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The Inverse Problem
°

Inverse Problem

m Recover u : Q — R from the "nonlinear”ill-posed equation

F(u)=y° &

S.t.
ly —y°lly <8. )

m Assumption (Al): F : D(F) C X — Y is continuous w.r.t. the
L1(Q) - topology.
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The Inverse Problem

Piecewise constant solution

m Assumption u is piecewise constant in Q

m wlg. ue{cc?} ¢t c?constant.
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The Inverse Problem

Piecewise constant solution

m Assumption u is piecewise constant in Q
m wlg. ue{cc?} ¢t c?constant.
m 3D, CQ |Dy| >0sit.

Cl, XG]D)]_

ux)=
9 2, xeD,:=Q-Dy.
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The Inverse Problem

Piecewise constant solution

m Assumption u is piecewise constant in Q
m wlg. ue{cc?} ¢t c?constant.
m 3D, CQ |Dy| >0sit.

c, XG]D)]_
2, xeDy:=Q—Dy.

Remark: u as above appears in many applications!!!
Ex.: Tomography problems, IPP, etc.
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The Inverse Problem

Piecewise constant solution

m Assumption u is piecewise constant in Q
m wlg. ue{cc?} ¢t c?constant.
m 3D, CQ |Dy| >0sit.

Cl, X € ]D)l
, X€eD:=Q—-Dj.
Remark: u as above appears in many applications!!!

Ex.: Tomography problems, IPP, etc.

m Under this framework the Inverse Problem consist in recover Xp,
and the values {c*,c?}.
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Level set approaches
°

Level set formulation

The level set idea

B parameterize u using a (smooth) level set function @: Q — R s.t.
D;:{x€Q:@x)>0}

D;: {x€Q:@x)<0}

u="Ps(pch). 3)

where Pis(@,¢) = c*H(®) +c2(1—H(@)).
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Level set formulation

The level set idea

B parameterize u using a (smooth) level set function @: Q — R s.t.
D;:{x€Q:@x)>0}

Dy:{x€Q: @x) <0}

u="Ps(pch). 3)

where Pis(@,¢!) = c*H (@) +c?(1—H(9)).
m standard level set approach!!!
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Level set approaches
°

Level set formulation

The level set idea

B parameterize u using a (smooth) level set function @: Q — R s.t.
D;:{x€Q:@x)>0}

D;: {x€Q:@x)<0}

u="Ps(pch). 3)

where Pis(@,¢!) = c*H (@) +c?(1—H(9)).
m standard level set approach!!!

m in this presentation:
piecewise constant level set approach (PCLS)
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Piecewise constant level set approach (PCLS)
0

PCLS formulation

(PCLS)

m @€ L?(Q) - (non-smooth) such that
ox)=i—1 xeD
m rewritten u as
u=ctir (@) + () =P (@)

where P (t) =1—tand Y, (t) =t.
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Piecewise constant level set approach (PCLS)
oe

PCLS formulation

(PCLS)

m The inverse problem: can be rewritten as:
find @€ L?(Q) ("and ¢! ) s.t.

F(P(@c)) =y°. 5)

m the piecewise constant assumption of ¢ correspond to the
constraint

X (@) =@(@—1) =0, smooth
or

K(@) :=+/|¢||¢0—1| =0, non-smooth
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Piecewise constant level set approach (PCLS)
oe

PCLS formulation

(PCLS)

m The inverse problem: can be rewritten as:
find @€ L?(Q) ("and ¢! ) s.t.

F(P(@c)) =y°. 5)

m the piecewise constant assumption of ¢ correspond to the
constraint

X (@) =@(@—1) =0, smooth
or

K(@) :=+/|¢||¢0—1| =0, non-smooth

m Assumption (A2): 3¢* € L3(Q) and cl eRsit. P(qf*,cL) =u*
F(u*) =y and x (¢*) =0.
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Piecewise constant level set approach (PCLS)

©000000000000
(PCLS)-regularization approaches

penalty method

m Tikhonov regularization + penalty method

minimize Go(@,¢)) : = [|F(P(@,¢)) —y?|% + 1| % (®)[l=  (6)
+a(lP(ed)lsy +Ic[Z) -

where P> 0 plays the role of a scaling factor.
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(PCLS)-regularization approaches

penalty method

m Tikhonov regularization + penalty method

minimize Ga(@.c') : = [[F(P(9.c!)) —y®|3 + W% (@) (6)
+a(|P(e.c)lev +|c[|32) -

where P> 0 plays the role of a scaling factor.
m the choice of Wis crucial in practical applications!!
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(PCLS)-regularization approaches

penalty method

m Tikhonov regularization + penalty method

minimize Go(@,¢)) : = [|F(P(@,¢)) —y?|% + 1| % (®)[l=  (6)
+a(lP(ed)lsy +Ic[Z) -

where P> 0 plays the role of a scaling factor.

m the choice of Wis crucial in practical applications!!
Notice that the first part of the misfit depend on the data, while
|| K (@)]|.+ does not.
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Piecewise constant level set approach (PCLS)
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(PCLS)-regularization approaches

Regularization properties of penalty method

Definition (Admissible solution)

A pair (@,¢!) € L?(Q) x R? is admissible if ¢ € BV((Q) and
et —c?|>T1>0.

Here BVo(Q) := {@e BV (Q) : ¢(x) =0 a.e. x € D, [D| > y> 0}.

Theorem (Existence, Stability and Convergence)

Let Assumptions (A1)-(A2), and > 0.
m 3(@,c') admissible that minimizes the functional Gg.

m Ifa(d) — 0 and & /a(8) — 0 as & — O then the corresponding
minimizers of G4 has a subsequence that converges in
L1(Q) x R? to a solution of F(P(@,c!)) =y.
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(PCLS)-regularization approaches

Algorithm

B Gq is splitted in the sum G4 (@,¢') = GL(@,¢') + G2(9)

Ga(@.¢) 1= [F(P(@c")) —y°lIy +o (IP(@.c))lev +IIc'1Z2)
Ga(@ =K (@l

(i) (@,CL) is updated using an explicit gradient step w.r.t. G&

(i) ((g(+1/2,cf(+l) is improved by the given gradient step w.r.t. G2
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Piecewise constant level set approach (PCLS)
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(PCLS)-regularization approaches

Algorithm: some discussion

m If a large His chosen, the iterates @ satisfy the constraint
X (@) = 0 (becomes piecewise constant) after a few steps and
the iteration stagnates. The corresponding solution P((pk,cf() is
far from the true parameter.

m The same applies is the gradient step w.r.t. gé is performance to
often.

m If a small lis chosen, the approximated solution P(qqﬁc,‘() is
much more precise. However, it leads to a very slow convergence
of the algorithm. Many iterations are necessary for enforce the
constraint X (@) = 0.

m Alternatively, we chosen U= |y and then L is gradually increased
during the iteration, according to a pre-defined strategy.
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Piecewise constant level set approach (PCLS)
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(PCLS)-regularization approaches

Augmented Lagrangian

m Tiknonov regularization + penalty + Lagrangian

Fa(@.c A0 = [[F(P(@.c) =yl + UK (@)= ()
+ (ALK (@) +a ([P (.c))[gy +|c[|Z2)
= Ga(@,¢") +HIK (@)l 2 + (A K (@)

where (A, 1) plays the role of "generalized multipliers”.
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Piecewise constant level set approach (PCLS)
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(PCLS)-regularization approaches

Augmented Lagrangian

m Tiknonov regularization + penalty + Lagrangian
Fa(@ AW = [FP(@c) —y°I§ + 1K@l (@
+ (MK (@) +a (|P(@.c)ey +[lc'][z)
= Ga(@.c) +H[K (@2 + (A K(9)

where (A, 1) plays the role of "generalized multipliers”.

m Note that (7) is non-convex. May exist a duality gap. Hence the
classical Lagrange theory cannot be applied.
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(PCLS)-regularization approaches

Augmented Lagrangian

m Idea: find a vector A supporting and exact penalty
representation for the dual problems, as well as a corresponding
penalty factor TL

m uses abstract convexity tools
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(PCLS)-regularization approaches

Augmented Lagrangian

m Idea: find a vector A supporting and exact penalty
representation for the dual problems, as well as a corresponding
penalty factor TL

m uses abstract convexity tools

m if (X,H) is known, an approximated solution to the constraint
problem can be found solving an unconstraint optimization
problem (as in the classical Lagrangian multiplier theory)
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(PCLS)-regularization approaches

Augmented Lagrangian

m Idea: find a vector A supporting and exact penalty
representation for the dual problems, as well as a corresponding
penalty factor TL

m uses abstract convexity tools

m if (X,H) is known, an approximated solution to the constraint
problem can be found solving an unconstraint optimization
problem (as in the classical Lagrangian multiplier theory)

m Advantages of Augmented Lagrangian in comparison with the
penalty method:

usually AL does not require that the penalty parameter tends to
infinity.

This reduces (moderates) the ill-conditioning.

AL has a considerable better convergence rate.
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Piecewise constant level set approach (PCLS)
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(PCLS)-regularization approaches

Augmented Lagrangian and Abstract Convexity

We need introduce some notation:
F(z):={pel?Q): K(p) =z}, zel?Q).
~ . Fa(@,c! (o),

Fa0d) ::{ a(@c) 9er(o)

400, otherwise.

dualizing parametrization function

f(@.¢1,2) == Ga(@.c)) +3r(;) (@)

perturbation function 8(z) := inf i\ f(8,c!,2)
coupling function p(z,A, ) := —(A,z) — ||z 2
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(PCLS)-regularization approaches

Augmented Lagrangian and Abstract Convexity

- The augmented Lagrangian introduced by p

GLa(@.¢hiA, 1) ==inf{f(@,c),2) —p(z, A, W)}
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(PCLS)-regularization approaches

Augmented Lagrangian and Abstract Convexity

- The augmented Lagrangian introduced by p
GLa(@.¢hiA, 1) ==inf{f(@,c),2) —p(z, A, W)}

m [s straightforward to verify that G, o coincides with 7.
m Moreover, G o coincides with G, wherever K (@) = 0
- the dual function Q(A, W) := inf gy GLa (@ ¢} A, ).
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(PCLS)-regularization approaches

Augmented Lagrangian: Main results

There is no gaps of duality, i. e.,

supQ(A, W) = inf Fa(@c))
(A1) (p.ch)
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Piecewise constant level set approach (PCLS)
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(PCLS)-regularization approaches

Augmented Lagrangian: Main results

Definition (Generalized Lagrangian multipliers)

A vector A € LZ(Q) is said to support an exact penalty
representation for the problem of minimizing #4 under the constraint
K (@) = 0 if there exist a [y > 0 s.t.

8(0) =Q(A,W) and argminiee)Fa(®c') = argmingpe) Gra(@.ciA 1),

for all pt> Mo .
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(PCLS)-regularization approaches

Augmented Lagrangian: Main results

Definition (Generalized Lagrangian multipliers)

A vector A € LZ(Q) is said to support an exact penalty
representation for the problem of minimizing 4 under the constraint
K (@) = 0 if there exist a [y > 0 s.t.

8(0) =Q(A,W) and argminiee)Fa(®c') = argmingpe) Gra(@.ciA 1),

for all pt> Mo .

There exists a A supporting an exact penalty representation.
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(PCLS)-regularization approaches

Augmented Lagrangian: Primal-dual algorithm

m given the initial guess (qb,cﬁ);)\o) and [ > 0 sufficient large
(> o)

m update the primal components (%,CL) by minimizing
GLa (A, 1) wrt. (@,¢))

m update the Lagrangian multiplier A as a gradient step of
GLa ((pK+1’ C=<+1; K u)

A1 = A + MK (@ 11)

Adriano De Cezaro- FURG in collaboration with Antonio Leitdo & X-C. Tai

On level set regularization approaches and some applications



Piecewise constant level set approach (PCLS)
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(PCLS)-regularization approaches

Augmented Lagrangian: Convergence and Stability

Theorem (Existence)

For any a > 0 the Tikhonov functional F attains minimizers on the set
of admissible functions.
Sketch of the proof:

m the existence of a pair g, Ho) supporting an exactly penalty imply
that the minimizers of #4 and G q(+,A, M) coincides.

m Assumption (A2) imply that gé (and hence fa) iS proper.

m Note that, for any sequence of minimizers of Fq with K(g)=0
then K (limg @) = 0.

m Now the proof follows "more or less”the standard Tikhonov
approach.
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(PCLS)-regularization approaches

Augmented Lagrangian: Convergence and Stability

Theorem (Convergence and Stability)

Let o := a(8) — 0 and &} /oy — 0 as & — 0. Moreover,
{(y,,Cl, )} the corresponding minimizers of G| g, (-, Ay s My )-
Then {(¢u, ,ch, )} has a strong convergent subsequence in
L1(Q) x R? and the limit satisfies F (P (@,&))) =y.

Sketch of the proof: Follows "more or less"the standard Tikhonov
approach.
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Numerical experiments

Numerical experiments
m Inverse potential problem - IPP
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Numerical experiments
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Inverse potential problem - IPP

IPP forward model

Given u € L2(Q), solve the Poisson boundary problem

—Aw=u,inQ w=0, ondQ. (8)
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Numerical experiments
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Inverse potential problem - IPP

IPP forward model

Given u € L2(Q), solve the Poisson boundary problem
—Aw=u,inQ w=0, ondQ. (8)

Forward operator

F:L2(Q) = L2(0Q), F(u)=wlsn (9)

For u piecewise constant in Q, F is continuous w.r.t. the L*-norm.
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Numerical experiments
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Inverse potential problem - IPP

IPP

The inverse potential problem: recover u € L?(Q), from measurements
of the Cauchy data y6 of it corresponding potential on 0Q.
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Numerical experiments
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Inverse potential problem - IPP

IPP

The inverse potential problem: recover u € L?(Q), from measurements
of the Cauchy data y6 of it corresponding potential on 0Q.

Assumption u € {ct,c?} in Q =[0,1] x [0,1]
¢! =0,c? =1 are known.
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Numerical experiments
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Inverse potential problem - IPP

IPP

The inverse potential problem: recover u € L?(Q), from measurements
of the Cauchy data y6 of it corresponding potential on 0Q.

Assumption u € {ct,c?} in Q =[0,1] x [0,1]
¢! =0,c? =1 are known.

For this class of parameters, no uniqueness identifiability is known

The IPP is linear, but exponential ill-posed
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Numerical experiments
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Inverse potential problem - IPP

exact solution

Exact solution of the inverse problem Level set function (at time t=0)

11008401
9096+00
8182400
7276400

638e+00

12008401
191e+01
L1B2e+01
1736401

1B4a+01
1552401
1452401

136e+01
1278401
118e+01

109e+01
1002401

0002400

/NN
SN
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Numerical experiments
000®0000000000

Inverse potential problem - IPP

Penalty method - 4 = constant (exact data)
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Inverse potential problem - IPP

Penalty method - 4 non constant (exact data)
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Numerical experiments
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Inverse potential problem - IPP

Augmented Lagrangian (exact data)

Step 500 : Level-Set Funktion

<F

‘MN’A

i

Step ..200 : Rekonstruktionsfehler
‘‘‘‘‘‘

Adriano De Cezaro- FURG in collaboration with Antonio Leitdo & X-C. Tai

On level set regularization approaches and some applications



Numerical experiments
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Inverse potential problem - IPP

Penalty method - 1 = non — constant (& = 10%)

‘,T*‘i]ii o> & < MM\'
MM *'H!“lll’l’
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Inverse potential problem - IPP

Augmented Lagrangian (6 = 10%)

A

A%WML
A Wi;’ ;
L

Step ..500 : Level-Set Funktion

R

unin“i

4

||\|\|'“|'1'J|ll
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Step ..200 : Rekonstruktionsfehler

i

Step ..500 : Rekonstruktionsfehler
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Inverse potential problem - IPP

exact solution - non-convex inclusions

Exact solution of the inverse problem Level set function (at time t=0)

11008401
9096+00
8182400
7276400

638e+00

12008401
191e+01
L1B2e+01
1736401

1B4a+01

1552401
1452401

136e+01
1278401
118e+01

109e+01
1002401

0002400

/NN
SN
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Inverse potential problem - IPP

Penalty method - 4= non — constant (exact data)
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Inverse potential problem - IPP

Augmented Lagrangian (exact data)

Step 100 . Level-Set Funktion Step .50 : Level-Set Funktion
10401 2000401
1930401 11900401
1840401 1180401
1750401 71401
1676401 {61401
1582401 152401
1500401 42401
1412401 132401
1320401 23e+01
1240401 3eror
15es01 1030401
108e+01 938e+00

Step ..100 : Rekonstruktionsfehier Step 500 : Rekonstruktionsiehler
8258400 104401

750+00 9492400

| I'JUU I
m i il M'”‘“

I
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Inverse potential problem - IPP

Conclusions and future investigations

m convergence analysis for Penalty and AL approaches.

m the penalty method with non-constant L generates a faster
numerical algorithm, with solutions with the "same”quality.

m the quality of approx. solutions using the AL approach are clearly
better than the penalty approach.

m the performance of AL are compared with the non-constant
choice of [ in the penalty method.

m Future works: Investigate the so-called sub-optimal path for the
duality scheme and analyze the convergence properties.

m In Burachik et. al. the authors proves that every cluster point of a
sub-optimal path related to the dual problem is a primal solution.
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Inverse potential problem - IPP
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