remark 4.1 (Choosing the training set and test set). At the beginning of the experiment,
the rows Ai are arranged in a random order. Consequently, the ’training set’ and ’test set’ are
comprised of random samples with sizes of Nt and NT respectively. In our numerical experiments
we use Nt = 4, 000, 000 and NT = 100, 000 (notice that Nt+NT < N is satisfied).

The choice of the activation function

The activation function σ used in the definition of our NN is a variation of the saturated linear
activation function [6]. Here σ : R→ R is defined by

σ(t) =

c+ a(t− c) , t ≥ c

t , −c < t < c
−c+ a(t+ c) , t ≤ −c

, (25)

where 0 < a < 1 and c > 0. The choice of this particular activation function is motivated by
the next lemma (a proof is postponed to Appendix A).

Lemma 4.2. The real function σ in (25) satisfies wTCC (4) in R for η = (1− a)a−1, i.e.

‖σ(t̄)− σ(t)− σ′(t)(t̄− t)‖ ≤ η ‖σ(t̄)− σ(t)‖ , ∀ t, t̄ ∈ R.

A direct consequence of Lemma 4.2 is the fact that, choosing a ∈ (12 , 1], the function σ in
(25) satisfies Assumption (A2) with η ∈ [0, 1). In the sequel we prove that, for every fixed zi,
the above defined neural network NN(zi; ·, ·) does satisfy wTCC (4).

Lemma 4.3. The function Fi : (W, b) 7→ NN(zi;W, b) = σ(Wzi+ b), with σ as in (25), satisfies
the wTCC (4) for η = (1− a)a−1 max{‖zi‖, 1}.

Proof. If f and g are functions (with D(f) ⊃ Rg(g)) satisfying wTCC (4) for constants ηf and
ηg respectively, then

‖f(g(t̄))− f(g(t))− f ′(g(t))g′(t)(t̄− t)‖ ≤
≤ ‖f(g(t̄))− f(g(t))− f ′(g(t))[g(t̄)− g(t)] + f ′(g(t))[g(t̄)− g(t)− g′(t)(t̄− t)]‖

≤ ηf ‖g(t̄)− g(t)‖+ ηg ‖f ′(g(t))‖ ‖t̄− t‖. (26)

Notice that Fi = f ◦ gi with f(t) = σ(t) and gi(W, b) = Wzi + b. Since gi is linear, it satisfies
wTCC (4) for ηg = 0. Consequently, it follows from (26) and Lemma 4.2

‖Fi(W̄ , b̄)− Fi(W, b)− F ′i (W, b)[(W̄ , b̄)− (W, b)]‖ ≤ (1− a)a−1‖(W̄zi − b̄)− (Wzi − b)‖
= (1− a)a−1‖(W̄ −W)zi − (b̄− b)‖ ≤ (1− a)a−1

[
‖zi‖ ‖W̄ −W‖+ ‖b̄− b‖

]
,

for (W̄ , b̄), (W, b) ∈ R14 × R. The assertion follows from the last inequality.

————————————– ————————————–

Numerical implementations

In what follows the pSGD method in (6) is implemented for solving the NN training problem (23).
In view of Lemma 4.2 we choose distinct values for a in (25), namely {0.9091, 0.6666, 0.5253}
and c = 8. Consequently, we generate three distinct activation functions σ of the form (25),
satisfying wTCC (4) for η = 0.1, η = 0.5 and η = 0.9 respectively.

The sensor readings (zi, y
δ
i) ∈ R14×R on the training set are scaled by the factor maxi≤Nt ‖zi‖.

An analogous procedure is performed on the test set. Consequently, after scaling, it holds

14

0 0.2 0.4 0.6 0.8 1

Number of Epochs

10 -3

10 -2

10 -1

10 0
R

el
at

iv
e

R
es

id
ua

l -
 T

ra
in

in
g

S
et

SGD
pSGD, =0.9
pSGD, =0.5
pSGD, =0.1

0 0.2 0.4 0.6 0.8 1

Number of Epochs

10 -3

10 -2

10 -1

10 0

R
el

at
iv

e
R

es
id

ua
l -

 T
es

t S
et

SGD
pSGD, =0.9
pSGD, =0.5
pSGD, =0.1

0 2 4 6 8 10

Test Set 10 4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
re

di
ct

io
n

er
ro

r
-

N
eu

ra
l N

et
w

or
k

||Predicted - Target|| / ||Target||
Average

0 2 4 6 8 10

Test Set 10 4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
re

di
ct

io
n

er
ro

r
-

Li
ne

ar
 R

eg
re

ss
io

n

||Predicted - Target|| / ||Target||
Average

Figure 1: Prediction of CO-concentration in a gas sensor array. (TOP) Evolution of the relative residual:
Training set (Left) and Test set (Right); (BOTTOM) Accuracy of the prediction: Neural network (Left)
and Linear regression (Right).

‖zi‖ ≤ 1, for i = 0, . . . , Nt + NT . From Lemma 4.3 it follows that, for each one of activa-
tion functions σ above, all operators Fi(W, b) satisfy Assumption (A2) for the same constant η,
namely {0.1, 0.5, 0.9}.

In our experiments the initial guess (W0, b0) is a random vector with coordinate values
ranging in (−1, 1). Moreover, we choose the sequence θk ≡ 1 in (A4). The iteration (Wk, bk)
is computed for one epoch, i.e. for k = 1, . . . , Nt. Three different runs of the pSGD method
are presented (one for each choice of activation function σ); in each run the wTCC is satisfied
for a different constant η, namely {0.1, 0.5, 0.9}. Since the noise level δ is not known, we set
pδ(t) = (1− η)t2 in (6b). The computed numerical results are summarized in Figure 1:

(TOP-LEFT) Evolution of relative residual on the training set:
∑Nt−1

i=0
‖NN(zi;Wk,bk)−yδi ‖
‖NN(zi;W0,b0)−yδi ‖

;

(TOP-RIGHT) Relative residual evolution on the test set:
∑Nt+NT−1

i=Nt

‖NN(zi;Wk,bk)−yδi ‖
‖NN(zi;W0,b0)−yδi ‖

;

For comparison purposes, the SGD method was also implemented (this method corresponds to
the choice θk = 1 and λk = 1 in (6a)).

At regular intervals of 1
100Nt steps, P(NN(·;Wk, bk)) is computed. The index 0 ≤ k∗ ≤ Nt

is chosen such that (Wk∗ , bk∗) exhibits the highest performance among the evaluated ones. The
additional task of evaluating P(NN(·;Wk, bk)) a hundred times (per epoch) leads to a 10%
increase in the overall computation time of the pSGD method.7

7Since NT << Nt, the computational cost associated with calculating P(NN(·;Wk, bk)) is significantly lower

15

The prediction accuracy of NN(·;Wk∗ , bk∗) is investigated in Figure 1 (BOTTOM-LEFT):
the relative prediction error ‖NN(zi;Wk∗ , bk∗)−yδi ‖/‖yδi ‖ is plotted for the test set {zi, Nt ≤ i <
Nt+NT−1} (BLUE), the average value (RED) is 0.010. The performance P(NN(·;Wk∗ , bk∗))
amounts to 99%.

For comparison purpose we plot in Figure 1 (BOTTOM-RIGHT) the prediction accuracy
of the linear regression approach [25] for the same test set (BLUE), the average value is 0.021
(RED). The performance of this approach amounts to 97.7%.

4.2 Classification problem for the MNIST database

The Modified National Institute of Standards
and Technology (MNIST) database consists
of images of handwritten digits (Figure 2).
Each image is accompanied by a correspond-
ing label indicating the digit it represents.
This dataset is commonly used in the field of
machine learning for developing neural net-
work architechtures, and for testing training
algorithms for neural networks.

The MNIST database contains 60,000
training images (along with 10,000 testing
images) of the ten digits. Each image con-
sists of a 28×28 pixel array of grayscale levels.

Figure 2: Sample images from the MNIST database

(source Wikipedia).

The corresponding data-files are accessible from many different sources. For the experiments
conducted here, the files were downloaded from http://yann.lecun.com/exdb/mnist/.

An inverse problem in machine learning

In this section we consider the well-known classification problem for the MNIST database. In
order to model this problem, we use here a NN that inputs a 28×28 pixel array of grayscale
levels (i.e. a vector in R784 with coordinates ranging from zero (black) to 255 (white)) and
outputs a vector in R10. The classification of the handwritten digit depicted in the 28×28 image
is given by the coordinate of this output vector with maximal absolute value (for alternative
NN architechtures with outputs in R10 we refer the reader to [5] for a Deep NN, or [4] for a
Convolutional NN).

The architechture of the NN used in our experiments is as follows:
— Input: z ∈ R784, pixel array from the MNIST database;
— Hidden layer: z̃ := σ1(W1z + b1) ∈ R64, where W1 ∈ R64,784 and b1 ∈ R64;
— Output: NN(z;W1, b1,W2, b2) := σ2(W2z̃ + b2) ∈ R10, where W2 ∈ R10,64 and b2 ∈ R10.

Here W1, W2 are weight matrices and b1, b2 are biases vectors. Moreover, σ1 : R64 → R64 and
σ2 : R10 → R10 are nonlinear activation functions.

The classification of the input image z is given by the scalar value j ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
defined by j := arg max

0≤i≤9

∣∣NNi(z;W1, b1,W2, b2)
∣∣.8

This simple NN has only 2–layers 784–64–10 (one hidden layer and the output layer); the
dimension of the corresponding parameter space is 50, 890 = 64(784 + 1) + 10(64 + 1), i.e. the
dimension of the set of parameters (W1, b1,W2, b2).

Typically, much larger NN’s are used for solving the MNIST classification problem (e.g., the
Deep NN in [5] has 6–layers 784-2500-2000-1500-1000-500-10 and achieves an accuracy rate of

compared to the cost of calculating the average relative residual on the training set.
8We adopt here the notation NN(·) = [NNi(·)]9i=0 ∈ R10.

16

http://yann.lecun.com/exdb/mnist/

99.65%). Our goal with this experiment is not to investigate state-of-the-art NN-architechtures.
Instead, we aim to test the efficiency of the pSGD method in (6) as a training algorithm. For
this purpose, the above described NN-architechture is rich enough to define a challenging inverse
problem as we shall see next.

The inverse problem under consideration is a NN training problem, i.e. one aims to find an
approximate solution (W1, b1,W2, b2) to the nonlinear system

Fi(W1, b1,W2, b2) = yi , i = 0, . . . , Nt − 1 . (27)

Here Nt = 60, 000 is the size of the training set and Fi(W1, b1,W2, b2) := NN(zi;W1, b1,W2, b2) =
σ2
(
W2σ1(W1zi+b1)+b2

)
, where zi is the ith-image of the MNIST database for i = 0, . . . , Nt−1.

The right hand side in (27) is a vector of the type yi = (0, . . . , 0, 1, 0, . . . , 0) ∈ R10, where the
index of the coordinate with value “1” indicates the digit depicted in the image zi (e.g., if zi is
an image of the digit 2, then yi = (0, 1, 0, . . . , 0)). Note that the data in (27) is exact, i.e. the
noise level is δ = 0.

The activation functions σ1, σ2 : R→ R used in the above NN are variations of the sigmoid
function [6], namely: σ1(t) = 1

2 tanh(t/10) and σ2(t) = 2 tanh(t/10).

Numerical implementations

The pSGD method in (6) is implemented for solving the NN training problem (27). It is worth
mentioning that the operators Fi in (27) do not satisfy the wTCC (4).

In our numerical experiments, the initial guess (W 0
1 , b

0
1,W

0
2 , b

0
2) consists of random matri-

ces/vectors with coordinate values ranging in (−1, 1). Since the noise level is δ = 0, we set
pδ(t) = t2 in (6b).

Three different runs of the pSGD method are presented in Figure 3. In each one of them
the iteration (W k

1 , b
k
1,W

k
2 , b

k
2) is computed for 20 epochs, i.e. for k = 1, . . . , 20Nt. In the first 2

runs we choose the sequence θk ≡ 1 in (A4), while in the last run a random sequence θk ∈ (0, 2)
is choosen. The numerical results plotted in Figure 3 show:

(TOP) Evolution of relative residual on the training set:
∑Nt−1

i=0
‖NN(zi;W

k
1 ,b

k
1 ,W

k
2 ,b

k
2)−yi‖

‖NN(zi;W 0
1 ,b

0
1,W

0
2 ,b

0
2)−yi‖

;

(BOTTOM) Evolution of relative residual on the test set:
∑Nt+NT−1

i=Nt

‖NN(zi;W
k
1 ,b

k
1 ,W

k
2 ,b

k
2)−yi‖

‖NN(zi;W 0
1 ,b

0
1,W

0
2 ,b

0
2)−yi‖

.

Here NT = 10, 000 is the number of images in the MNIST database test set. For comparison
purposes, the SGD method was also implemented for solving (27) and the evolution of the
corresponding residuals is also plotted.

Following every 1
10Nt steps, the average relative residual is computed on the test set; the

index 0 ≤ k∗ ≤ 20Nt is chosen such that (W k∗
1 , bk

∗
1 ,W

k∗
2 , bk

∗
2) exhibits the smallest relative

residual. After selecting the set of parameters (W k∗
1 , bk

∗
1 ,W

k∗
2 , bk

∗
2), the accuracy rate of the

corresponding neural network NN(·;W k∗
1 , bk

∗
1 ,W

k∗
2 , bk

∗
2) is calculated using the test set. In the

experiment above, k∗ = 19.4Nt is obtained from the first run (run 1 in Figure 3) of the pSGD
method. The accuracy rate of NN(·;W k∗

1 , bk
∗

1 ,W
k∗
2 , bk

∗
2) is 95.96%.

————————————– ————————————–
Some remarks regarding the numerical experiments:

• Computation of k∗: Since NT << Nt, the computational cost associated with calculating
the (average) residual on the test set is insignificant compared to the cost of computing the
(average) residual on the training set. The computation required in order to determine k∗ is
performed 10 times per epoch; this additional task does not impose a significant numerical
burden on the implementation of the pSGD method.
• Choice of (θk): The experiments presented above suggest that the choice of the relaxation
parameters (θk) does not significantly impact the decay rate of the residual. Different runs of

17

Figure 3: MNIST classification problem. (TOP) Evolution of the relative residual for training set;
(BOTTOM) Evolution of the relative residual for test set.

the pSGD method using sequences θk ∈ (0, 1) (under relaxation), or θk ∈ (1, 2) (over relaxation),
or random θk ∈ (0, 2) produce similar numerical results.
• Accuracy rate: The accuracy rate of NN(·;W k∗

1 , bk
∗

1 ,W
k∗
2 , bk

∗
2) is given by the trace of the

confusion matrix divided by NT . The confusion matrix is a table that is used to evaluate the
performance of a classification model. It provides a summary of how well the model has classified
the different classes in a dataset. It is typically used for problems like the MNIST classification,
where the output of the model can belong to multiple classes. It displays the actual class labels
of the data against the predicted class labels generated by the model. The main diagonal in
Figure 4 represents the correctly classified instances, while the off-diagonal elements represent
misclassifications. The final entry in a row/column represents the cumulative sum of all preceding
elements in that particular row/column.

————————————– ————————————–

5 Conclusions

In this manuscript we investigate a nonlinear projective stochastic-gradient (pSGD) method for
computing stable approximate solutions to large scale systems of nonlinear ill-posed equations.

We build upon a well-established nonlinear assumption, namely the weak tangential cone
condition (wTCC), see (A2), to expand the method in [25, 24]. As a result, we create a new
approach capable of efficiently solving large-scale systems of nonlinear equations.

Our method stands out due to the stepsize selection, which is inspired by the projective
Landweber (PLW) method [21] and the projective Landweber-Kaczmarz (PLWK) method [20].

Highlighted among the key findings established in this manuscript are: (i) Estimates for the
average gain and monotonicity results for the average iteration error; (ii) A convergence result

18

Figure 4: MNIST classification problem. Confusion matrix for NN(·;W k∗

1 , bk
∗

1 ,W k∗

2 , bk
∗

2).

for the pSGD method in the exact data case (Theorem 3.5); (iii) Regularization properties of the
pSGD method: a stability result (Theorem 3.9) and a semi-convergence result (Theorem 3.11);
(iv) In Lemma 4.3 we prove that the neural-network used to model the inverse problem in
Section 4.1 satisfies the wTCC.

Numerical experiments are presented for two large scale nonlinear problems in machine
learning: (i) the big data problem of CO-concentration prediction in a gas sensor array considered
in [9, 25]; (ii) the classification problem for the MNIST database. The obtained numerical results
demonstrate the efficiency of the pSGD method.

A Appendix: Proof of Lemma 4.2

In what follows we prove that the real
activation function σ defined in (25)
(see Figure A) satisfies wTCC (4) in
R for the constant η = (1− a)a−1.

The first step is to verify that the
piecewise-linear function h : R → R
defined by

h(t) :=

{
αt , t ≥ 0
βt , t < 0

(28)

with α ≥ β > 0 does satisfy wTCC in
R for the constant η̃ = (α− β)β−1.

-2 -1 1 2

-1

-0.5

0.5

1

(t)
d/dt (t)

Figure A: Activation function σ(t) in (25) and it’s

derivative d
dtσ(t) for c = 1 and a = 1/4.

19

Since h|[0,∞) and h|[−∞,0) are linear, then h satisfies wTCC for η̃ = 0 whenever t, t̄ ∈ [0,∞)
or t, t̄ ∈ (−∞, 0]. Now, assume that t̄ ≥ 0 and t < 0. It holds

‖h(t̄)− h(t)− h′(t)(t̄− t)‖ = |αt̄− βt− β(t̄− t)| = |(α− β)t̄| = α− β
α

αt̄

≤ α− β
α

αt̄− α− β
α

βt =
α− β
α
|αt̄− βt| = α− β

α
‖h(t̄)− h(t)‖ .

On the other hand,

‖h(t)− h(t̄)− h′(t̄)(t− t̄)‖ = |βt− αt̄− α(t− t̄)| = |(β − α)t| = (β − α)t =
β − α
β

βt

≤ β − α
β

βt− β − α
β

αt̄ =
∣∣∣β − α

β

∣∣∣|βt− αt̄| = α− β
β
‖h(t)− h(t̄)‖ .

Due to the hipothesis α ≥ β, we conclude from the last inequalities that the function h in (28)
satisfies wTCC in R for η̃ = (α− β)β−1.

Proof. (of Lemma 4.2)
Due to the definition of σ in (25) we observe that σ does satisfy wTCC for η = 0 whenever
t, t̄ ∈ (−∞,−c] or t, t̄ ∈ [c,∞) or t, t̄ ∈ [−c, c].

Chosing α = 1 and β = a in (28), it follows from (25) that σ(t) = h(t+c)−c, for t ∈ (−∞, c].
Additionally, it holds σ(t) = c − h(c − t), for t ∈ [−c,∞). Consequently, σ satisfies wTCC for
η = (1− a)a−1 whenever t, t̄ ∈ (−∞, c] or t, t̄ ∈ [−c,∞).

It remains to consider the case where t̄ ≥ c and t ≤ −c. Notice that, in this case, it holds
σ(t̄)−σ(t) ≥ 2c (see (25) and Figure A). Thus, ‖σ(t̄)−σ(t)−σ′(t)(t̄−t)‖ = |2c−2ac| = (1−a)2c ≤
(1−a) ‖σ(t̄)−σ(t)‖. Analogously, one proves that ‖σ(t)−σ(t̄)−σ′(t̄)(t−t̄)‖ ≤ (1−a) ‖σ(t)−σ(t̄)‖.
Consequently, σ satisfies wTCC for η = (1− a) whenever t̄ ∈ [c,∞) and t ∈ (−∞,−c].

Since 0 < a < 1 in (25), we come to the concluson that σ satisfies wTCC (4) in R for
η = (1− a)a−1, concluding the proof.

References

[1] A.B. Bakushinsky and M.Y. Kokurin. Iterative Methods for Approximate Solution of Inverse
Problems, volume 577 of Mathematics and Its Applications. Springer, Dordrecht, 2004.

[2] J. Baumeister, B. Kaltenbacher, and A. Leitão. On levenberg-marquardt-kaczmarz itera-
tive methods for solving systems of nonlinear ill-posed equations. Inverse Probl. Imaging,
4(3):335–350, 2010.

[3] M. Burger and B. Kaltenbacher. Regularizing Newton-Kaczmarz methods for nonlinear
ill-posed problems. SIAM J. Numer. Anal., 44:153–182, 2006.

[4] D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image
classification. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 3642–3649, 2012.

[5] D.C. Cireşan, U. Meier, L.M. Gambardella, and J. Schmidhuber. Deep, big, simple neural
nets for handwritten digit recognition. Neural Computation, 22(12):3207–3220, 2010.

[6] P.L. Combettes and J.-C. Pesquet. Deep neural network structures solving variational
inequalities. Set-Valued Var. Anal., 28(3):491–518, 2020.

20

[7] A. De Cezaro, M. Haltmeier, A. Leitão, and O. Scherzer. On steepest-descent-Kaczmarz
methods for regularizing systems of nonlinear ill-posed equations. Appl. Math. Comput.,
202(2):596–607, 2008.

[8] H.W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer
Academic Publishers, Dordrecht, 1996.

[9] J. Fonollosa, S. Sheik, R. Huerta, and S. Marco. Reservoir computing compensates slow
response of chemosensor arrays exposed to fast varying gas concentrations in continuous
monitoring. Sensors and Actuators B: Chemical, 215:618–629, 2015.

[10] C. W. Groetsch. Stable Approximate Evaluation of Unbounded Operators, volume 1894 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2007.

[11] M. Haltmeier, R. Kowar, A. Leitão, and O. Scherzer. Kaczmarz methods for regularizing
nonlinear ill-posed equations. II. Applications. Inverse Probl. Imaging, 1(3):507–523, 2007.

[12] M. Haltmeier, A. Leitão, and E. Resmerita. On regularization methods of EM-Kaczmarz
type. Inverse Problems, 25:075008, 2009.

[13] M. Haltmeier, A. Leitão, and O. Scherzer. Kaczmarz methods for regularizing nonlinear
ill-posed equations. I. convergence analysis. Inverse Probl. Imaging, 1(2):289–298, 2007.

[14] M. Hanke, A. Neubauer, and O. Scherzer. A convergence analysis of Landweber iteration
for nonlinear ill-posed problems. Numerische Mathematik, 72:21–37, 1995.

[15] Tim Jahn and Bangti Jin. On the discrepancy principle for stochastic gradient descent.
Inverse Problems, 36(9):095009, 2020.

[16] Bangti Jin and Xiliang Lu. On the regularizing property of stochastic gradient descent.
Inverse Problems, 35(1):015004, 2018.

[17] Bangti Jin, Zehui Zhou, and Jun Zou. On the convergence of stochastic gradient descent
for nonlinear ill-posed problems. SIAM Journal on Optimization, 30(2):1421–1450, 2020.

[18] B. Kaltenbacher, A. Neubauer, and O. Scherzer. Iterative regularization methods for non-
linear ill-posed problems, volume 6 of Radon Series on Computational and Applied Mathe-
matics. Walter de Gruyter GmbH & Co. KG, Berlin, 2008.

[19] L. Landweber. An iteration formula for Fredholm integral equations of the first kind. Amer.
J. Math., 73:615–624, 1951.

[20] A. Leitão and B.F. Svaiter. On projective Landweber-Kaczmarz methods for solving systems
of nonlinear ill-posed equations. Inverse Problems, 32(1):025004, 2016.

[21] A. Leitão and B.F. Svaiter. On a family of gradient type projection methods for nonlinear
ill-posed problems. Numerical Functional Analysis and Optimization, 39(2-3):1153–1180,
2018.

[22] F. Margotti, A. Rieder, and A. Leitão. A Kaczmarz version of the reginn-Landweber
iteration for ill-posed problems in Banach spaces. SIAM J. Numer. Anal., 52(3):1439–1465,
2014.

[23] V.A. Morozov. Regularization Methods for Ill–Posed Problems. CRC Press, Boca Raton,
1993.

21

[24] J.C. Rabelo and A. Leitão. Addendum: On stochastic Kaczmarz type methods for solving
large scale systems of ill-posed equations (2022 Inverse Problems 38 025003). Inverse
Problems, 38(5):Paper No. 059401, 3, 2022.

[25] J.C. Rabelo, Y. Saporito, and A. Leitão. On stochastic kaczmarz type methods for solving
large scale systems of ill-posed equations. Inverse Problems, 38(2):025003, 2022.

[26] O. Scherzer. Convergence rates of iterated Tikhonov regularized solutions of nonlinear
ill-posed problems. Numerische Mathematik, 66(2):259–279, 1993.

[27] T.I. Seidman and C.R. Vogel. Well posedness and convergence of some regularisation
methods for non–linear ill posed problems. Inverse Probl., 5:227–238, 1989.

[28] A.N. Tikhonov. Regularization of incorrectly posed problems. Soviet Math. Dokl., 4:1624–
1627, 1963.

[29] A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-Posed Problems. John Wiley & Sons,
Washington, D.C., 1977. Translation editor: Fritz John.

22

	Introduction
	The method under investigation
	Main assumptions
	Introducing the nonlinear pSGD iteration

	Convergence analysis
	The exact data case
	The noisy data case

	Numerical experiments
	Prediction of CO-concentration in a gas sensor array
	Classification problem for the MNIST database

	Conclusions
	Appendix: Proof of Lemma 4.2

