3D Tomography with Synchrotron Data

Eduardo X. Miqueles

edu.miqueles@lnls.br

CNPEM - Brazilian Synchrotron Light Source
Campinas, SP - Brazil

Light Source: 2nd generation

\square

Future: 3rd generation

What we want to do?

What we want to do?

- Applied Mathematics for everything!! \because

What we want to do?

- Applied Mathematics for everything!! \because
- Micro-Tomography!!!

What we want to do?

- Applied Mathematics for everything!! \because
- Micro-Tomography!!!
- Transmission tomography

What we want to do?

- Applied Mathematics for everything!! \because
- Micro-Tomography!!!
- Transmission tomography
- X-rays fluorescence tomography

What we want to do?

- Applied Mathematics for everything!! \because
- Micro-Tomography!!!
- Transmission tomography
- X-rays fluorescence tomography
- Phase-contrast tomography

What we want to do?

- Applied Mathematics for everything!! \because
- Micro-Tomography!!!
- Transmission tomography
- X-rays fluorescence tomography
- Phase-contrast tomography
-3D reconstruction

What we want to do?

- Applied Mathematics for everything!! \because
- Micro-Tomography!!!
- Transmission tomography
- X-rays fluorescence tomography
- Phase-contrast tomography
- 3D reconstruction
- First approach: Stacking of 2D images

Where do we begin?

Where do we begin?

- Always the same problem! ©

Where do we begin?

- Always the same problem! ©
- Generalized Radon Transform:

Where do we begin?

- Always the same problem! -
- Generalized Radon Transform:

$$
p(t, \theta)=\mathcal{R}_{\omega}[f](t, \theta):=\int_{\Omega(t, \theta)}(x) \omega(x, \theta) \mathrm{d} s
$$

Where do we begin?

- Always the same problem! ;)
- Generalized Radon Transform:

$$
p(t, \theta)=\mathcal{R}_{\omega}[](t, \theta):=\int_{\Omega(t, \theta)}(x) \omega(x, \theta) \mathrm{d} s
$$

- Given $p(t, \theta)$

Where do we begin?

- Always the same problem! ;)
- Generalized Radon Transform:

$$
p(t, \theta)=\mathcal{R}_{\omega}[](t, \theta):=\int_{\Omega(t, \theta)}(x) \omega(x, \theta) \mathrm{d} s
$$

- Given $p(t, \theta)$
- $f(x)=\mathbb{Q}[d(t, \theta)]$

Where do we begin?

- Always the same problem! ;)
- Generalized Radon Transform:

$$
p(t, \theta)=\mathcal{R}_{\omega}[](t, \theta):=\int_{\Omega(t, \theta)}(x) \omega(x, \theta) \mathrm{d} s
$$

- Given $p(t, \theta)$
- $f(x)=\mathbb{Q}[d(t, \theta)]$
- \mathbb{Q} : your "favorite" reconstruction algorithm!

Beginner's case: Radon Transform

Beginner's case: Radon Transform

"Filtered Backprojection": FBP

Beginner's case: Radon Transform

- "Filtered Backprojection": FBP

$$
\underbrace{f(x)=\int_{0}^{\pi} q\left(x \cdot \xi_{\theta}, \theta\right) \mathrm{d} \theta}_{\text {Backprojection }}
$$

Beginner's case: Radon Transform

- "Filtered Backprojection": FBP

$$
\underbrace{f(x)=\int_{0}^{\pi} q\left(x \cdot \xi_{\theta}, \theta\right) \mathrm{d} \theta}_{\text {Backprojection }}+
$$

Beginner's case: Radon Transform

- "Filtered Backprojection": FBP

$$
\underbrace{f(x)=\int_{0}^{\pi} q\left(x \cdot \xi_{\theta}, \theta\right) \mathrm{d} \theta}_{\text {Backnroiection }}+\underbrace{q(t, \theta)=p(t, \theta) * \sigma(t)}_{\text {Filtering }}
$$

Beginner's case: Radon Transform

- "Filtered Backprojection": FBP

$$
\underbrace{f(x)=\int_{0}^{\pi} q\left(x \cdot \xi_{\theta}, \theta\right) \mathrm{d} \theta}_{\text {Backprojection }}+\underbrace{q(t, \theta)=p(t, \theta) * \sigma(t)}_{\text {Filtering }}
$$

- So,

Beginner's case: Radon Transform

- "Filtered Backprojection": FBP

$$
\underbrace{f(x)=\int_{0}^{\pi} q\left(x \cdot \xi_{\theta}, \theta\right) \mathrm{d} \theta}_{\text {Backprojection }}+\underbrace{q(t, \theta)=p(t, \theta) * \sigma(t)}_{\text {Filtering }}
$$

- So,

$$
\begin{array}{ll}
f=\mathcal{B}[q] & \text { Expensive part } \\
q=\mathbb{F}[p] & \text { Non-expensive part (FFT) }
\end{array}
$$

Naïve implementation of FBP

Naïve implementation of FBP

- $f(x) \approx \sum_{k=0}^{N-1} q\left(x \cdot \xi_{k}, \theta_{k}\right) \Delta \theta_{k} \Rightarrow$ Cost: $O(N)$

Naïve implementation of FBP

- $f(x) \approx \sum_{k=0}^{N-1} q\left(x \cdot \xi_{k}, \theta_{k}\right) \Delta \theta_{k} \quad \Rightarrow$ Cost: $O(N)$
- $x \in\left\{x_{1}, \ldots, x_{N^{2}}\right\}$

Naïve implementation of FBP

- $f(x) \approx \sum_{k=0}^{N-1} q\left(x \cdot \xi_{k}, \theta_{k}\right) \Delta \theta_{k} \Rightarrow$ Cost: $O(N)$
- $x \in\left\{x_{1}, \ldots, x_{N^{2}}\right\}$
- Reconstruction cost: $N^{2} \times O(N)=O\left(N^{3}\right)$

Naïve implementation of FBP

- $f(x) \approx \sum_{k=0}^{N-1} q\left(x \cdot \xi_{k}, \theta_{k}\right) \Delta \theta_{k} \Rightarrow$ Cost: $O(N)$
- $x \in\left\{x_{1}, \ldots, x_{N^{2}}\right\}$
- Reconstruction cost: $N^{2} \times O(N)=O\left(N^{3}\right)$
- 3D:

Naïve implementation of FBP

- $f(x) \approx \sum_{k=0}^{N-1} q\left(x \cdot \xi_{k}, \theta_{k}\right) \Delta \theta_{k} \Rightarrow$ Cost: $O(N)$
- $x \in\left\{x_{1}, \ldots, x_{N^{2}}\right\}$
- Reconstruction cost: $N^{2} \times O(N)=O\left(N^{3}\right)$
- 3D:
N slices

Naïve implementation of FBP

- $f(x) \approx \sum_{k=0}^{N-1} q\left(x \cdot \xi_{k}, \theta_{k}\right) \Delta \theta_{k} \Rightarrow$ Cost: $O(N)$
- $x \in\left\{x_{1}, \ldots, x_{N^{2}}\right\}$
- Reconstruction cost: $N^{2} \times O(N)=O\left(N^{3}\right)$
- 3D:
N slices \Rightarrow total cost: $O\left(N^{4}\right)$

Real sinogram: Fiber

Backprojection

Filtered Backprojection

Why should we insist on this?

Why should we insist on this?

- For faster reconstruction!

Why should we insist on this?

- For faster reconstruction!
- Because my boss want it! \ominus°

Why should we insist on this?

- For faster reconstruction!
- Because my boss want it! \ominus°
- Iterative methods are much better!!

Why should we insist on this?

- For faster reconstruction!
- Because my boss want it! \ominus°
- Iterative methods are much better!!

$$
f^{(k+1)}=f^{(k)}+\mathscr{D}
$$

Why should we insist on this?

- For faster reconstruction!
- Because my boss want it! \ominus°
- Iterative methods are much better!!

$$
f^{(k+1)}=f^{(k)}+\mathscr{D}\left(f^{(k)},\right.
$$

Why should we insist on this?

- For faster reconstruction!
- Because my boss want it! \ominus°
- Iterative methods are much better!!

$$
f^{(k+1)}=f^{(k)}+\mathscr{D}\left(f^{(k)}, \mathbb{R} f^{(k)},\right.
$$

Why should we insist on this?

- For faster reconstruction!
- Because my boss want it! \ominus°
- Iterative methods are much better!!

$$
f^{(k+1)}=f^{(k)}+\mathscr{D}(f^{(k)}, \mathbb{R} f^{(k)}, \underbrace{\mathcal{B} p^{(k)}}_{\downarrow})
$$

Bottleneck: computing $\mathcal{B}[p]$

Bottleneck: computing $\mathcal{B}[p]$

- $\mathcal{B}[p](x)=\int_{0}^{\pi} p\left(x \cdot \xi_{\theta}, \theta\right) \mathrm{d} \theta$

Bottleneck: computing $\mathcal{B}[p]$

- $\mathcal{B}[p](x)=\int_{0}^{\pi} p\left(x \cdot \xi_{\theta}, \theta\right) \mathrm{d} \theta$
- "Easy" to show that (work in progress):

Bottleneck: computing $\mathcal{B}[p]$

- $\mathcal{B}[p](x)=\int_{0}^{\pi} p\left(x \cdot \xi_{\theta}, \theta\right) \mathrm{d} \theta$
- "Easy" to show that (work in progress):

$$
\mathcal{B}[p](x)=\int_{\mathbb{R}^{2}} \hat{p}(y) \delta(y \cdot(y-x)) d y
$$

Bottleneck: computing $\mathcal{B}[p]$

- $\mathcal{B}[p](x)=\int_{0}^{\pi} p\left(x \cdot \xi_{\theta}, \theta\right) \mathrm{d} \theta$
- "Easy" to show that (work in progress):

$$
\mathcal{B}[p](x)=\int_{\mathbb{R}^{2}} \hat{p}(y) \delta(y \cdot(y-x)) d y
$$

- $\hat{p}(y)$: sinogram @ cartesian coordinates

Bottleneck: computing $\mathcal{B}[p]$

- $\mathcal{B}[p](x)=\int_{0}^{\pi} p\left(x \cdot \xi_{\theta}, \theta\right) \mathrm{d} \theta$
- "Easy" to show that (work in progress):

$$
\mathcal{B}[p](x)=\int_{\mathbb{R}^{2}} \hat{p}(y) \delta(y \cdot(y-x)) d y
$$

- $\hat{p}(y)$: sinogram @ cartesian coordinates
- $y \cdot(y-x)=0 \Leftrightarrow\left\|y-\frac{x}{2}\right\|_{2}=\frac{1}{2}\|x\|_{2}$

Geometrically...

Prüfer Coordinates:

Prüfer Coordinates:

- Let $y=g(\mu) \xi_{\beta}, \quad \xi_{\beta}=\binom{\cos \beta}{\sin \beta}$

Prüfer Coordinates:

- Let $y=g(\mu) \xi_{\beta}, \quad \xi_{\beta}=\binom{\cos \beta}{\sin \beta}$
- Then

Prüfer Coordinates:

- Let $y=g(\mu) \xi_{\beta}, \quad \xi_{\beta}=\binom{\cos \beta}{\sin \beta}$
- Then

$$
\begin{aligned}
& \mathcal{B}[p]\left(f(\rho) \xi_{\theta}\right)=\int_{\mathbb{R}^{2}} \hat{p}(\mu, \beta) \delta\left(1-\frac{g(\mu)}{g(\rho)} \cos (\beta-\theta)\right) \\
& \times \frac{\left|g^{\prime}(\mu) g(\mu)\right|}{g(\mu)^{2}} \mathrm{~d} \mu \mathrm{~d} \beta
\end{aligned}
$$

Prüfer Coordinates:

- Let $y=g(\mu) \xi_{\beta}, \quad \xi_{\beta}=\binom{\cos \beta}{\sin \beta}$
- Then

$$
\begin{array}{r}
\mathcal{B}[p]\left(f(\rho) \xi_{\theta}\right)=\int_{\mathbb{R}^{2}} \hat{p}(\mu, \beta) \delta\left(1-\frac{g(\mu)}{g(\rho)} \cos (\beta-\theta)\right) \\
\\
\times \frac{\left|g^{\prime}(\mu) g(\mu)\right|}{g(\mu)^{2}} \mathrm{~d} \mu \mathrm{~d} \beta
\end{array}
$$

- $\hat{p}(\mu, \beta)$: sinogram @ coordinates (μ, β)

It was already noticed that:

It was already noticed that:

- If $g(\mu)=e^{\mu}$ then

It was already noticed that:

- If $g(\mu)=e^{\mu}$ then

$$
\mathcal{B}[p]\left(f(\rho) \xi_{\theta}\right)=\int_{\mathbb{R}^{2}} \hat{p}(\mu, \beta) \mathcal{K}(\mu-\rho, \beta-\theta) \mathrm{d} \mu \mathrm{~d} \beta
$$

It was already noticed that:

- If $g(\mu)=e^{\mu}$ then

$$
\mathcal{B}[p]\left(f(\rho) \xi_{\theta}\right)=\int_{\mathbb{R}^{2}} \hat{p}(\mu, \beta) \mathcal{K}(\mu-\rho, \beta-\theta) \mathrm{d} \mu \mathrm{~d} \beta
$$

- Kernel

$$
\mathcal{K}(\sigma, \phi)=\delta\left(1-e^{\sigma} \cos \phi\right)
$$

It was already noticed that:

- If $g(\mu)=e^{\mu}$ then

$$
\mathcal{B}[p]\left(f(\rho) \xi_{\theta}\right)=\int_{\mathbb{R}^{2}} \hat{p}(\mu, \beta) \mathcal{K}(\mu-\rho, \beta-\theta) \mathrm{d} \mu \mathrm{~d} \beta
$$

- Kernel

$$
\mathcal{K}(\sigma, \phi)=\delta\left(1-e^{\sigma} \cos \phi\right)
$$

- Finally:

It was already noticed that:

- If $g(\mu)=e^{\mu}$ then

$$
\mathcal{B}[p]\left(f(\rho) \xi_{\theta}\right)=\int_{\mathbb{R}^{2}} \hat{p}(\mu, \beta) \mathcal{K}(\mu-\rho, \beta-\theta) \mathrm{d} \mu \mathrm{~d} \beta
$$

- Kernel

$$
\mathcal{K}(\sigma, \phi)=\delta\left(1-e^{\sigma} \cos \phi\right)
$$

- Finally:

$$
\mathcal{B}[p](\ell)=\int_{\mathbb{R}^{2}} \hat{p}(z) \mathcal{K}(z-\ell) \mathrm{d} z
$$

It was already noticed that:

- If $g(\mu)=e^{\mu}$ then

$$
\mathcal{B}[p]\left(f(\rho) \xi_{\theta}\right)=\int_{\mathbb{R}^{2}} \hat{p}(\mu, \beta) \mathcal{K}(\mu-\rho, \beta-\theta) \mathrm{d} \mu \mathrm{~d} \beta
$$

- Kernel

$$
\mathcal{K}(\sigma, \phi)=\delta\left(1-e^{\sigma} \cos \phi\right)
$$

- Finally:

$$
\mathcal{B}[p](\ell)=\int_{\mathbb{R}^{2}} \hat{p}(z) \mathcal{K}(z-\ell) \mathrm{d} z
$$

- ℓ, z are log-polar coordinates

New paradigm for \mathcal{B}

Example: cartesian sinogram

Example: cartesian sinogram \times FBP

Example: log-polar sinogram

Fast 2D reconstruction
input $o(N \log N)$
p Filler $q \rightarrow$ LT $O\left(N^{2}\right)$

What's new?

What's new?

Generalized transform \mathcal{B}_{ω}

What's new?

Generalized transform \mathcal{B}_{ω}
(a) New algorithms

What's new?

- Generalized transform \mathcal{B}_{ω}
(a) New algorithms
(b) Fluorescence: synchrotron data

What's new?

- Generalized transform \mathcal{B}_{ω}
(a) New algorithms
(b) Fluorescence: synchrotron data (c) SPECT: medical imaging

What's new?

- Generalized transform \mathcal{B}_{ω}
(a) New algorithms
(b) Fluorescence: synchrotron data (c) SPECT: medical imaging
- Fast iterative methods

What's new?

- Generalized transform \mathcal{B}_{ω}
(a) New algorithms
(b) Fluorescence: synchrotron data
(c) SPECT: medical imaging
- Fast iterative methods
- Expectation maximization

What's new?

- Generalized transform \mathcal{B}_{ω}
(a) New algorithms
(b) Fluorescence: synchrotron data
(c) SPECT: medical imaging
- Fast iterative methods
- Expectation maximization
- Row-action maximum likelihood

What's new?

- Generalized transform \mathcal{B}_{ω}
(a) New algorithms
(b) Fluorescence: synchrotron data
(c) SPECT: medical imaging
- Fast iterative methods
- Expectation maximization
- Row-action maximum likelihood
- Others

Log-polar transform!! ©

Log-polar transform!! ©

fast and accurate?

Future?

Future?

- Full 3D reconstruction @ ± 3 minutes

Future?

- Full 3D reconstruction @ ± 3 minutes
- More mathematicians to help me!

Future?

- Full 3D reconstruction @ ± 3 minutes
- More mathematicians to help me!
- Research:

Future?

- Full 3D reconstruction @ ± 3 minutes
- More mathematicians to help me!
- Research:
- New analytical methods!

Future?

- Full 3D reconstruction @ ± 3 minutes
- More mathematicians to help me!
- Research:
- New analytical methods!
- Optimization methods!

Future?

- Full 3D reconstruction @ ± 3 minutes
- More mathematicians to help me!
- Research:
- New analytical methods!
- Optimization methods!

Thanks to CNPEM/Brazilian Synchrotron Source

