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INTRODUCTION 
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Inverse heat transfer problems deal with 

the estimation of unknown quantities 

appearing in the mathematical formulation 

of physical processes in thermal sciences, 

by using measurements of temperature, 

heat flux, radiation intensities, etc. 



INTRODUCTION 
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• Originally, inverse heat transfer problems have been associated 

with the estimation of an unknown boundary heat flux, by using 

temperature measurements taken below the boundary surface of a 

heat conducting medium.  

• Recent technological advancements often require the use of 

involved experiments and indirect measurements, within the 

research paradigm of inverse problems.  

• Nowadays, inverse analyses are encountered in single and multi-

mode heat transfer problems, dealing with multi-scale phenomena.  

• Applications range from the estimation of constant heat transfer 

parameters to the mapping of spatially and timely varying 

functions, such as heat sources, fluxes and thermophysical 

properties.  
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SOLUTION OF INVERSE PROBLEMS 

General Considerations 

Consider the mathematical formulation of a heat transfer problem, which, 

for instance, can be linear or non-linear, one or multi-dimensional, involve 

one single or coupled heat transfer modes, etc.   

 

We denote the vector of parameters appearing in such formulation as: 

PT = [P1,P2,...,PN] 

where N is the number of parameters 

• These parameters can possibly be thermal conductivity components, 

heat transfer coefficients, heat sources, boundary heat fluxes, etc.  

• They can represent constant values of such quantities, or the 

parameters of the representation of a function in terms of known basis 

functions. 
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SOLUTION OF INVERSE PROBLEMS 

General Considerations 

Consider also that transient measurements are available within the 

medium, or at its surface, where the heat transfer processes are being 

mathematically formulated.  

 

The vector containing the measurements is written as:  

 1 2, , ... ,T
IY Y YY

 1 2, , ... ,i i i iMY Y Y Y

M = # of sensors 

I = # of transient measurements per sensor 
D =MI = # of  measurements  

• The measured data are not limited to temperatures, but could also 

include heat fluxes, radiation intensities, etc. 



SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

The statistical inversion approach is based on the following 

principles (Jari P. Kaipio and Erkki Somersalo, Computational and 

Statistical Methods for Inverse Problems, Springer, 2004): 

1. All variables included in the formulation are modeled as random 

variables. 

2. The randomness describes the degree of information concerning 

their realizations. 

3. The degree of information concerning these values is coded in 

the probability distributions. 

4. The solution of the inverse problem is the posterior probability 

distribution. 
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SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

• In many cases, the Posterior Probability Distribution does not allow an 

 analytical treatment.  

• Draw samples from the set W of all possible P’s, each sample with 

 probability p(P|Y). 

• Get a set Q = {P1, P2, …, PM} of samples distributed like the posterior 

 distribution. 

• Inference on p(P|Y) becomes inference on Q = {P1, P2, …, PM} , for 

 example the mean of the samples in Q give us an estimation of the 

 average values of p(P|Y). 

• We generally need the constant that normalizes the probability distribution: 

 MARKOV CHAIN MONTE-CARLO METHODS 

 (Metropolis-Hastings Algorithm) 

• Very time consuming. 
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SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

Example: Estimation of Contact Failures in Layered Composites 

L. A. Abreu, H. R. B. Orlande, J. Kaipio, V. Kolehmainen, R. M. Cotta, J. N. N. Quaresma, Identification Of 

Contact Failures In Multi-layered Composites With The Markov Chain Monte Carlo Method, ASME Journal 

of Heat Transfer, (under review) 
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hImax ,  

• Metropolis-Hastings algorithm 

• 2 layers 

• Simulated Measurements 

• TV prior 

• 22 hours 



 

Figure 5.a Exact temperature distribution at Z = 1 and  = 0.065 – two square failures of 

size 0.005 m 
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Figure 5.b Simulated measurements at Z = 1 and  = 0.065 – two square failures of size 0.005  
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SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

Example: Estimation of Thermal Conductivity Components of 

Orthotropic Solids 

Orlande, H.R.B., Colaço, M., Dulikravich, G., Approximation of the likelihood function in the Bayesian 

technique for the solution of inverse problems, Inverse Problems in Science and Engineering, Vol. 16, pp. 

677–692, 2008. 
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SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

Example: Estimation of Thermal Conductivity Components of 

Orthotropic Solids – Interpolation of the Likelihood with RBF’s 

Orlande, H.R.B., Colaço, M., Dulikravich, G., Approximation of the likelihood function in the Bayesian 

technique for the solution of inverse problems, Inverse Problems in Science and Engineering, Vol. 16, pp. 

677–692, 2008. 
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SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

Orlande, H. R. B., Knupp, D., Naveira-cotta, C., Cotta, Renato, Experimental Identification of 

Thermophysical Properties in Heterogeneous Materials with Integral Transformation of Temperature 

Measurements from Infrared Thermography. Experimental Heat Transfer. , v.26, p.1 - 25, 2013. 

Example: Characterization of Heterogeneous Media   

17 

Thin plate: Lumped model in z 



SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

YES! The likelihood is Gaussian!  



SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 
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Example: Characterization of Heterogeneous Media   

Orlande, H. R. B., Knupp, D., Naveira-cotta, C., Cotta, Renato, Experimental Identification of 

Thermophysical Properties in Heterogeneous Materials with Integral Transformation of Temperature 

Measurements from Infrared Thermography. Experimental Heat Transfer. , v.26, p.1 - 25, 2013. 



SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

The number of pixels in the vertical direction for the configuration that 

has been tested provides the total number of 328 spatial measurements 

along the 8 cm of the plate. 
20 

Example: Characterization of Heterogeneous Media   



SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

Another advancement of the present study was the solution of the inverse 

problem in the transformed field, from the integral transformation of the 

experimental temperature data, thus compressing the experimental 

measurements in the space variables into a few transformed fields. Once 

the experimental temperature readings have been obtained, one proceeds to 

the integral transformation of the temperature field at each time through the 

integral transform pair below: 

Transform exp, exp

0

( ) ( ) ( )[ ( , ) ]

Lx

i iT t w x x T x t T dx    
 

(15a) 

Inverse exp exp,

0

( , ) ( ) ( )
Ni

i i

i

T x t T x T t



   
 

(15b) 
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Example: Characterization of Heterogeneous Media  

Data Compression  

Orlande, H. R. B., Knupp, D., Naveira-cotta, C., Cotta, Renato, Experimental Identification of 

Thermophysical Properties in Heterogeneous Materials with Integral Transformation of Temperature 

Measurements from Infrared Thermography. Experimental Heat Transfer. , v.26, p.1 - 25, 2013. 



SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

These are in fact the quantities that are employed in the inverse problem 

analysis. Therefore, a significant data reduction of more than 95% is 

achieved, as one chooses to solve the inverse problem in the transformed 

temperature domain. 
22 
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SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

Transformed Potentials Temperature (oC) 

Orlande, H. R. B., Knupp, D., Naveira-cotta, C., Cotta, Renato, Experimental Identification of 

Thermophysical Properties in Heterogeneous Materials with Integral Transformation of Temperature 

Measurements from Infrared Thermography. Experimental Heat Transfer. , v.26, p.1 - 25, 2013. 



SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

Example: Characterization of Heterogeneous Media – Nodal Approach 

Massard, H., Fudym, O., Orlande, H. R. B., Batsale, J. C., Nodal predictive error model and Bayesian approach 

for thermal diffusivity and heat source mapping, Comptes Rendus Mécanique , v.338, p.434 - 449, 2010 

 ( , ) ( , ) ( , ) ( , ) ( , )
T T T

C x y k x y k x y h x y T T g x y
t x x y y



       
       

       

By writing the equation above in non-conservative form: 
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Thin plate: Lumped model in z 



SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

Example: Characterization of Heterogeneous Media – Nodal Approach 
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In the nodal strategy, the sensitivity matrix is approximately 

computed with the measurements: 

       p p p pP,J Y Y P,J P J

25 Massard, H., Fudym, O., Orlande, H. R. B., Batsale, J. C., Nodal predictive error model and Bayesian approach 

for thermal diffusivity and heat source mapping, Comptes Rendus Mécanique , v.338, p.434 - 449, 2010 



SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

Example: Characterization of Heterogeneous Media – Nodal Approach 

26 



SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

Example: Characterization of Heterogeneous Media – Nodal Approach 
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a (m2/s) mapping with MH.  = 2.529e-007 and  = 4.8277e-009
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SOLUTION OF INVERSE PROBLEMS 

Bayesian framework 

Example: Characterization of Heterogeneous Media – Nodal Approach 
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SOLUTION OF INVERSE PROBLEMS 

Example: Non linear 3D heat conduction 

Estimation of q(x,y) with measurements of T(x,y,0,t) 

Helcio R. B. Orlande, George S. Dulikravich, Markus Neumayer, Daniel Watzenig, Marcelo J. Colaço, 

Accelerated Bayesian Inference For The Estimation Of Spatially Varying Heat Flux In A Heat Conduction 

Problem, Numerical Heat Transfer – Part A, In press  29 
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( , , , )
( ) ( ) ( ) ( )c c c c

c c c c

T x y z t T T T
C T k T k T k T

t x x y y z z

          
       

           
    

in 0 < x < a , 0 < y < b , 0 < z  < c , for t > 0   (1.a) 

 

0cT

x





 at x = 0 and x = a , 0 < y < b , 0 < z  < c , for t > 0  (1.b,c) 

0cT

y





 at y = 0 and y =b , 0 < x < a , 0 < z  < c , for t > 0  (1.d,e) 

0cT

z





 at z = 0 , 0 < x < a , 0 < y < b ,  for t > 0        (1.f) 

( ) ( , )c
c

T
k T q x y

z





 at z = c , 0 < x < a , 0 < y < b , for t > 0   (1.g) 

0cT T    for t = 0 , in 0 < x < a , 0 < y < b , 0 < z  < c   (1.h) 

Complete model 

SOLUTION OF INVERSE PROBLEMS 
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Reduced models: Linear problem with properties at T* 

* * *( , , ) ( , )T x y t T T q x y
C k k

t x x y y c

       
     

       
     

in 0 < x < a , 0 < y < b , for t > 0   (3.a) 

 

0
T

x





  at x = 0 and x = a , 0 < y < b ,  for t > 0  (3.b,c) 

0
T

y





  at y = 0 and y =b , 0 < x < a , for t > 0  (3.d,e) 

0T T    for t = 0 , in 0 < x < a , 0 < y < b    (3.f) 

where 

0

1
( , , ) ( , , , )

c

z
T x y t T x y z t dz

c 
       (4) 

SOLUTION OF INVERSE PROBLEMS 
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Reduced models: Linear problem with properties at T* 

SOLUTION OF INVERSE PROBLEMS 

Classical Lumped Formulation: 

Temperature gradients across the thickness of the plate are fully neglected.  

( , ,0, ) ( , , , ) ( , , )T x y t T x y c t T x y t 

Helcio R. B. Orlande, George S. Dulikravich, Markus Neumayer, Daniel Watzenig, Marcelo J. Colaço, 

Accelerated Bayesian Inference For The Estimation Of Spatially Varying Heat Flux In A Heat Conduction 

Problem, Numerical Heat Transfer – Part A, In press  



In general, the direct problem solution with the complete model took around 7.2 s, 

while the solution with the reduced model took around 0.09 s of CPU time. 34 

SOLUTION OF INVERSE PROBLEMS 

Improved Lumped Formulation: 

Temperature gradients across the thickness of the plate are not neglected, 

but taken into account in an approximate form (Cotta, R.M., Mikhailov, 

M.D., Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic 

Computation, Wiley-Interscience, New York, USA, 1997.).  

*
( , ,0, ) ( , , ) ( , )

6

c
T x y t T x y t q x y

k
 

*
( , , , ) ( , , ) ( , )

3

c
T x y c t T x y t q x y

k
 

H1,1 formula (correct trapezoidal rule): 

H0,0 formula (trapezoidal rule): 

 
0

1
( , , ) ( , ,0, ) ( , , , )

2 12
z z c

c T T
T x y t T x y t T x y c t

z z
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SOLUTION OF INVERSE PROBLEMS 

Effects of reduced models 

Classical Lumped Model Improved Lumped Model 
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Orlande, H.R.B., Dulikravich, G., Inverse Heat Transfer Problems and their Solutions within the Bayesian 

Framework, ECCOMAS Special Interest Conference, Numerical Heat Transfer 2012, 4-6 September 2012, 

Gliwice-Wrocław, Poland 



SOLUTION OF INVERSE PROBLEMS 

Improvement of solutions with reduced models 

DELAYED ACCEPTANCE METROPOLIS-HASTINGS ALGORITHM 
(Christen, J. and Fox, C., Markov chain Monte Carlo Using an Approximation, 

Journal of Computational and Graphical Statistics, vol. 14, no. 4, pp. 795–810, 2005) 

1. Sample a Candidate Point P
*
 from a proposal distribution p(P

*
,P

t 
). 

2. Calculate the acceptance factor with the surrogate model: 
* ( 1) *

( 1) * ( 1)

( | ) ( , )
min 1,

( | ) ( , )

t

t t

p

p

p


p



 

 
  

 

P Y P P

P Y P P
    (15.a) 

3. Generate a random value U that is uniformly distributed on (0,1). 

4. If U   , proceed to step 5. Otherwise, set P
t

 = P
t

and return to step 1. 

5. Calculate a new acceptance factor with the complete model: 
* ( 1) *

( 1) * ( 1)

( | ) ( , )
min 1,

( | ) ( , )

t

c
c t t

c

p

p

p


p



 

 
  

 

P Y P P

P Y P P    

 (15.b) 

6. Generate a new random value Uc which is uniformly distributed on (0,1). 

7. If Uc   c, set P
t

 = P
*
. Otherwise, set P

t
 = P

t


8. Return to step 1. 

 

where ( | )p P Y and ( | )cp P Y  are the posterior distributions with the likelihoods computed 

with the surrogate model and with the complete model, respectively. 

Otherwise, return to step 1. 
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SOLUTION OF INVERSE PROBLEMS 

PRIOR DISTRIBUTIONS 

Total variation non-informative prior  

 ( ) exp ( )TVp  P P

1 1

1 1

2 2

1 1

( ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

I J

i j i j i j i j

i j

i j i j i j i j

TV y q x y q x y q x y q x y

x q x y q x y q x y q x y

 

 

 

 

      
 

     
 

P

Helcio R. B. Orlande, George S. Dulikravich, Markus Neumayer, Daniel Watzenig, Marcelo J. Colaço, 

Accelerated Bayesian Inference For The Estimation Of Spatially Varying Heat Flux In A Heat Conduction 

Problem, Numerical Heat Transfer – Part A, In press  
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SOLUTION OF INVERSE PROBLEMS 

Improvement of solutions with reduced models 

APPROXIMATION ERROR MODEL  
• Kaipio, J. and Somersalo, E., Statistical and Computational Inverse Problems, 

Applied Mathematical Sciences 160, Springer-Verlag, 2004 

• Kaipio, J., and Somersalo, E., Statistical Inverse Problems: Discretization, Model 

Reduction and Inverse Crimes, Journal of Computational and Applied 

Mathematics, vol. 198, pp. 493–504, 2007. 

In the approximation error model (AEM) approach, the statistical model of the 

approximation error is constructed and then represented as additional noise in the 

measurement model [1,19-23]. With the hypotheses that the measurement errors are additive 

and independent of the parameters P, one can write 

 

( )c Y T P e       (16) 

 

where ( )cT P  is the sufficiently accurate solution of the complete model given by equations 

(1.a-h). The vector of measurement errors, e  are assumed here to be Gaussian, with zero 

mean and known covariance matrix W. 
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SOLUTION OF INVERSE PROBLEMS 

Improvement of solutions with reduced models 

APPROXIMATION ERROR MODEL  

( ) [ ( ) ( )]c   Y T P T P T P e     (17) 

 

 By defining the error between the complete and the surrogate model solutions as 

 

[ ( ) ( )]c ε T P T P      (18) 

 

equation (17) can be written as 

 

( ) Y T P η       (19) 

 

where 

 

η ε+e       (20) 

Helcio R. B. Orlande, George S. Dulikravich, Markus Neumayer, Daniel Watzenig, Marcelo J. Colaço, 

Accelerated Bayesian Inference For The Estimation Of Spatially Varying Heat Flux In A Heat Conduction 

Problem, Numerical Heat Transfer – Part A, In press  
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SOLUTION OF INVERSE PROBLEMS 

Improvement of solutions with reduced models 

APPROXIMATION ERROR MODEL  

h is modeled as a Gaussian variable 

   
2

( 2)/2 1 1

0

1 1 1
( , ) exp [ ( ) ] [ ( ) ]

2 2 2

TIJ T 
p   



  
   

           
   

P Y Y T P η W Y T P η P μ Γ P μ

Enhanced error model: 

η ε

 
ε

W W W

Helcio R. B. Orlande, George S. Dulikravich, Markus Neumayer, Daniel Watzenig, Marcelo J. Colaço, 

Accelerated Bayesian Inference For The Estimation Of Spatially Varying Heat Flux In A Heat Conduction 

Problem, Numerical Heat Transfer – Part A, In press  
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SOLUTION OF INVERSE PROBLEMS 

Gaussian prior  

Energy Balance: 
*

( , )
( , )

i j

i j

d T x y
q x y C c

d t


In order to generate this physically motivated Gaussian prior, 

and at the same time not violate the Bayesian principle that the 

prior is the information for the unknowns (coded in the form 

of probability distribution functions) that is available before 

the measurements are taken, we assume here that another kind 

of measurements is also available. Such other kind of 

measurements is only used to generate the prior, and is 

considered independent of the temperature measurements used 

in the inverse analysis, that is, for the computation of the 

likelihood.  
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Test case Flux Prior Approach 

1 A TV - 

2 B TV - 

3 C TV - 

4 A TV DAMH 

5 B TV DAMH 

6 C TV DAMH 

7 A Gaussian - 

8 B Gaussian - 

9 C Gaussian - 

10 A Gaussian AEM 

11 B Gaussian AEM 

12 C Gaussian AEM 

Test 

case 

CPU Time 

(h) 

Acceptance ratio (%) RMS Error (W/m2) 

1 2.6 9.1 1.1x106 

2 2.6 7.5 1.0x106 

3 2.6 9.1 1.8x106 

4 98.7 41.9 – 6.8 1.1x106 

5 93.5 44.6 – 5.7 6.9x105 

6 64.5 34.6 – 5.4 1.4x106 

7 2.7 9.1 1.1x106 

8 2.6 8.3 9.8x105 

9 2.6 9.4 1.3x106 

10 42.9 9.8 1.2x106 

11 43.3 11.9 1.2x106 

12 43.1 8.7 2.0x106 

Test 

case 

CPU Time 

(h) 

Acceptance ratio (%) RMS Error (W/m2) 

1 2.7 10.9 9.3x104 

2 2.8 9.0 6.6x104 

3 2.6 9.9 1.1x105 

4 114.2 46.7 – 5.3 9.8x104 

5 113.0 47.9 – 4.2 5.9x104 

6 98.3 40.8 – 5.9 1.4x105 

7 2.6 11.3 9.3x104 

8 2.8 9.3 6.6x104 

9 2.7 10.2 1.1x105 

10 44.5 12.8 4.1x104 

11 44.2 11.0 2.6x104 

12 42.5 11.2 8.5x104 
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 = 0.02 K 
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Gaussian prior + AEM 
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SOLUTION OF INVERSE PROBLEMS 

Improvement of solutions with reduced models 

CONVECTIVE EFFECTS IN LIQUIDS CHARACTERIZED BY THE 

LINE HEAT SOURCE PROBE  

Bernard Lamien, Helcio R. B. Orlande, Approximation Error Model To Account For Convective Effects In 

Liquids Characterized By The Line Heat Source Probe, 4th Inverse Problems, Design and Optimization 

Symposium (IPDO-2013), Albi, France, June 26-28, 2013 
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SOLUTION OF INVERSE PROBLEMS 

Improvement of solutions with reduced models 

HYPERTHERMIA TREATMENT OF CANCER - NANOPARTICLES 

Leonid A. Dombrovsky, Victoria Timchenko, Michael Jackson, Guan H. Yeoh, A combined transient thermal 

model for laser hyperthermia of tumors with embedded gold nanoshells, International Journal of Heat and 

Mass Transfer, Volume 54, Issues 25–26, December 2011, Pages 5459–5469 
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COMPLETE MODEL FOR THE FLUENCE RATE 
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REDUCED MODEL FOR THE FLUENCE RATE 
Semi-infinite medium irradiated by a wide collimated beam with refractive index 

mismatched boundaries - Welch, (2011) 
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BIOHEAT TRANSFER EQUATION 
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SOLUTION OF INVERSE PROBLEMS 

Improvement of solutions with reduced models 

CONVERGENCE ANALYSIS OF THE MODELING ERROR 
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ESTIMATED TEMPERATURE – PARTICLE FILTER  

ASIR+AEM (sensor at x=0.5 mm) 
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ASIR+AEM (sensor at x=1.5 mm) 



SOLUTION OF INVERSE PROBLEMS 

Improvement of solutions with reduced models 

ESTIMATED TEMPERATURE – PARTICLE FILTER  

ASIR+AEM (sensor at x=1.5 mm) 



CONCLUSIONS 

• With the recent advancement of fast and affordable 

computational resources, sampling methods have become 

more popular within the community dealing with the 

solution of inverse problems.  These methods are backed 

up by the statistical theory within the Bayesian framework, 

being quite simple in terms of application and not restricted 

to any prior distribution for the unknowns or models for the 

measurement errors. 
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CONCLUSIONS 

• If the number of unknowns is too large, thus requiring a 

large number of samples to represent the posterior 

distribution, or the solution of the direct problem is too 

expensive in terms of computational time, the application 

of sampling methods may still be prohibitive nowadays.  

• The use of surrogate models or response surfaces for the 

solution of the direct problem are useful for the reduction 

of the computational time, specially if used with the 

Approximation Error Approach. 

• More efficient sampling algorithms are under 

development, e.g., the Delayed Acceptance Metropolis-

Hastings algorithm. 
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