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Topological Derivative Concept

D X alx

Sokolowski & Zochowski, 1999
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Topological Derivative Concept
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(Q2:(x) = P(Q) + £(£) T (x) + o(f(c)) ,
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Topological Derivative Concept

D X alx

Sokolowski & Zochowski, 1999
V(Q:(x)) = ¥(Q) + f(£)T(x) + o(f(e)) ,
where Q.(X) = Q\ w.(X) and f(¢) — 0, when £ — 0.

In general, f(g) = |we]|. It

,T()A() _ Iimw(QE()?)) - w(Q) ' depep(-is on the boundary
£—0 f(e) condition on dw;. @
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Applications of the Topological Derivative

P(S2(x)) = ¢(Q) + F(£)T(X) + of(¢))

The topological sensitivity analysis gives the topological asymp-
totic expansion of a shape functional with respect to a singu-
lar domain perturbation, like the insertion of holes, inclusions
or cracks. The first term of this expansion, called topologi-
cal derivative, is now of common use for resolution of several
problems, such as:

o
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©

Inverse Problems: EIT, gravimetry, etc.

Multi-Scale Modeling: optimal design of micro-structures
@ Image Processing: segmentation, restoration, denoising @
@ Mechanical Modeling: fracture and damage mechanics
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Topology Optimization

Energy-Based Topological Derivative in Linear Elasticity

o(uny. =

89W

n

%

Q

/ u‘FD =Uu

Figure : unperturbed problem defined in the domain €. @
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Topology Optimization

0@ = o) = 5 [ o) Ve [ 70,

Find u, such that

—dive(u) = 0 in Q,
o(u) = CVu®

u = u on [p,

oluyn = @ on Iy.
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Topology Optimization

Topological Derivative Calculation

o),

n

Q.

|_/ U’E\FD =Uu

Figure : perturbed problem defined in the domain .. @
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Topology Optimization

Topological Asymptotic Expansion
D(Q(X)) = ¥(Q) — 7’ Po(u(X)) - Vi (X) + o(%)

31—-v 1-5v
P=- 101 — I®l
47—51/(0 1—2I/®)
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Topology Optimization

A benchmark example in 3D

7y

Vo(u) = —Ja(u)+ 819, T =Po(u)-Vuv°' —p5. @
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Topology Optimization




Topology Optimization

(b) bottom (c) lateral
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Topology Optimization
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Second-Order Topological Derivative

D(Q:(%)) = $(Q) + F(e)T(X) + H(e)T*(X) + R(fa(e))
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Second-Order Topological Derivative

Y(Q:(X)) = ¥(Q) + F(e) T(X) + £(e)T(X) + R(f(e)) .
where f(¢) — 0 and f;(¢) — 0 with ¢ — 0, and

PO o R(EE)

0 £ (<) e 0
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Second-Order Topological Derivative

Y(Q:(X)) = ¥(Q) + F(e) T(X) + £(e)T(X) + R(f(e)) .
where f(¢) — 0 and f;(¢) — 0 with ¢ — 0, and

lim A() =0, im RI£(2))
e—0 f(g) e—0 f2(5)
(first order) topological derivative

) - u®)
T = lIm=—=5 |

=0.
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Second-Order Topological Derivative

Y(Q:(X)) = ¥(Q) + F(e) T(X) + £(e)T(X) + R(f(e)) .
where f(¢) — 0 and f;(¢) — 0 with ¢ — 0, and

lim A() =0, im RA%(2))
e—0 f(g) e—0 f2(5)
(first order) topological derivative
o Y(Q:(5%) — ()
T = lim—=—=5—
second order topological derivative

PR i i 20— 0(Q) ~ FET(R)

=0 fa(€) ' @

=0.
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Inverse Potential Problem

Problem Formulation: Gravimetry Inverse Problem

Ly
— Find b*, such that
w* 0O —Au = b* in Q,
(o] o u — U*
Q oy — q*}on Y
Q0 T=00\T,,

b* = yx.+ € PC,(Q),
PC,(Q2) :={be L*() : b=yXw, w C Qis measurable} ,
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Inverse Potential Problem
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Inverse Potential Problem

ulb'](x) = / K(x. y)b"(y) dy
1

Kiy)=4 4=yl
——In|x—y| for n=2.
2m

for n=3,

u* = u[b*]|r,, and ¢* := —0,u[b]|r,, -
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Inverse Potential Problem

Difficulties

@ The problem is over determined and highly ill-posed;
@ Additional measurements do not provide extra information;

@ Lack of uniqueness if the intensity v and the region w* are
unknown.
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Inverse Potential Problem

Difficulties

@ The problem is over determined and highly ill-posed;
@ Additional measurements do not provide extra information;

@ Lack of uniqueness if the intensity v and the region w* are
unknown.

> We assume that the intensity 7 is known
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Inverse Potential Problem

Theorem (Uniqueness Result)

Let wy and wy be two star-shaped domains with respect to
their centers of gravity. If uy = u» and 0,u; = O,up on Iy,
with [ y| # 0, then w; = wy.

V. Isakov. Inverse Source Problems. American Mathematical
Society, Providence, Rhode Island, 1990.

o
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Inverse Potential Problem

Kohn-Vogelius Criterion

min _J(b) := l/Q(UD[b] - “N[b])2 ’

bePC,(Q) 2
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Inverse Potential Problem

Kohn-Vogelius Criterion

. 1 D NipT) 2
mine )= 5 [ (P18 — M)’
AP = b in Q, ~-AuN = b in Q,
uP = v on Ty, —0,uN = g on Ty,
uP = u” on T, uV = uT on T,
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NMZLKmmmmw.
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Inverse Potential Problem
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Inverse Potential Problem

bev’A‘ =b+ PYZXB(%?/) :

ieT
Wesx = UiezB(ei, X;) , with T ={1,....m}

e={e}ticz & ={K}iez, with >0, X€Q
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Inverse Potential Problem

J(bes) —J(b)—/Q(uD[b] uM[B1) > " aihi + - / (Zah)

ieT i€

where a; := |B(g;,X;)| and

—Ah, =0 in Q N
—0Ophi = g on Ty,
hi = 0 on T,

with g; = 0,v; on 'y, and
—Av; = vi(x—X) in Q,
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Inverse Potential Problem

Hbos) = I6) = [ (P18 = M) aihi+ 5 [ (Z h>

i€eT i€l

Minimization with respect to a; yields

H,-J-aj = f;

= [ wd o [
Q Q
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Inverse Potential Problem

J(be,;():J(b)—/Q(uD[b] ) S aihs + /(Za, )

i€ i€Z

Minimization with respect to a; yields

H,-J-aj = f;

= [ wd o [
Q Q

A.A. Novotny et al. Inverse Gravimetry Problem - July, 2013



Inverse Potential Problem

Example 1: Looking for three anomalies

target
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Inverse Potential Problem
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Inverse Potential Problem

(a) one ball
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Inverse Potential Problem

(a) one ball (b) two balls
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Inverse Potential Problem

(a) one ball (b) two balls

(c) three balls I@
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Inverse Potential Problem

(a) one ball (b) two balls

(c) three balls (d) four balls I@
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Inverse Potential Problem

Example 2: Partial boundary measurement

target
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Inverse Potential Problem
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Inverse Potential Problem

(a) [Tl =1.0
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Inverse Potential Problem

(@) IFm| = 1.0 (b) [Fm| = 0.4
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Inverse Potential Problem
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Inverse Potential Problem
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Inverse Potential Problem

Example 3: Noisy data

®
target
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Inverse Potential Problem
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Inverse Potential Problem
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Inverse Potential Problem

Example 4: Shape and topology reconstruction
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Inverse Potential Problem

Example 4: Shape and topology reconstruction

L &

(a) target (b) result
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Inverse Potential Problem

Example 5: Two anomalies far from each other
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Inverse Potential Problem
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Inverse Potential Problem

Example 6: Two anomalies close to each other
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Inverse Potential Problem

Example 7: Hidden object
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Inverse Potential Problem
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Inverse Potential Problem

Conclusions

@ The number of unknown anomalies can be found after some trials.

@ Due to the combinatorial nature of the search procedure, the problem
is tractable only in the case of small number of unknown measures.

@ Completely hidden anomalies can be detected from very few
information (single partial boundary measurement).

@ Corrupted measurements with a high level of noise can be
reconstructed with acceptable precision.

@ The characterization of the biggest set PC,(£2) seems to be an open

problem. @
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