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The (stationary) radiative transfer equation (RTE)
(Boltzmann transport equation)
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Let u(x, θ) be the photon flux (radiance) in direction θ ∈ S2 about x ∈ Ω ⊂
R

3. Then,

θ · ∇u(x, θ) + µ(x)u(x, θ) = µs(x)

∫

S2

η(θ · θ′)u(x, θ′)dθ′ + q(x, θ)

u(x, θ) = g−(x, θ), x ∈ ∂Ω, n(x) · θ ≤ 0

g(x) =
1

4π

∫

S2

n(x) · θu(x, θ)dθ, x ∈ ∂Ω

where µ = µs + µa and

µs / µa scattering/absorption coefficients

η scattering kernel (
∫
S2 η(θ · θ′)dθ′ = 1)

q source term

µs = 0: RTE yields integral eqs. of transmission and emission tomography
(F. Natterer & F. Wübbeling, Math. Methods in Image Reconstr., SIAM, ’01)



Diffusion approximation: setting
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Assume that
u(x, θ) = u0(x) + 3θ · u1(x)

where

u0(x) =
1

4π

∫

S2

u(x, θ)dθ ∈ R and u1(x) =
1

4π

∫

S2

θu(x, θ)dθ ∈ R
3.

By the Funk-Hecke theorem,
∫

S2

θη(θ · θ′)dθ = η θ′

where η =

∫

S2

θ′ · θ η(θ · θ′)dθ is the scattering anisotropy.



Diffusion approximation: derivation
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Integrate RTE over S2,
multiply RTE by θ, integrate again, and
assume g−(x, θ) = g−(x).

Then,

−∇ · (D∇u0) + µau0 = q0 :=
1

4π

∫

S2

q(·, θ)dθ,

u0 + 2D∂nu0 = g− on ∂Ω,

D∂nu0 = −g on ∂Ω,

where
D =

1

3(µ − ηµs)

is the diffusion coefficient (reduced scattering coefficient).



Diffusion approximation: final equation
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Change of notation: u = u0, q = q0, µ = µa, and g = −g.

The photon density u obeys the BVP

−∇ · (D∇u) + µu = q in Ω,

u + 2D∂nu = g− on ∂Ω.

The measurements are given by

D∂nu = g on ∂Ω.

Assume g− = 0 (no photons penetrate the object from outside).
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Inverse problem of BLT (in the diffusive regime)
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Define the (linear) forward operator

A : L2(Ω) → H− 1
2 (∂Ω),

q 7→ D∂nu ,

where u solves the BVP with g− = 0:

−∇ · (D∇u) + µu = q in Ω,

u + 2D∂nu = 0 on ∂Ω.

BLT Problem : Given g ∈ R(A), find a source q ∈ L2(Ω) satisfying

Aq = g.



Null Space of A
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Lemma (Wang, Li & Jiang ’04, Kreutzmann ’13):
There is an isomorphism Φ: H1(Ω) → H1(Ω)′ such that

N(A) = Φ
(
H1

0 (Ω)
)
∩ L2(Ω).

If D ∈ W 1,∞ then

N(A) = Φ
(
H1

0 (Ω) ∩ H2(Ω)
)
.

Proof: Define

Φ: H1(Ω) → H1(Ω)′, u 7→ (Φu)(v) = a(u, v)

where

a(u, v) =

∫

Ω

(
D∇u · ∇v + µuv

)
dx +

1

2

∫

∂Ω
uv ds.



Singular Functions of A : L2(Ω0) → L2(∂Ω)
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Can we restore uniqueness by a priori information?
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Consider, for instance,

q = λχS where λ ≥ 0 is a constant and S ⊂ Ω.



Can we restore uniqueness by a priori information?
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Consider, for instance,

q = λχS where λ ≥ 0 is a constant and S ⊂ Ω.

Lemma (Wang, Li & Jiang ’04):

There exist z ∈ Ω, λ1 6= λ2 and r1 6= r2 such that

A(λ1χB1) = A(λ2χB2)

with Bk = Brk
(z).
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Reformulation
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Ansatz: q =
I∑

i=1

λiχSi
where Si ⊂ Ω, λi ∈ [λi, λi] = Λi, and I ∈ N.

For the ease of presentation: I = 1.

Define the nonlinear operator

F : Λ × L → L2(∂Ω),

(λ, S) 7→ D∂nu|∂Ω

where L is the set of all measurable subsets of Ω.

Note: F (λ, S) = λAχS

BLT Problem : Given measurements g, find an intensity λ ∈ Λ and
a domain S ∈ L such that

F (λ, S) = g.



Tikhonov-like regularization
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Minimize Jα(λ, S) =
1

2
‖F (λ, S) − g‖2

L2 + αPer(S) over Λ × L

where α > 0 is the regularization parameter and Per(S) is the perimeter
of S:

Per(S) = |D(χS)|,

with |D(·)| denoting the BV-semi-norm (Ramlau & Ring ’07, ’10).

AG Sahin, Univ. Mainz



Existence of a minimizer & stability
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Theorem: For all α > 0 and g ∈ L2(∂Ω) there exists a minimizer
(λ∗, S∗) ∈ Λ × L, that is,

Jα(λ∗, S∗) ≤ Jα(λ, S) for all (λ, S) ∈ Λ × L.

Theorem: Let gn → g in L2 as n → ∞ and let (λn, Sn) minimize

Jn
α(λ, S) = 1

2‖F (λ, S) − gn‖
2
L2 + αPer(S) over Λ × L.

Then there exists a subsequence {(λnk , Snk)}k converging to a
minimizer (λ∗, S∗) ∈ Λ × L of Jα in the sense that

‖λnkχSnk − λ∗χS∗‖L2 → 0 as k → ∞.

Furthermore, every convergent subsequence of {(λn, Sn)}n

converges to a minimizer of Jα.



Regularization property
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Theorem: Let g be in range(F ) and let δ 7→ α(δ) where

α(δ) → 0 and
δ2

α(δ)
→ 0 as δ → 0.

In addition, let {δn}n be a positive null sequence and {gn}n such that

‖gn − g‖L2 ≤ δn.

Then, the sequence {(λn, Sn)} of minimizers of Jn
α(δn) possesses a sub-

sequence converging to a solution (λ+, S+) where

S+ = arg min{Per(S) : S ∈ L s.t. ∃λ ∈ Λ with F (λ, S) = g}.

Furthermore, every convergent subsequence of {(λn, Sn)}n converges to
a pair (λ†, S†) with above property.
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Domain derivative: general definition
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Let Γ ∈ S = {Γ̃ ⊂ Ω : ∂Γ̃ ∈ C2} and let h ∈ C2
0 (Ω, Rd). Define

Γh = {x + h(x) : x ∈ Γ}.

If h is small enough, say if ‖h‖C2 < 1/2, then Γh ∈ S.

By the domain derivative of Φ: S → Y about Γ we understand Φ′(Γ) ∈
L(C2, Y ) satisfying

‖Φ(Γh) − Φ(Γ) − Φ′(Γ)h‖Y = o(‖h‖C2)

where Y is a normed space.



Domain derivative of F (λ, ·) : S → L2(∂Ω)
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Reminder: F (λ, S) = λAχS

Lemma: We have that
∂SF (λ, S)h = u′|∂Ω

where u′ ∈ H1(Ω\∂S) solves the transmission bvp

−∇ · (D∇u′) + µu′ = 0 in Ω\∂S,

2D∂nu′ + u′ = 0 on ∂Ω,

[u′]± = 0 on ∂S,[
D∂nu′

]
±

= −λh · n on ∂S.

Proof: similar to Hettlich’s habilitation thesis 1999.



Domain derivative of Per: S → R
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Lemma (Simon 1980):

We have that

∂SPer(S)h =

∫

∂S

H∂S(h · n) ds

where H∂S denotes the mean curvature of ∂S.



Derivative of Jα : Λ × S → R
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Jα(λ, S) =
1

2
‖F (λ, S) − g‖2

L2 + αPer(S)

∂λF (λ, S)k = kAχS = F (k, S)

Theorem: We have that

J ′
α(λ, S)(k, h) =

〈
F (λ, S) − g, F (k, S) + u′

〉
L2(∂Ω)

+ α

∫

∂S

H∂S(h · n) ds

for k ∈ R, h ∈ C2
0(Ω, R3).

Proof:
J ′

α(λ, S)(k, h) = ∂λJα(λ, S)k + ∂SJα(λ, S)h



Approximate variational principle (Ekeland 1974)
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There exist smooth almost critical points of Jα near to any of its
minimizers.



Approximate variational principle (Ekeland 1974)
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There exist smooth almost critical points of Jα near to any of its
minimizers.

Theorem: Let (λ∗, S∗) be a minimizer of Jα where λ∗ is an inner point of
Λ. Then, for any ε > 0 sufficiently small there is a (λε, Sε) ∈ Λ × S with

Jα(λε, Sε) − Jα(λ∗, S∗) ≤ ε,

‖λεχSε − λ∗χS∗‖L1 ≤ ε,

‖J ′
α(λε, Sε)‖R×C2→R ≤ ε.



Approximate variational principle (Ekeland 1974)
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There exist smooth almost critical points of Jα near to any of its
minimizers.

Theorem: Let (λ∗, S∗) be a minimizer of Jα where λ∗ is an inner point of
Λ. Then, for any ε > 0 sufficiently small there is a (λε, Sε) ∈ Λ × S with

Jα(λε, Sε) − Jα(λ∗, S∗) ≤ ε,

‖λεχSε − λ∗χS∗‖L1 ≤ ε,

‖J ′
α(λε, Sε)‖R×C2→R ≤ ε.

Proof: Key ingredient is
To any bounded measurable Γ ⊂ R

d with finite perimeter exists a se-
quence {Γn}n of C∞-domains such that

∫

Rd

|χΓn − χΓ|dx → 0 and Per(Γn) → Per(Γ) as n → ∞.



Numerical experiments in 2D
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Star-shaped domains
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For the numerical experiments we consider a star-shaped domain only:

S = {x ∈ R
2 : x = m + t θ(ϑ)r(ϑ), 0 ≤ t ≤ 1, 0 ≤ ϑ ≤ 2π}

where m is the center (assumed to be known) and r : [0, 2π] → [0,∞[
parameterizes the boundary of S.

All previous results hold in this setting as well if we work in a space of
smooth parameterizations, say, r ∈ H3

p(0, 2π) ⊂ C2
p(0, 2π).

(λ, S) (λ, r) ∈ Λ × Rad where Rad =
{
r ∈ H3

p(0, 2π) : r ≥ 0
}
.

Gradient equation:
〈
gradJα(λ, r), (k, h)

〉
R×H3 = J ′

α(λ, r)(k, h).

We have implemented star-shaped domains using trigonometric poly-
nomials.



Algorithm: Projected Gradient Method
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(S0) Choose (λ0, r0) ∈ C := Λ × Rad, k := 0

(S1) Iterate (S2)-(S4) until
(S2) Set ∇k := −gradJα(λk, rk).
(S3) Choose σk by a projected step size rule such that

Jα

(
PC

(
(λk, rk) + σk∇k

))
< Jα(λk, rk).

(S4) Set (λk+1, rk+1) := PC

(
(λk, rk) + σk∇k

)
.



The model
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H3-Reconstructions
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L2-Reconstructions
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L2-Reconstruction with variable center

30 / 32 c©Andreas Rieder – Geometric Reconstruction in Bioluminescence Tomography CBM 2013, Rio de Janeiro


GeoRecBioLum.avi
Media File (video/avi)



Summary

Mathematical model

Inverse problem:
formulation &
uniqueness

Inverse problem:
reformulation &

stabilization

Gradient of the mini-
mization functional

Numerical experi-
ments in 2D

⊲ Summary
What to remember
from this talk

31 / 32 c©Andreas Rieder – Geometric Reconstruction in Bioluminescence Tomography CBM 2013, Rio de Janeiro



What to remember from this talk
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Bioluminescence tomography images cells in vivo. From a mathemati-
cal point of view it is an inverse source problem which suffers from non-
uniqueness (diffusion approximation) and ill-posedness.

To overcome these difficulties the sources are modeled as ”hot spots”
leading to a nonlinear problem which is stabilized by a Tikhonov-like
regularization penalizing the perimeter of the hot spots.

The approximate variational principle justifies the restriction to hot spots
with smooth boundaries.

For star-shaped domains in 2D a projected steepest decent solver has
been implemented and tested.
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