On level set regularization approaches and some applications

Adriano De Cezaro- FURG in collaboration with Antonio Leitão & X-C. Tai

Inverse Problems: Banach spaces and Hybrid Tomography 29º Colóquio Brasileiro de Matemática, IMPA - 2013

Plan

- 1 The Inverse Problem
 - Inverse Problem
 - Piecewise constant solution
- 2 Level set approaches
 - Level set formulation
- 3 Piecewise constant level set approach (PCLS)
 - PCLS formulation
 - (PCLS)-regularization approaches
- 4 Numerical experiments
 - Inverse potential problem IPP

- 1 The Inverse Problem
 - Inverse Problem
 - Piecewise constant solution
- 2 Level set approaches
 - Level set formulation
- 3 Piecewise constant level set approach (PCLS)
 - PCLS formulation
 - (PCLS)-regularization approaches
- 4 Numerical experiments
 - Inverse potential problem IPP

Recover $u: \Omega \to R$ from the "nonlinear"ill-posed equation

$$F(u) = y^{\delta} \tag{1}$$

$$F: D(F) \subset X \rightarrow Y$$

s.t.

The Inverse Problem

$$\|y - y^{\delta}\|_{Y} \le \delta. \tag{2}$$

Assumption (A1): $F: D(F) \subset X \to Y$ is continuous w.r.t. the $L^1(\Omega)$ - topology.

- **Assumption** u is piecewise constant in Ω
- w.l.g. $u \in \{c^1, c^2\}$ c^1, c^2 constant.

- **Assumption** u is piecewise constant in Ω
- w.l.g. $u \in \{c^1, c^2\}$ c^1, c^2 constant.
- $\exists \mathbb{D}_1 \subset \Omega \mid \mathbb{D}_1 \mid > 0 \text{ s.t.}$

$$u(x) = \begin{cases} c^1, & x \in \mathbb{D}_1 \\ c^2, & x \in \mathbb{D}_2 := \Omega - \mathbb{D}_1. \end{cases}$$

- **Assumption** u is piecewise constant in Ω
- w.l.g. $u \in \{c^1, c^2\}$ c^1, c^2 constant.
- $\exists \mathbb{D}_1 \subset \Omega \mid \mathbb{D}_1 \mid > 0 \text{ s.t.}$

$$u(x) = \begin{cases} c^1, & x \in \mathbb{D}_1 \\ c^2, & x \in \mathbb{D}_2 := \Omega - \mathbb{D}_1. \end{cases}$$

Remark: u as above appears in many applications!!!

Ex.: Tomography problems, IPP, etc.

- **Assumption** u is piecewise constant in Ω
- w.l.g. $u \in \{c^1, c^2\}$ c^1, c^2 constant.
- $\exists \mathbb{D}_1 \subset \Omega \mid \mathbb{D}_1 \mid > 0 \text{ s.t.}$

$$u(x) = \begin{cases} c^1, & x \in \mathbb{D}_1 \\ c^2, & x \in \mathbb{D}_2 := \Omega - \mathbb{D}_1. \end{cases}$$

Remark: u as above appears in many applications!!! Ex.: Tomography problems, IPP, etc.

■ Under this framework the Inverse Problem consist in recover $\chi_{\mathbb{D}_4}$ and the values $\{c^1, c^2\}$.

- 1 The Inverse Problem
 - Inverse Problem
 - Piecewise constant solution
- 2 Level set approaches
 - Level set formulation
- 3 Piecewise constant level set approach (PCLS)
 - PCLS formulation
 - (PCLS)-regularization approaches
- 4 Numerical experiments
 - Inverse potential problem IPP

The level set idea

parameterize u using a (smooth) **level set** function $\phi: \Omega \to R$ s.t.

$$\mathbb{D}_{1}: \{x \in \Omega : \phi(x) \ge 0\}$$

$$\mathbb{D}_{2}: \{x \in \Omega : \phi(x) < 0\}$$

$$u = P_{ls}(\phi, c^{j}). \tag{3}$$

where
$$P_{ls}(\phi, c^{j}) = c^{1}H(\phi) + c^{2}(1 - H(\phi)).$$

The level set idea

parameterize u using a (smooth) **level set** function $\phi: \Omega \to R$ s.t.

$$\mathbb{D}_{1}: \{x \in \Omega : \phi(x) \geq 0\}$$

$$\mathbb{D}_{2}: \{x \in \Omega : \phi(x) < 0\}$$

$$u = P_{ls}(\phi, c^{j}). \tag{3}$$

where
$$P_{ls}(\phi, c^{j}) = c^{1}H(\phi) + c^{2}(1 - H(\phi)).$$

standard level set approach!!!

The level set idea

parameterize u using a (smooth) **level set** function $\phi: \Omega \to R$ s.t.

$$\mathbb{D}_{1}: \{x \in \Omega : \phi(x) \ge 0\}$$

$$\mathbb{D}_{2}: \{x \in \Omega : \phi(x) < 0\}$$

$$u = P_{ls}(\phi, c^{j}). \tag{3}$$

where
$$P_{ls}(\phi, c^j) = c^1 H(\phi) + c^2 (1 - H(\phi))$$
.

- standard level set approach!!!
- in this presentation: piecewise constant level set approach (PCLS)

- 1 The Inverse Problem
 - Inverse Problem
 - Piecewise constant solution
- 2 Level set approaches
 - Level set formulation
- 3 Piecewise constant level set approach (PCLS)
 - PCLS formulation
 - (PCLS)-regularization approaches
- 4 Numerical experiments
 - Inverse potential problem IPP

(PCLS)

 $\phi \in L^2(\Omega)$ – (non-smooth) such that

$$\phi(x) = i - 1$$
 $x \in \mathbb{D}_i$

rewritten u as

$$u = c^{1} \psi_{1}(\phi) + c^{2} \psi_{2}(\phi) := P(\phi, c^{j}).$$
 (4)

where
$$\psi_1(t) = 1 - t$$
 and $\psi_2(t) = t$.

(PCLS)

■ The inverse problem: can be rewritten as: find $\phi \in L^2(\Omega)$ ("and c^j ") s.t.

$$F(P(\phi, c^{j})) = y^{\delta}.$$
 (5)

the piecewise constant assumption of ϕ correspond to the constraint

$$\mathcal{K}(\varphi)=\varphi(\varphi-1)=0\,,\quad\text{smooth}$$

$$or$$

$$\mathcal{K}(\varphi):=\sqrt{|\varphi||\varphi-1|}=0\,,\quad\text{non-smooth}$$

(PCLS)

■ The inverse problem: can be rewritten as: find $\phi \in L^2(\Omega)$ ("and c^j ") s.t.

$$F(P(\phi, c^{j})) = y^{\delta}.$$
 (5)

the piecewise constant assumption of ϕ correspond to the constraint

$$\mathcal{K}(\varphi)=\varphi(\varphi-1)=0\,,\quad\text{smooth}$$

$$or$$

$$\mathcal{K}(\varphi):=\sqrt{|\varphi||\varphi-1|}=0\,,\quad\text{non-smooth}$$

■ Assumption (A2): $\exists \phi^* \in L^2(\Omega)$ and $c_*^j \in R$ s.t. $P(\phi^*, c_*^j) = u^*$ $F(u^*) = v$ and $\mathcal{K}(\phi^*) = 0$.

penalty method

Tikhonov regularization + penalty method

minimize
$$\mathcal{G}_{\alpha}(\phi, c^{j}) := \|F(P(\phi, c^{j})) - y^{\delta}\|_{Y}^{2} + \mu \|\mathcal{K}(\phi)\|_{L^{1}}$$
 (6)
$$+ \alpha \left(|P(\phi, c^{j})|_{BV} + \|c^{j}\|_{R^{2}}^{2} \right).$$

0000000000000

where $\mu > 0$ plays the role of a scaling factor.

penalty method

Tikhonov regularization + penalty method

minimize
$$\mathcal{G}_{\alpha}(\phi, c^{j}) := \|F(P(\phi, c^{j})) - y^{\delta}\|_{Y}^{2} + \mu \|\mathcal{K}(\phi)\|_{L^{1}}$$
 (6)
$$+ \alpha \left(|P(\phi, c^{j})|_{BV} + \|c^{j}\|_{R^{2}}^{2} \right).$$

00000000000000

where $\mu > 0$ plays the role of a scaling factor.

 \blacksquare the choice of μ is crucial in practical applications!!

penalty method

Tikhonov regularization + penalty method

minimize
$$\mathcal{G}_{\alpha}(\phi, c^{j}) := \|F(P(\phi, c^{j})) - y^{\delta}\|_{Y}^{2} + \mu \|\mathcal{K}(\phi)\|_{L^{1}}$$
 (6)
$$+ \alpha \left(|P(\phi, c^{j})|_{BV} + \|c^{j}\|_{R^{2}}^{2} \right).$$

00000000000000

where $\mu > 0$ plays the role of a scaling factor.

 \blacksquare the choice of μ is crucial in practical applications!! Notice that the first part of the misfit depend on the data, while $\|\mathcal{K}(\phi)\|_{L^1}$ does not.

Regularization properties of penalty method

Definition (Admissible solution)

A pair
$$(\phi, c^j) \in L^2(\Omega) \times R^2$$
 is admissible if $\phi \in BV_0(\Omega)$ and $|c^1 - c^2| \ge \tau > 0$.

Here
$$BV_0(\Omega):=\{\phi\in BV(\Omega): \phi(x)=0 \text{ a.e. } x\in \tilde{\mathbb{D}}\,, |\tilde{\mathbb{D}}|>\gamma>0\}\,.$$

Theorem (Existence, Stability and Convergence)

Let Assumptions (A1)-(A2), and $\mu > 0$.

- $\exists (\phi, c^j)$ admissible that minimizes the functional G_{α} .
- If $\alpha(\delta) \to 0$ and $\delta^2/\alpha(\delta) \to 0$ as $\delta \to 0$ then the corresponding minimizers of G_{α} has a subsequence that converges in $L^1(\Omega) \times R^2$ to a solution of $F(P(\phi, c^j)) = y$.

Algorithm

 \mathcal{G}_{α} is splitted in the sum $\mathcal{G}_{\alpha}(\phi, c^{j}) = \mathcal{G}_{\alpha}^{1}(\phi, c^{j}) + \mathcal{G}_{\alpha}^{2}(\phi)$

$$\begin{split} \mathcal{G}_{\alpha}^{\,1}(\phi, \boldsymbol{c}^{j}) &:= \| F(P(\phi, \boldsymbol{c}^{j})) - \boldsymbol{y}^{\delta} \|_{Y}^{2} + \alpha \left(|P(\phi, \boldsymbol{c}^{j})|_{BV} + \| \boldsymbol{c}^{j} \|_{R^{2}}^{2} \right) \\ \mathcal{G}_{\alpha}^{\,2}(\phi) &:= \mu \| \mathcal{K}(\phi) \|_{L^{1}} \,. \end{split}$$

- (i) (ϕ_k, c_k^i) is updated using an explicit gradient step w.r.t. \mathcal{G}_{α}^1
- (ii) $(\phi_{k+1/2}, c_{k+1}^{j})$ is improved by the given gradient step w.r.t. \mathcal{G}_{α}^{2}

Algorithm: some discussion

- If a large μ is chosen, the iterates ϕ_k satisfy the constraint $\mathcal{K}(\phi_k) = 0$ (becomes piecewise constant) after a few steps and the iteration stagnates. The corresponding solution $P(\phi_k, c_k^i)$ is far from the true parameter.
- The same applies is the gradient step w.r.t. \mathcal{G}_{α}^{2} is performance to often.
- If a small μ is chosen, the approximated solution $P(\phi_k, c_k^j)$ is much more precise. However, it leads to a very slow convergence of the algorithm. Many iterations are necessary for enforce the constraint $\mathcal{K}(\phi_k) = 0$.
- Alternatively, we chosen $\mu = \mu_0$ and then μ is gradually increased during the iteration, according to a pre-defined strategy.

■ Tiknonov regularization + penalty + Lagrangian

$$\mathcal{F}_{\alpha}(\phi, c^{j}; \lambda, \mu) := \|F(P(\phi, c^{j})) - y^{\delta}\|_{Y}^{2} + \mu \|K(\phi)\|_{L^{2}} + \langle \lambda, K(\phi) \rangle + \alpha \left(|P(\phi, c^{j})|_{BV} + \|c^{j}\|_{R^{2}}^{2}\right) \\
= \mathcal{G}_{\alpha}^{1}(\phi, c^{j}) + \mu \|K(\phi)\|_{L^{2}} + \langle \lambda, K(\phi) \rangle$$
(7)

where (λ, μ) plays the role of "generalized multipliers".

■ Tiknonov regularization + penalty + Lagrangian

$$\mathcal{F}_{\alpha}(\phi, c^{j}; \lambda, \mu) := \|F(P(\phi, c^{j})) - y^{\delta}\|_{Y}^{2} + \mu \|K(\phi)\|_{L^{2}} + \langle \lambda, K(\phi) \rangle + \alpha \left(|P(\phi, c^{j})|_{BV} + \|c^{j}\|_{R^{2}}^{2}\right) \\
= \mathcal{G}_{\alpha}^{1}(\phi, c^{j}) + \mu \|K(\phi)\|_{L^{2}} + \langle \lambda, K(\phi) \rangle$$
(7)

where (λ, μ) plays the role of "generalized multipliers".

Note that (7) is non-convex. May exist a duality gap. Hence the classical Lagrange theory cannot be applied.

- Idea: find a vector $\overline{\lambda}$ supporting and exact penalty representation for the dual problems, as well as a corresponding penalty factor $\overline{\mu}$.
- uses abstract convexity tools

- Idea: find a vector $\overline{\lambda}$ supporting and exact penalty representation for the dual problems, as well as a corresponding penalty factor $\overline{\mu}$.
- uses abstract convexity tools
- if $(\overline{\lambda}, \overline{\mu})$ is known, an approximated solution to the constraint problem can be found solving an unconstraint optimization problem (as in the classical Lagrangian multiplier theory)

- Idea: find a vector $\overline{\lambda}$ supporting and exact penalty representation for the dual problems, as well as a corresponding penalty factor $\overline{\mu}$.
- uses abstract convexity tools
- if $(\overline{\lambda}, \overline{\mu})$ is known, an approximated solution to the constraint problem can be found solving an unconstraint optimization problem (as in the classical Lagrangian multiplier theory)
- Advantages of Augmented Lagrangian in comparison with the penalty method:
 - usually AL does not require that the penalty parameter tends to infinity.
 - This reduces (moderates) the ill-conditioning.
 - AL has a considerable better convergence rate.

Augmented Lagrangian and Abstract Convexity

- We need introduce some notation:
 - $\Gamma(z) := \{ \emptyset \in L^2(\Omega) : K(\emptyset) = z \}, \quad z \in L^2(\Omega).$
- $\ \tilde{\mathcal{F}}_{\alpha}(\phi, c^j) := \begin{cases} \mathcal{F}_{\alpha}(\phi, c^j) & \phi \in \Gamma(0) \,, \\ +\infty \,, & \textit{otherwise} \,. \end{cases}$
- dualizing parametrization function $f(\phi, c^j, z) := \mathcal{G}_{\alpha}^{1}(\phi, c^j) + \delta_{\Gamma(z)}(\phi)$
- perturbation function $\theta(z) := \inf_{(\phi, c^j)} f(\theta, c^j, z)$
- coupling function $\rho(z,\lambda,\mu) := -\langle \lambda,z \rangle \mu \|z\|_{L^2}$

Augmented Lagrangian and Abstract Convexity

The augmented Lagrangian introduced by p

$$\mathcal{G}_{L,\alpha}(\varphi, c^j; \lambda, \mu) := \inf_{\mathbf{z}} \{ f(\varphi, c^j, \mathbf{z}) - \rho(\mathbf{z}, \lambda, \mu) \}$$

Augmented Lagrangian and Abstract Convexity

The augmented Lagrangian introduced by p

$$\mathcal{G}_{L,\alpha}(\phi, \mathbf{c}^j; \lambda, \mu) := \inf_{\mathbf{z}} \{ f(\phi, \mathbf{c}^j, \mathbf{z}) - \rho(\mathbf{z}, \lambda, \mu) \}$$

- Is straightforward to verify that $G_{I,\alpha}$ coincides with \mathcal{F}_{α} .
- Moreover, $G_{I,\alpha}$ coincides with G_{α}^{1} , wherever $K(\phi) = 0$
- the dual function $Q(\lambda, \mu) := \inf_{(\phi, c^j)} \mathcal{G}_{L,\alpha}(\phi, c^j; \lambda, \mu)$.

Augmented Lagrangian: Main results

Theorem

There is no gaps of duality, i. e.,

$$\sup_{(\lambda,\mu)} Q(\lambda,\mu) = \inf_{(\phi,c^j)} \tilde{\mathcal{F}}_\alpha(\phi,c^j)$$

Augmented Lagrangian: Main results

Definition (Generalized Lagrangian multipliers)

A vector $\overline{\lambda} \in L^2(\Omega)$ is said to support an exact penalty representation for the problem of minimizing \mathcal{F}_{α} under the constraint $K(\phi)=0$ if there exist a $\mu_0>0$ s.t.

$$\theta(0) = \mathsf{Q}(\overline{\lambda}, \mu) \quad \text{ and } \quad \textit{argmin}_{(\phi, c^j)} \tilde{\mathcal{F}}_{\alpha}(\phi, c^j) = \textit{argmin}_{(\phi, c^j)} \mathcal{G}_{L, \alpha}(\phi, c^j; \overline{\lambda}, \mu) \,,$$
 for all $\mu > \mu_0$.

Augmented Lagrangian: Main results

Definition (Generalized Lagrangian multipliers)

A vector $\overline{\lambda} \in L^2(\Omega)$ is said to support an exact penalty **representation** for the problem of minimizing \mathcal{F}_{α} under the constraint $K(\phi) = 0$ if there exist a $\mu_0 > 0$ s.t.

$$\theta(0) = \mathsf{Q}(\overline{\lambda}, \mu) \quad \text{ and } \quad \textit{argmin}_{(\phi, c')} \tilde{\mathcal{F}}_{\alpha}(\phi, c') = \textit{argmin}_{(\phi, c')} \mathcal{G}_{L, \alpha}(\phi, c'; \overline{\lambda}, \mu) \,,$$
 for all $\mu > \mu_0$.

Theorem

There exists a $\overline{\lambda}$ supporting an exact penalty representation.

Augmented Lagrangian: Primal-dual algorithm

- \blacksquare given the initial guess $(\phi_0,c_0^j;\lambda_0)$ and $\mu>0$ sufficient large $(\mu>\mu_0)$
- update the primal components (ϕ_k, c_k^l) by minimizing $\mathcal{G}_{L,\alpha}(\cdot, \lambda_k, \mu)$ w.r.t. (ϕ, c^j)
- update the Lagrangian multiplier λ_k as a gradient step of $\mathcal{G}_{L,\alpha}(\phi_{k+1},c_{k+1}^j;\cdot,\mu)$

$$\lambda_{k+1} = \lambda_k + \mu K(\phi_{k+1})$$

Augmented Lagrangian: Convergence and Stability

Theorem (Existence)

For any $\alpha > 0$ the Tikhonov functional \mathcal{F}_{α} attains minimizers on the set of admissible functions.

Sketch of the proof:

- the existence of a pair $(\overline{\lambda}, \mu_0)$ supporting an exactly penalty imply that the minimizers of \mathcal{F}_{α} and $\mathcal{G}_{L,\alpha}(\cdot,\lambda,\mu)$ coincides.
- Assumption (A2) imply that G_{α}^{1} (and hence $\tilde{\mathcal{F}}_{\alpha}$) is proper.
- Note that, for any sequence of minimizers of $\tilde{\mathcal{F}}_{\alpha}$ with $K(\phi_k) = 0$ then $K(\lim_{k} \phi_{k}) = 0$.
- Now the proof follows "more or less"the standard Tikhonov approach.

Augmented Lagrangian: Convergence and Stability

Theorem (Convergence and Stability)

Let $\alpha_k := \alpha(\delta_k) \to 0$ and $\delta_k^2/\alpha_k \to 0$ as $\delta_k \to 0$. Moreover, $\{(\phi_{\alpha_{\nu}}, c_{\alpha_{\nu}}^{j})\}$ the corresponding minimizers of $G_{L,\alpha_{\nu}}(\cdot, \overline{\lambda}_{\alpha_{\nu}}, \mu_{\alpha_{\nu}})$. Then $\{(\phi_{\alpha_k}, c^j_{\alpha_k})\}$ has a strong convergent subsequence in $L^1(\Omega) \times R^2$ and the limit satisfies $F(P(\tilde{\phi}, \tilde{c}^j)) = v$.

Sketch of the proof: Follows "more or less"the standard Tikhonov approach.

- 1 The Inverse Problem
 - Inverse Problem
 - Piecewise constant solution
- 2 Level set approaches
 - Level set formulation
- 3 Piecewise constant level set approach (PCLS)
 - PCLS formulation
 - (PCLS)-regularization approaches
- 4 Numerical experiments
 - Inverse potential problem IPP

Inverse potential problem - IPP

IPP forward model

Given $u \in L^2(\Omega)$, solve the Poisson boundary problem

$$-\Delta w = u$$
, in Ω $w = 0$, on $\partial \Omega$. (8)

IPP forward model

Given $u \in L^2(\Omega)$, solve the Poisson boundary problem

$$-\Delta w = u$$
, in Ω $w = 0$, on $\partial \Omega$. (8)

Forward operator

$$F: L^2(\Omega) \to L^2(\partial\Omega), \quad F(u) = w_{V}|_{\partial\Omega}$$
 (9)

For u piecewise constant in Ω , F is continuous w.r.t. the L^1 -norm.

Inverse potential problem - IPP

The inverse potential problem: recover $u \in L^2(\Omega)$, from measurements of the Cauchy data y^{δ} of it corresponding potential on $\partial \Omega$.

IPP

The inverse potential problem: recover $u \in L^2(\Omega)$, from measurements of the Cauchy data v^{δ} of it corresponding potential on $\partial\Omega$.

Assumption
$$u \in \{c^1, c^2\}$$
 in $\Omega = [0, 1] \times [0, 1]$ $c^1 = 0, c^2 = 1$ are known.

IPP

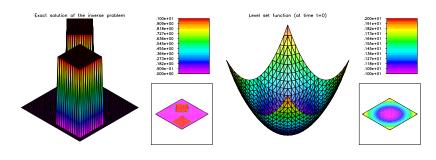
The inverse potential problem: recover $u \in L^2(\Omega)$, from measurements of the Cauchy data v^{δ} of it corresponding potential on $\partial\Omega$.

Assumption
$$u \in \{c^1, c^2\}$$
 in $\Omega = [0, 1] \times [0, 1]$ $c^1 = 0, c^2 = 1$ are known.

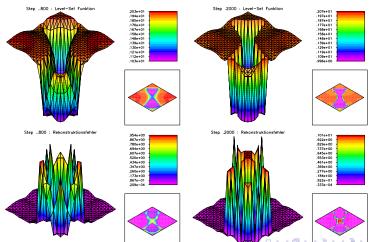
For this class of parameters, no uniqueness identifiability is known

The IPP is linear, but exponential ill-posed

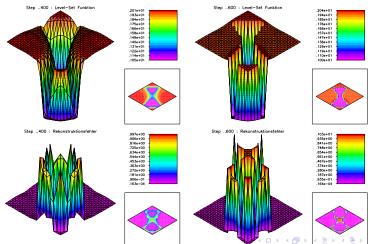
exact solution



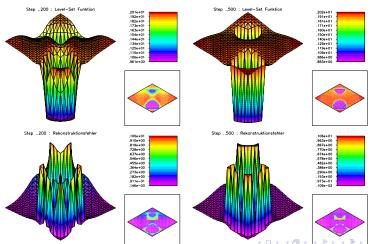
Penalty method - $\mu = constant$ (exact data)



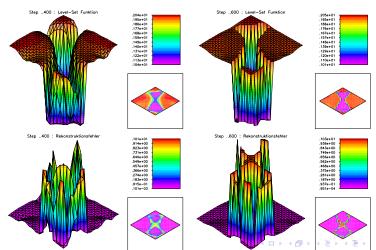
Penalty method - μ non constant (exact data)



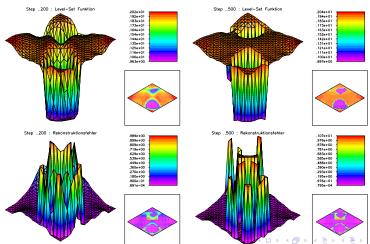
Augmented Lagrangian (exact data)



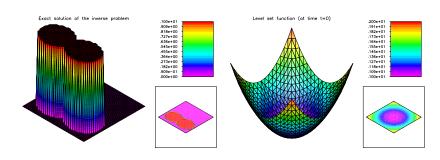
Penalty method - $\mu = non - constant$ ($\delta = 10\%$)



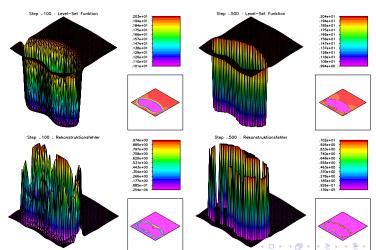
Augmented Lagrangian ($\delta = 10\%$)



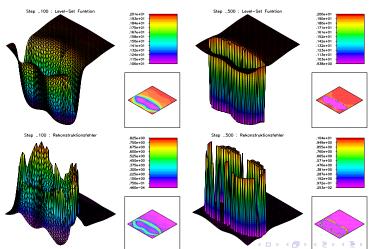
exact solution - non-convex inclusions



Penalty method - $\mu = non - constant$ (exact data)



Augmented Lagrangian (exact data)



Plan

Conclusions and future investigations

- convergence analysis for Penalty and AL approaches.
- the penalty method with non-constant μ generates a faster numerical algorithm, with solutions with the "same" quality.
- the quality of approx. solutions using the AL approach are clearly better than the penalty approach.
- the performance of AL are compared with the non-constant choice of μ in the penalty method.
- Future works: Investigate the so-called **sub-optimal path** for the duality scheme and analyze the convergence properties.
- In Burachik et. al. the authors proves that every cluster point of a sub-optimal path related to the dual problem is a primal solution.

References

(De Cezaro, A. Leitão, A. and Tai, X-C. (2013)) On piecewise constant level-set (PCLS) methods for the identification of discontinuous parameters in ill-posed problems Inverse Problems, 29, (2013). (De Cezaro, A. and & Leitão, A. (2012)) Level-set approaches of L2-type for recovering shape and contrast in ill-posed problems Inv. Prob. Sci. Eng., 20, (2012).

(De Cezaro, A. and Leitão, A.) On the regularization of augmented-Lagrangian approach for piecewise constant level-set (PCLS) methods. in preparation, (2013).

(Rockafellar, R.T and Wets, R.J.B.) Variational Analysis Springer, (1998).

(Burachik, R.S, and Iusem, A. and Melo, J.G,) Duality and Exact Penalization for General Augmented Lagrangians J. Optm. Theory Appl., (2012).

THANK YOU!!!

Acknowledgment

CNPq -Science without Border grant 200815/2012-1

ARD-FAPERGS grant 0839 12-3

The organizers of this special section.

