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The (stationary) radiative transfer equation (RTE) %(IT

(Boltzmann transport equation)

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Let u(x, 0) be the photon flux (radiance) in direction § € S about z € Q C
R3. Then,

0 Vu(z,0) + p(x)u(z, 0) = ps(z) /nw W yule, 0)d0 + q(z, 6)
SQ
u(x,0) =g (x,0), x€0Q, n(z)-6<0

! /n(x) - Qu(x,0)dd, = € 01

g(x) — An
52

where = us + pa and

us | 11, Scattering/absorption coefficients
n scattering kernel ([ n(6 - 0")do’ = 1)
q source term

s = 0: RTE yields integral egs. of transmission and emission tomography
(F. Natterer & F. Wibbeling, Math. Methods in Image Reconstr., SIAM, '01)
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Diffusion approximation: settng LR

Assume that
u(x,0) = ug(x) + 30 - ui(x)
where

/ (£,0)dd e R and ui(x) = 417T /eu(:c )d € R>.

S2 S2

1

uo(z) = 4t

By the Funk-Hecke theorem,

/ on(0 - 0)d0 =70/
5’2

where 7 = /9’ -0n(0-0")do is the scattering anisotropy.

S2

5/32 @© Andreas Rieder — Geometric Reconstruction in Bioluminescence Tomography CBM 2013, Rio de Janeiro



KIT

I Diffusion approximation: derivaton &% o

m Integrate RTE over S?,
a multiply RTE by @, integrate again, and
m assume g (z,0) = g (z).

Then,
1
-V - ( VUO) T Hallo = qo = E /Q(a Q)dea
8’2
ug + 2/)0hug = g~ 0on of},
OnUug = —¢g 0on 01,
where
B 1
3(:“ — ﬁus)

IS the diffusion coefficient (reduced scattering coefficient).
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I Diffusion approximation: final equation e v o

m Change of notation: uv = ug, ¢ = qo, 4t = pa, and g = —g.

m The photon density « obeys the BVP

—V - (DVu) + pu=q inf,
u+ 2D0yu = g~ on Of).

m The measurements are given by
Dohu =g on 0.

m Assume g~ = 0 (no photons penetrate the object from outside).
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Inverse problem: formulation & uniqueness
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I Inverse problem of BLT (in the diffusive regime) &5 o

Define the (linear) forward operator

A: LX(Q) — H2(8Q),
q — DoOqhu,

where u solves the BVP with ¢= = 0:

—V - (DVu) 4+ pu=q inQ,
u+2D0xu =0 on ofl.
BLT Problem : Given g € R(A), find a source ¢ ¢ L?() satisfying

Ag = g.
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I Null Space of A A“(IT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Lemma (Wang, Li & Jiang '04, Kreutzmann ’13):
There is an isomorphism ®: H(Q) — H'(9)" such that

N(A) = ®(Hj(2)) N L (D).
If D ¢ W1 then

N(A) = ®(Hy(Q) N H*(Q)).

Proof: Define
d: H'(Q) — HY(Q), uw— (Pu)(v) = a(u,v)
where

1
a(u,v) = / (DVu - Vo + puv)dz + 5 / uv ds.
Q oLy
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I Singular Functions of

11/32

A: L*(Q) — L*(09Q)
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I Can we restore uniqueness by a priori information?

Consider, for instance,

q=Axs Where A >0isaconstantand S C ).
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AT

I Can we restore uniqueness by a priori information?

Consider, for instance,

12/32

q=Axs Where A >0isaconstantand S C ).

Lemma (Wang, Li & Jiang '04).
There exist z € (), A\ # Ao and r; # ro such that

A()\lel) — A()‘2XB2)

with B = BTk (Z)
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I rReformulation ...~~~ = Dol

I
Ansatz: ¢ = Z Aixs, where S; c Q, A\; € [\, \] = A, and I € N.
=1

For the ease of presentation: [ = 1.
Define the nonlinear operator

F:AxL — LQ(aQ),
(A, S) —  Donhulsg

where L is the set of all measurable subsets of ).
Note: F(A,S5) = AAxs

BLT Problem : Given measurements g, find an intensity A € A and
a domain S € L such that

F(\S)=g.
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I Tikhonov-like reqularizaton &% o e

L. 1
Minimize Jo (X, S) = [|F(X, 8) - gl|32 + aPer(S) over A x L

where o > 0 is the regularization parameter and Per(S) is the perimeter
of S:
Per(S) = |D(xs)l,

with |D(-)| denoting the BV-semi-norm (Ramlau & Ring '07, '10).

IIIII

. Univ. Mainz
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I Existence of a minimizer & stability A\‘(IT

16 /32

Theorem: For all o > 0 and g € L#(992) there exists a minimizer
(A*,5%) € A x L, that is,

Ja(A*,8%) < Jau(A,S) forall (A, S) € A x L.

Theorem: Let g, — gin L? as n — oo and let (A", ™) minimize
J2X,S) = ||F(X, S) — gnl|32 + aPer(S) over A x L.

Then there exists a subsequence {(\", S™)}, converging to a
minimizer (A\*,5*) € A x L of J, in the sense that

A" x s — A xs+|lr2 — 0 as k — oo.

Furthermore, every convergent subsequence of {(\", S") },
converges to a minimizer of J,.
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Regularization property &% o

Theorem: Let g be in range(F') and let § — «(d) where

2

a(d) — 0 and m—m as o — 0.

In addition, let {4, },, be a positive null sequence and {g, }, such that
lgn — gllL2 < on.

Then, the sequence {(\", S™)} of minimizers of J (s, POsSsesses a sub-
sequence converging to a solution (A1, S™) where

ST = argmin{Per(S) : S € L s.t. I\ € A with F(\, S) = g}.

Furthermore, every convergent subsequence of {(\", S™)},, converges to
a pair (AT, ST) with above property.
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I Domain derivative: general definition &% o
letD e 8§ ={I' c Q: 9T € C?} and let h € C2(Q, RY). Define
I'y={z+h(z):xzel}.

If h is small enough, say if ||h||c2 < 1/2, then T, € 8.

By the domain derivative of ®: § — Y about I" we understand ®'(T") €
L(C?Y) satisfying

|2(T') = @(I') = @' (I)Ally = of||llc2)

where Y Is a hormed space.
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I Domain derivative of F(\,): 8§ — L?(99) ﬂ(IT
Reminder: F(\,S) = AMxs

Lemma: We have that
(95F()\, S)h = u/|aQ

where v’ € H'(Q\0S5) solves the transmission bvp

—V - (DVU) +pu' =0 in Q\IS,
2D0,u' +u' =0 on o,
[u']+ =0 on s,
DOqu'|, = —Ah-n ondS.

Proof: similar to Hettlich’s habilitation thesis 1999.
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Domain derivative of Per: § — R

Lemma (Simon 1980):
We have that

OsPer(S)h = / Hys(h - n) ds
oS

where Hyg denotes the mean curvature of 05S.
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Derivative of J,: A x8 — R ﬂ(".
Ja(A8) = 2 F(A.S) ~ glf3 + aPer()
ANF(\, )k = kAyg = F(k,S)
Theorem: We have that

To(08)(0 ) = (P(L8) = 9. F(k. S) 1) oy + 0 | Hos(-m) ds

for k € R, h € CZ(Q,R?).

Proof:
J(;()\, S)(k,h) = Or\Jo (N, S)k 4+ 0sJa (A, S)h
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There exist smooth almost critical points of J, near to any of its
minimizers.

I Approximate variational principle (Ekeland 1974)
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I Approximate variational principle (Ekeland 1974) e i e

There exist smooth almost critical points of J, near to any of its
minimizers.

Theorem: Let (\*,S*) be a minimizer of J, where \* is an inner point of
A. Then, for any € > 0 sufficiently small there is a (A%, 5¢) € A x 8 with

T, §5) — Jo (A, 5%) < e,
[A®xse — A x5+ <€,

1J6(A%, S) [Rx 2R < €.
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I Approximate variational principle (Ekeland 1974) &% e

There exist smooth almost critical points of J, near to any of its
minimizers.

Theorem: Let (\*,S*) be a minimizer of J, where \* is an inner point of
A. Then, for any € > 0 sufficiently small there is a (A%, 5¢) € A x 8 with

Tu(O8, S5) = Jo (M, §) <e,
A xse — Nxs+|l 11 < e,
1T5 (A, %) lrxc2—r < €.

Proof: Key ingredient is
To any bounded measurable I' ¢ R? with finite perimeter exists a se-
quence {I'"},, of C'°>°-domains such that

/Rd Ixpn — xr|de — 0 and Per(I'") — Per(I') asn — oo.
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I Star-shaped domains ﬂ(".

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

m For the numerical experiments we consider a star-shaped domain only:
S={zcR*: z=m+to(r(), 0<t <1, 0<9 <27}

where m is the center (assumed to be known) and r: [0, 27] — |0, o0
parameterizes the boundary of S.

m All previous results hold in this setting as well if we work in a space of
smooth parameterizations, say, r € H3(0,2r) C C3(0,2m).

B (A\,S)~ (A1) € AxRgqgwhere Ryg = {r € H3(0,2m) : 7 > 0}.

m Gradient equation: (grad.J,(\,7), (k,h)) = J (\,7)(k,h).

Rx H3

a We have implemented star-shaped domains using trigonometric poly-
nomials.
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I Algorithm: Projected Gradient Method ﬂ(".

(S0) Choose (\,79) € @ := A x Ry, k:=0

(S1) lterate (S2)-(S4) until &

(S2) Set V;, := —gradJ,(\¥, rF).

(S3) Choose o, by a projected step size rule such that

T (P@(()\k,rk) n akvk)) < Ju(NF 7Ry,

(S4) Set (\FHL phtly .= P@(()\k, rF) + akvk).
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I The model ﬁ("‘
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I H?3-Reconstructions

A =0.97843 for oo = 0.00763 A =0.702 for oo = 0.00762
90 3

270 270
Reconstructions (blue) and source (red).
Left: 69 iterations, right: £ = 17 iterations
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I L?-Reconstructions

A = 0.84033 for a. = 0.0079 A =0.77183 for a. = 0.008
90 3 90 3

150/ 2/~ L 1EN L \30 150/ 5/

180 0 180

2%0 2%0
Reconstructions (blue) and source (red).
Left: 37 iterations, right: noisy data (rel. 3%), 24 iterations
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I L?-Reconstruction with variable center
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I What to remember from this talk ﬂ(IT

m Bioluminescence tomography images cells in vivo. From a mathemati-
cal point of view it is an inverse source problem which suffers from non-
unigueness (diffusion approximation) and ill-posedness.

m To overcome these difficulties the sources are modeled as "hot spots”
leading to a nonlinear problem which is stabilized by a Tikhonov-like
regularization penalizing the perimeter of the hot spots.

m The approximate variational principle justifies the restriction to hot spots
with smooth boundaries.

m For star-shaped domains in 2D a projected steepest decent solver has
been implemented and tested.
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