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Presentation of the problem

The Korteweg-de Vries (KdV) equation

yt(t, x) + yxxx(t, x) + yx(t, x) + y(t, x)yx(t, x) = 0,

is a nonlinear dispersive equation that serves as a mathematical model to study the
propagation of long water waves in channels of relatively shallow depth and flat bottom.
Here,

y(t, x) = surface elevation of the water wave at time t and position x.

The study of water waves moving over variable topography has been considered. If we
denote h = h(x) the variations in depth of the channel, then the proposed model
becomes (after scaling)

yt(t, x) + h2(x)yxxx(t, x) + (
p

h(x)y(t, x))x +
1

p

h(x)
y(t, x)yx(t, x) = 0. (1)

Thus, we are led to consider variable coefficients KdV equations to model the water
wave propagation in non-flat channels.
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Presentation of the problem

We will deal with the KdV equation with non-constant coefficient a = a(x) given by
8

>

>

<

>

>

:

yt + a(x)yxxx + yx + yyx = g, 8(x, t) 2 (0, L)⇥ (0, T ),
y(t, 0) = g0(t), y(t, L) = g1(t), 8t 2 (0, T ),

yx(t, L) = g2(t), 8t 2 (0, T ),
y(0, x) = y0(x), 8x 2 (0, L),

where the initial data y0, the source term g, and the functions g0, g1, g2 are assumed to
be known.

In this context, the principal coefficient a = a(x) represents the deepness of the bottom
of the channel where the water wave propagates.

If a > 0 is bounded by below and above, the direct problem is well posed.
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Presentation of the problem

We are concerned with the inverse problem of recovering the shape of the bottom of a
channel, from partial knowledge of the solution of

8

>

>

<

>

>

:

yt + a(x)yxxx + yx + yyx = g, 8(x, t) 2 (0, L)⇥ (0, T ),
y(t, 0) = g0(t), y(t, L) = g1(t), 8t 2 (0, T ),

yx(t, L) = g2(t), 8t 2 (0, T ),
y(0, x) = y0(x), 8x 2 (0, L),

Inverse Problem
Can we recover a = a(x) from some partial knowldege of y = y(x, t)?

Inverse Problem (Uniqueness)
Given some boundary observations Obs(y), is there a unique a = a(x) ?

i.e. Obs(y) = Obs(ỹ) =) a = ã?
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ka� ãkX  CkObs(y)�Obs(ỹ)kY ?

Inverse Problem (Reconstruction)
Given some measurement Obs(y), is it possible to reconstruct the coefficient a = a(x)?

In this talk, we are concerned with the stability of the inverse problem.

Remark: This kind of inverse problem is called a single-measurement IP
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Recovering the main coefficient in KdV

8
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y(0, x) = y0(x), 8x 2 (0, L),

Inverse Problem (Stability)

ka� ãkX  CkObs(y)�Obs(ỹ)kY ?

We hope to get only boundary observations:

kyx(t, 0)� ỹx(t, 0)k, kyxx(t, 0)� ỹxx(t, 0)k

or
kyxx(t, L)� ỹxx(t, L)k
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The approach

1 The Bukhgeim-Klibanov-Malinsky method.
2 Carleman estimate for the linearized equation.

BUKHGEIM, KLIBANOV, 1981; KLIBANOV, MALINSKY 1991: Inverse problems with
Carleman estimates.
PUEL, YAMAMOTO 1996; YAMAMOTO, 1999; IMANUVILOV, YAMAMOTO 2001: Wave
equation.
IMANUVILOV, YAMAMOTO 1998, BENABDALLAH, GAITAN,LE ROUSSEAU:2007
Parabolic equations.
BAUDOUIN, PUEL 2002; CARDOULIS,CRISTOFOL, GAITAN 2008;
MERCADO,OSSES, ROSIER 2008: Schrödinger equation.
EGGER, ENGL, KLIBANOV, 2005; BOULAKIA, GRANDMONT, OSSES, 2009:
Nonlinear equations.
BELLASSOUED, YAMAMOTO 2006; BELLASSOUED, CHOULLI, 2009 : Logarithmic
stability for the wave equation and the Schrödinger equation
ISAKOV, Inverse problems for partial differential equations, Springer, 2006.
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BMK method
We follow ideas of Bukhgeim, Klibanov (1981), and Klibanov, Malinsky (1991).

If we set:
u = y � ỹ and
� = ã� a

then u solves the following KdV equation:

8

<

:

ut + a(x)uxxx + (1 + ỹ)ux + ỹxu+ uux = �ỹxxx, 8(x, t) 2 (0, L)⇥ (0, T ),
u(t, 0) = 0, u(t, L) = 0, ux(t, L) = 0 8t 2 (0, T ),
u(x, 0) = 0, 8x 2 (0, L).

Then z = ut satisfies the following equation:

8

<

:

zt + a(x)zxxx + (1 + y)zx + yxz = f�, 8(x, t) 2 (0, L)⇥ (0, T ),
z(t, 0) = 0, z(t, L) = 0, zx(t, L) = 0 8t 2 (0, T ),
z(x, 0) = �(x)y0,xxx(x), 8x 2 (0, L),

where
f� = �(x)ỹxxxt � ỹxtu� ỹtux.

Alberto Mercado (UTFSM) Inverse Problems for dispersive PDEs IMPA, 2013 8 / 28



BMK method
We follow ideas of Bukhgeim, Klibanov (1981), and Klibanov, Malinsky (1991).

If we set:
u = y � ỹ and
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where
f� = �(x)ỹxxxt � ỹxtu� ỹtux.

We would like to have an estimate like

kz(x, 0)kX  Ckf�kY + (boundary terms)

where:

We shall need y0,xxx(x) bounded by below by a positive constant.
The constant C can be chosen small enough.

We will use Carleman estimates.

Remark: This kind of inequality is called observability in control theory
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We would like to have an estimate like

kz(x, 0)kX  Ckf�kY + (boundary terms)

where:

We shall need y0,xxx(x) bounded by below by a positive constant.
The constant C can be chosen small enough.

We will use Carleman estimates.

Remark: This kind of inequality is called observability in control theory
Alberto Mercado (UTFSM) Inverse Problems for dispersive PDEs IMPA, 2013 9 / 28



BMK method
Then z = ut satisfies the following equation:

8

<

:

zt + a(x)zxxx + (1 + y)zx + yxz = f�, 8(x, t) 2 (0, L)⇥ (0, T ),
z(t, 0) = 0, z(t, L) = 0, zx(t, L) = 0 8t 2 (0, T ),
z(x, 0) = �(x)y0,xxx(x), 8x 2 (0, L),

where
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Carleman inequalities.

Carleman inequalities were introduced by Trosten Carleman in 1939 in the study of
uniqueness for some PDE’s.

Since then, Carleman inequalities have been widely used in the study of :

Unique continuation properties.
Control problems of equations with non-regular lower order terms.
Control problems of semi-linear equations.
Some inverse problems.

Lebeau-Robianno (1995), Fursikov-Imanuvilov (1996), Tataru (1996).
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Carleman estimates. An example.

Consider L = � for functions w 2 C1
c (⌦).

We define

L�w = e���L(e��w)

�(e��w) = e��
�

�2|r�|2w + ���w + 2�r� ·rw +�w
�

If �(x) = ↵ · x with ↵ 2 Rn \ {0} then:

L�w = �2|↵|2w +�w + 2�↵ ·rw
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Carleman estimates. An example.

L�w = �2|↵|2w +�w
| {z }

Aw

+2�↵ ·rw
| {z }

Bw

We have

kL�wk2L2 = kAwk2L2 + kBwk2L2 + 2 hAw,BwiL2 (2)

A is self-adjoint and B is anti-adjoint (and both have constant coefficients), we get

2 hAw,BwiL2 = h[A,B]w,wiL2 = 0, 8 w 2 C1
c (⌦)

Thus

kL�wkL2 � 2�k↵ ·rwkL2 (3)
� ��kwkL2 (4)

Which means that

�ke���ukL2  Cke����ukL2 (5)
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Carleman estimates. An example.

In other cases:

L�w = �2|r�|2w +�w
| {z }

Aw

+2�r� ·rw
| {z }

Bw

We have

kL�wk2L2 = kAwk2L2 + kBwk2L2 + 2 hAw,BwiL2 (6)

2 hAw,BwiL2 = h[A,B]w,wiL2 = lower order + boundary terms, 8 w 2 C1
c (⌦)

Thus, we need to prove an estimate

h[A,B]w,wiL2 � ��kwkHk�Obs(w) (7)
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Carleman inequalities.

In general, given a differential operator P and a smooth function �, we define

P� = e��Pe���

Remark that P� = p(x,D + i�r�)

Theorem (Carleman inequalities)
If � is pseudoconvex with respect to P then

kvkHm
�

 CkP�vkL2

for � large enough.

For instance, � is pseudoconvex if:
For P = @t �� if |r�| 6= 0

For P = @2
t �� if � is convex.

For P = i@t �� si � is convex.

Boundary condition: Usually is required @�
@⌫

< 0 in @⌦.
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Carleman inequalities.

If the previous properties are not satisfied in a set ! ⇢ ⌦ or ! ⇢ @⌦ , then

P� = e��Pe���

Remark that P� = p(x,D + i�r�)

Theorem (Carleman inequalities)
If � is pseudoconvex with respect to P then

kvkHm
�

 CkP�vkL2 + kvkHm(!)

for � large enough.

For instance, � is pseudoconvex if:
For P = @t �� if |r�| 6= 0

For P = @2
t �� if � is convex.

For P = i@t �� si � is convex.

Boundary condition: Usually is required @�
@⌫

< 0 in @⌦.
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Carleman inequalities.

If the previous properties are not satisfied in a set ! ⇢ ⌦ or ! ⇢ @⌦ , then

P� = e��Pe���

Remark that P� = p(x,D + i�r�)

Theorem (Carleman inequalities)
If � is pseudoconvex with respect to P then

kvkHm
�

 CkP�vkL2 + kvkHm(!)

for � large enough.

In the original variable, we get:

ke���wkHm  Cke���PwkL2 + ke���wkHm(!)
| {z }

observation
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BMK method - Wave equation

8

<

:

ztt � a(x)zxx = f�, 8(x, t) 2 (0, L)⇥ (0, T ),
z(t, 0) = 0, z(t, L) = 0 8t 2 (0, T ),
z(x, 0) = �(x)y0,xx(x), 8x 2 (0, L),

What happens for wave equation?
Extend the solution to (�T, T ) by using the symmetry under the change of
variable t ! (T � t).
Use Carleman inequalities on (�T, T ).
The time t = 0 is not singular and you get

kz(x, 0)kX  Ckf�kY + (boundary terms),

with C small.
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BMK method - Schrödinger equation

8

<

:

izt + a(x)zxx = f�, 8(x, t) 2 (0, L)⇥ (0, T ),
z(t, 0) = 0, z(t, L) = 0 8t 2 (0, T ),
z(x, 0) = �(x)y0,xx(x), 8x 2 (0, L),

What happens for the Schrödinger equation?
The Carleman weight is singular at t = 0 and t = T .
Extend the solution to (�T, T ) by defining the solution for negative time as

z(x, t) := �z̄(x,�t), f�(x, t) = �f̄�(x,�t)

Use Carleman inequalities on (�T, T ).
The time t = 0 is not singular anymore and you get

kz(x, 0)kX  Ckf�kY + (boundary terms),

with C small.
Remark: The method needs Re(y0(x)) to be zero.
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BMK method - Heat equations

8

<

:

zt � a(x)zxx = f�, 8(x, t) 2 (0, L)⇥ (0, T ),
z(t, 0) = 0, z(t, L) = 0 8t 2 (0, T ),
z(x, 0) = �(x)y0,xx(x), 8x 2 (0, L),

What happens for the heat equation?
Observability

kz(x, 0)kX  Ckf�kY + (boundary terms),

can not be proved for parabolic equation.
Instead, one gets kz(x, T0)kX  Ckf�kY + (boundary terms).
We use the equation

kz(x, T0)k = kut(x, T0)k = k�R(x, T0) + a(x)uxx(x, T0)k
� k�R(x, T0)k � ka(x)uxx(x, T0)k

and we have to add an observation like kyxx(x, T0)� ỹxx(x, T0)k!
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BMK method - KdV equation

8

<

:

zt + a(x)zxxx + (1 + y)zx + yxz = f�, 8(x, t) 2 (0, L)⇥ (0, T ),
z(t, 0) = 0, z(t, L) = 0, zx(t, L) = 0 8t 2 (0, T ),
z(x, 0) = �(x)y0,xxx(x), 8x 2 (0, L),

What happens for KdV equation?
Not parabolic neither hyperbolic.
From a control point of view, in some cases it is parabolic and in others hyperbolic.
KdV has only one time-derivative and so the change t ! T � t is not adequate.
But it has the symmetry t ! T � t and x ! L� x, which allows to define the
solution for negative times.
Carleman estimate on (�T, T )⇥ (0, L).
Time t = 0 is not singular any more for Carleman and therefore

kz(x, 0)kX  Ckf�kY + (boundary terms),

is obtained with C small.
Remark: Some symmetry conditions have to be imposed.
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BMK method - Extension for negative time

Symmetric extension to (0, L)⇥ (�T, T ) of g defined on (0, L)⇥ (0, T ):

gs(x, t) =

(

g(x, t) if x 2 [0, L], t 2 [0, T ],

g(L� x,�t) if x 2 [0, L], t 2 [�T, 0).

Anti-symmetric extension to (0, L)⇥ (�T, T ) of g defined on (0, L)⇥ (0, T ):

ga(x, t) =

(

g(x, t) if x 2 [0, L], t 2 [0, T ],

�g(L� x,�t) if x 2 [0, L], t 2 [�T, 0).

Defining v = zs, we obtain:
8

>

>

>

>

>

<

>

>

>

>

>

:

vt + a(x)vxxx + (1 + ys)vx + (yx)
av = fa

� , 8x 2 (0, L), t 2 (�T, T ),
v(t, 0) = 0, v(t, L) = 0, 8t 2 (�T, T ),

vx(t, L) =

(

0, 8t 2 (0, T ),

�zx(0,�t), 8t 2 (�T, 0).

v(x, 0) = �(x)y0,xxx(x), 8x 2 (0, L).
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BMK method - Extension for negative time

The solution of
8

>

>

>

>

>

<

>

>

>

>

>

:

vt + a(x)vxxx + (1 + ys)vx + (yx)
av = fa

� , 8x 2 (0, L), t 2 (�T, T ),
v(t, 0) = 0, v(t, L) = 0, 8t 2 (�T, T ),

vx(t, L) =

(

0, 8t 2 (0, T ),

�zx(0,�t), 8t 2 (�T, 0).

v(x, 0) = �(x)y0,xxx(x), 8x 2 (0, L).

satisfies a Carleman estimate which allows to prove

kv(x, 0)kX  Ckf�kY + (boundary terms)

with C small.
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Carleman estimates - Lv = v
t

+ av
xxx

= f

Any v 2 L2(�T, T ;H3 \H1
0 (0, L)) and a weight function �(x, t) = �(x)

(T+t)(T�t) .

w = e���v, and L�w = e���L(e��w)

where � is a large parameter to be chosen later.

The obtained Carleman estimate is an inequality like

�5kwk2L2
�
+ �3kwxk2L2

�
+ �kwxxk2L2

�
+

1
�
kwtk2L2

�
 C kL�wk2L2

�
+B.D.(w)

Note that w(�T, 0) = 0, and therefore

kw(0, x)k2L2
�
= 2

Z 0

�T

Z

wwt 
✓

�

Z Z

|w|2
◆1/2 ✓ 1

�

Z Z

|wt|2
◆1/2

 1
�2

✓

�5
Z Z

|w|2
◆1/2

⇣

kL�wk2L2
�
+B.D.(w)

⌘1/2

 1
�2

⇣

kL�wk2L2
�
+B.D.(w)

⌘
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Carleman estimates for KdV.

Rosier [2004]. Null control of the surface of a water wave by means of a
wavemaker at the left end-point.

Glass-Guerrero [2008]. Cost of the null control of KdV by means of a control at the
left end-point.

Both papers prove Carleman estimates with one parameter � > 0.

For us, it is important a second parameter. Look at one dominating term:

�5
ZZ

�4
x(�ax�x � 5a�xx + 4a2�xx)|w|2

This impose bad conditions of kind kax/akL1  M .

Solution is to choose � such that �xx ⇡ s2' with a second parameter s > 0.
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Main Result.

8

>

>

<

>

>

:

yt + a(x)yxxx + yx + yyx = g, 8(x, t) 2 (0, L)⇥ (0, T ),
y(t, 0) = g0(t), y(t, L) = g1(t), 8t 2 (0, T ),

yx(t, L) = g2(t), 8t 2 (0, T ),
y(0, x) = y0(x), 8x 2 (0, L).

Data (g, gk, y0) fixed and regular enough!

Theorem (M, Baudouin, Cerpa, Crepeau; JIIP 2013)
Let |y0,xxx(x)| � � > 0, symmetric wrt L/2. Let

⌃ =
n

a symmetric wrt L/2
.

a � a0 > 0, kakW3,1  M1, and ky(a)kW1,1(Q)  M2

o

There exists a constant C = C(L, T, a0,M1,M2, �) > 0 such that for any a, ã 2 ⌃:

Cka� ãkL2(0,L)  kyx(t, 0)� ỹx(t, 0)kH1(0,T ) + kyxx(t, 0)� ỹxx(t, 0)kH1(0,T )

+ kyxx(t, L)� ỹxx(t, L)kH1(0,T )
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Future work

Deal with the original model:

yt(t, x) + h2(x)yxxx(t, x) + (
p

h(x)y(t, x))x +
1

p

h(x)
y(t, x)yx(t, x) = f. (8)

Remove the symmetry hypothesis.

Reconstruction: Follow ideas of a work of Baudouin-de Buhan-Ervedoza, where
is proposed a constructive algorithm to rebuild the potential in a wave equation.
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Muito obrigado!
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