

Geometric Reconstruction in Bioluminescence Tomography (BLT)

Andreas Rieder

jointly with Tim Kreutzmann

FAKULTÄT FÜR MATHEMATIK – INSTITUT FÜR ANGEWANDTE UND NUMERISCHE MATHEMATIK

Overview

Mathematical model

Inverse problem: formulation & uniqueness

Inverse problem: reformulation & stabilization

Gradient of the minimization functional

Numerical experiments in 2D

Summary

Inverse problem: formulation & uniqueness

Inverse problem: reformulation & stabilization

Gradient of the minimization functional

Numerical experiments in 2D

Summary

Mathematical model

The (stationary) radiative transfer equation (RTE) (Boltzmann transport equation)

Let $u(x, \theta)$ be the photon flux (radiance) in direction $\theta \in S^2$ about $x \in \Omega \subset \mathbb{R}^3$. Then,

$$\theta \cdot \nabla u(x,\theta) + \mu(x)u(x,\theta) = \mu_{s}(x) \int \eta(\theta \cdot \theta')u(x,\theta')d\theta' + q(x,\theta)$$
$$u(x,\theta) = g^{-}(x,\theta), \quad x \in \partial\Omega, \quad \mathbf{n}(x) \cdot \theta \leq 0$$
$$g(x) = \frac{1}{4\pi} \int_{S^{2}} \mathbf{n}(x) \cdot \theta u(x,\theta)d\theta, \quad x \in \partial\Omega$$

where $\mu=\mu_{\mathrm{s}}+\mu_{\mathrm{a}}$ and

 $\mu_{\rm s}$ / $\mu_{\rm a}$ scattering/absorption coefficients

 η scattering kernel $(\int_{S^2} \eta(\theta \cdot \theta') d\theta' = 1)$

q source term

 $\mu_{\rm s}=0$: RTE yields integral eqs. of transmission and emission tomography (F. Natterer & F. Wübbeling, Math. Methods in Image Reconstr., SIAM, '01)

Diffusion approximation: setting

Assume that

$$u(x,\theta) = u_0(x) + 3\theta \cdot u_1(x)$$

where

$$u_0(x) = \frac{1}{4\pi} \int_{S^2} u(x,\theta) d\theta \in \mathbb{R}$$
 and $u_1(x) = \frac{1}{4\pi} \int_{S^2} \theta u(x,\theta) d\theta \in \mathbb{R}^3$.

By the Funk-Hecke theorem,

$$\int_{S^2} \theta \eta(\theta \cdot \theta') d\theta = \overline{\eta} \theta'$$

where $\overline{\eta} = \int\limits_{S^2} \theta' \cdot \theta \, \eta(\theta \cdot \theta') \mathrm{d}\theta$ is the scattering anisotropy.

Diffusion approximation: derivation

- Integrate RTE over S^2 ,
- \blacksquare multiply RTE by θ , integrate again, and
- assume $g^{-}(x,\theta) = g^{-}(x)$.

Then,

$$-\nabla \cdot (\mathbf{D}\nabla u_0) + \mu_{\mathbf{a}} u_0 = q_0 := \frac{1}{4\pi} \int_{S^2} q(\cdot, \theta) d\theta,$$
$$u_0 + 2\mathbf{D}\partial_{\mathbf{n}} u_0 = g^- \text{ on } \partial\Omega,$$
$$\mathbf{D}\partial_{\mathbf{n}} u_0 = -g \text{ on } \partial\Omega,$$

where

$$D = \frac{1}{3(\mu - \overline{\eta}\mu_{\rm s})}$$

is the diffusion coefficient (reduced scattering coefficient).

Diffusion approximation: final equation

- Change of notation: $u = u_0$, $q = q_0$, $\mu = \mu_a$, and g = -g.
- The photon density *u* obeys the BVP

$$-\nabla \cdot (D\nabla u) + \mu u = q \quad \text{in } \Omega,$$
$$u + 2D\partial_{\mathbf{n}} u = g^{-} \text{ on } \partial\Omega.$$

The measurements are given by

$$D\partial_{\mathbf{n}}u=q$$
 on $\partial\Omega$.

■ Assume $g^- = 0$ (no photons penetrate the object from outside).

Mathematical model

Inverse problem: reformulation & stabilization

Gradient of the minimization functional

Numerical experiments in 2D

Summary

Inverse problem: formulation & uniqueness

Inverse problem of BLT (in the diffusive regime)

Define the (linear) forward operator

$$A: L^2(\Omega) \to H^{-\frac{1}{2}}(\partial \Omega),$$

 $q \mapsto D\partial_{\mathbf{n}} u,$

where u solves the BVP with $g^-=0$:

$$-\nabla \cdot (D\nabla u) + \mu u = q \quad \text{in } \Omega,$$
$$u + 2D\partial_{\mathbf{n}} u = 0 \quad \text{on } \partial\Omega.$$

BLT Problem: Given $g \in \mathcal{R}(A)$, find a source $q \in L^2(\Omega)$ satisfying

$$Aq = g$$
.

Null Space of A

Lemma (Wang, Li & Jiang '04, Kreutzmann '13):

There is an isomorphism $\Phi \colon H^1(\Omega) \to H^1(\Omega)'$ such that

$$\mathcal{N}(A) = \Phi(H_0^1(\Omega)) \cap L^2(\Omega).$$

If $D \in W^{1,\infty}$ then

$$\mathcal{N}(A) = \Phi(H_0^1(\Omega) \cap H^2(\Omega)).$$

Proof: Define

$$\Phi \colon H^1(\Omega) \to H^1(\Omega)', \quad u \mapsto (\Phi u)(v) = a(u, v)$$

where

$$a(u,v) = \int_{\Omega} \left(D\nabla u \cdot \nabla v + \mu uv \right) dx + \frac{1}{2} \int_{\partial \Omega} uv \, ds.$$

Singular Functions of $A \colon L^2(\Omega_0) \to L^2(\partial\Omega)$

Can we restore uniqueness by a priori information?

Consider, for instance,

$$q = \lambda \chi_S$$
 where $\lambda \geq 0$ is a constant and $S \subset \Omega$.

Can we restore uniqueness by a priori information?

Consider, for instance,

$$q = \lambda \chi_S$$
 where $\lambda \geq 0$ is a constant and $S \subset \Omega$.

Lemma (Wang, Li & Jiang '04):

There exist $z \in \Omega$, $\lambda_1 \neq \lambda_2$ and $r_1 \neq r_2$ such that

$$A(\lambda_1 \chi_{B_1}) = A(\lambda_2 \chi_{B_2})$$

with $B_k = B_{r_k}(z)$.

Mathematical model

Inverse problem: formulation & uniqueness

Inverse problem: reformulation &

➤ stabilization

Reformulation
Tikhonov-like
regularization
Existence of a
minimizer & stability
Regularization
property

Gradient of the minimization functional

Numerical experiments in 2D

Summary

Inverse problem: reformulation & stabilization

Reformulation

Ansatz:
$$q=\sum_{i=1}^I \lambda_i \chi_{S_i}$$
 where $S_i\subset\Omega$, $\lambda_i\in[\underline{\lambda}_i,\overline{\lambda}_i]=\Lambda_i$, and $I\in\mathbb{N}$.

For the ease of presentation: I = 1.

Define the nonlinear operator

$$F: \Lambda \times \mathcal{L} \longrightarrow L^2(\partial \Omega),$$
$$(\lambda, S) \longmapsto D\partial_{\mathbf{n}} u|_{\partial \Omega}$$

where \mathcal{L} is the set of all measurable subsets of Ω .

Note: $F(\lambda, S) = \lambda A \chi_S$

BLT Problem: Given measurements g, find an intensity $\lambda \in \Lambda$ and a domain $S \in \mathcal{L}$ such that

$$F(\lambda, S) = g.$$

Tikhonov-like regularization

Minimize
$$J_{\alpha}(\lambda, S) = \frac{1}{2} \|F(\lambda, S) - g\|_{L^{2}}^{2} + \alpha \text{Per}(S)$$
 over $\Lambda \times \mathcal{L}$

where $\alpha > 0$ is the regularization parameter and Per(S) is the perimeter of S:

$$\operatorname{Per}(S) = |\operatorname{D}(\chi_S)|,$$

with $|D(\cdot)|$ denoting the BV-semi-norm (Ramlau & Ring '07, '10).

Existence of a minimizer & stability

Theorem: For all $\alpha>0$ and $g\in L^2(\partial\Omega)$ there exists a minimizer $(\lambda^*,S^*)\in\Lambda\times\mathcal{L}$, that is,

$$J_{\alpha}(\lambda^*, S^*) \leq J_{\alpha}(\lambda, S)$$
 for all $(\lambda, S) \in \Lambda \times \mathcal{L}$.

Theorem: Let $g_n \to g$ in L^2 as $n \to \infty$ and let (λ^n, S^n) minimize

$$J_{\alpha}^{n}(\lambda, S) = \frac{1}{2} \|F(\lambda, S) - g_{n}\|_{L^{2}}^{2} + \alpha \operatorname{Per}(S) \text{ over } \Lambda \times \mathcal{L}.$$

Then there exists a subsequence $\{(\lambda^{n_k}, S^{n_k})\}_k$ converging to a minimizer $(\lambda^*, S^*) \in \Lambda \times \mathcal{L}$ of J_{α} in the sense that

$$\|\lambda^{n_k}\chi_{S^{n_k}}-\lambda^*\chi_{S^*}\|_{L^2}\to 0$$
 as $k\to\infty$.

Furthermore, every convergent subsequence of $\{(\lambda^n, S^n)\}_n$ converges to a minimizer of J_{α} .

Regularization property

Theorem: Let g be in range(F) and let $\delta \mapsto \alpha(\delta)$ where

$$\alpha(\delta) \to 0$$
 and $\frac{\delta^2}{\alpha(\delta)} \to 0$ as $\delta \to 0$.

In addition, let $\{\delta_n\}_n$ be a positive null sequence and $\{g_n\}_n$ such that

$$||g_n - g||_{L^2} \le \delta_n.$$

Then, the sequence $\{(\lambda^n,S^n)\}$ of minimizers of $J^n_{\alpha(\delta_n)}$ possesses a subsequence converging to a solution (λ^+,S^+) where

$$S^+ = \arg\min\{\operatorname{Per}(S) : S \in \mathcal{L} \text{ s.t. } \exists \lambda \in \Lambda \text{ with } F(\lambda, S) = g\}.$$

Furthermore, every convergent subsequence of $\{(\lambda^n, S^n)\}_n$ converges to a pair $(\lambda^{\dagger}, S^{\dagger})$ with above property.

Mathematical model

Inverse problem: formulation & uniqueness

Inverse problem: reformulation & stabilization

Gradient of the minimization \triangleright functional Domain derivative: general definition Domain derivative of $F(\lambda,\cdot)\colon \mathbb{S} \to L^2(\partial\Omega)$

Domain derivative of $\operatorname{Per}: \mathbb{S} \to \mathbb{R}$ Derivative of $J_{\alpha}: \Lambda \times \mathbb{S} \to \mathbb{R}$ Approximate variational principle (Ekeland 1974)

Numerical experiments in 2D

Summary

Gradient of the minimization functional

Domain derivative: general definition

Let $\Gamma \in \mathbb{S} = \{\widetilde{\Gamma} \subset \Omega : \partial \widetilde{\Gamma} \in C^2\}$ and let $h \in C_0^2(\Omega, \mathbb{R}^d)$. Define

$$\Gamma_h = \{x + h(x) : x \in \Gamma\}.$$

If h is small enough, say if $||h||_{C^2} < 1/2$, then $\Gamma_h \in S$.

By the domain derivative of $\Phi \colon \mathbb{S} \to Y$ about Γ we understand $\Phi'(\Gamma) \in \mathcal{L}(C^2,Y)$ satisfying

$$\|\Phi(\Gamma_h) - \Phi(\Gamma) - \Phi'(\Gamma)h\|_Y = o(\|h\|_{C^2})$$

where Y is a normed space.

Domain derivative of $F(\lambda, \cdot) : \mathbb{S} \to L^2(\partial\Omega)$

Reminder: $F(\lambda, S) = \lambda A \chi_S$

Lemma: We have that

$$\partial_S F(\lambda, S) h = u'|_{\partial\Omega}$$

where $u' \in H^1(\Omega \backslash \partial S)$ solves the transmission byp

$$\begin{split} -\nabla \cdot (D\nabla u') + \mu u' &= 0 \quad \text{in } \Omega \backslash \partial S, \\ 2D\partial_{\mathbf{n}} u' + u' &= 0 \quad \text{on } \partial \Omega, \\ [u']_{\pm} &= 0 \quad \text{on } \partial S, \\ \left[D\partial_{\mathbf{n}} u' \right]_{\pm} &= -\lambda h \cdot \mathbf{n} \quad \text{on } \partial S. \end{split}$$

Proof: similar to Hettlich's habilitation thesis 1999.

Domain derivative of $Per: S \to \mathbb{R}$

Lemma (Simon 1980):

We have that

$$\partial_S \operatorname{Per}(S)h = \int_{\partial S} H_{\partial S}(h \cdot \mathbf{n}) \, ds$$

where $H_{\partial S}$ denotes the mean curvature of ∂S .

Derivative of $J_{\alpha} : \Lambda \times \mathbb{S} \to \mathbb{R}$

$$J_{\alpha}(\lambda, S) = \frac{1}{2} ||F(\lambda, S) - g||_{L^{2}}^{2} + \alpha \operatorname{Per}(S)$$

$$\partial_{\lambda}F(\lambda,S)k = kA\chi_S = F(k,S)$$

Theorem: We have that

$$J'_{\alpha}(\lambda, S)(k, h) = \left\langle F(\lambda, S) - g, F(k, S) + u' \right\rangle_{L^{2}(\partial\Omega)} + \alpha \int_{\partial S} H_{\partial S}(h \cdot \mathbf{n}) \, ds$$

for $k \in \mathbb{R}$, $h \in C_0^2(\Omega, \mathbb{R}^3)$.

Proof:

$$J'_{\alpha}(\lambda, S)(k, h) = \partial_{\lambda} J_{\alpha}(\lambda, S)k + \partial_{S} J_{\alpha}(\lambda, S)h$$

Approximate variational principle (Ekeland 1974)

There exist smooth almost critical points of J_{α} near to any of its minimizers.

Approximate variational principle (Ekeland 1974)

There exist smooth almost critical points of J_{α} near to any of its minimizers.

Theorem: Let (λ^*, S^*) be a minimizer of J_{α} where λ^* is an inner point of Λ . Then, for any $\varepsilon > 0$ sufficiently small there is a $(\lambda^{\varepsilon}, S^{\varepsilon}) \in \Lambda \times \mathbb{S}$ with

$$J_{\alpha}(\lambda^{\varepsilon}, S^{\varepsilon}) - J_{\alpha}(\lambda^{*}, S^{*}) \leq \varepsilon,$$
$$\|\lambda^{\varepsilon} \chi_{S^{\varepsilon}} - \lambda^{*} \chi_{S^{*}}\|_{L^{1}} \leq \varepsilon,$$
$$\|J_{\alpha}'(\lambda^{\varepsilon}, S^{\varepsilon})\|_{\mathbb{R} \times C^{2} \to \mathbb{R}} \leq \varepsilon.$$

Approximate variational principle (Ekeland 1974)

There exist smooth almost critical points of J_{α} near to any of its minimizers.

Theorem: Let (λ^*, S^*) be a minimizer of J_{α} where λ^* is an inner point of Λ . Then, for any $\varepsilon > 0$ sufficiently small there is a $(\lambda^{\varepsilon}, S^{\varepsilon}) \in \Lambda \times \mathbb{S}$ with

$$J_{\alpha}(\lambda^{\varepsilon}, S^{\varepsilon}) - J_{\alpha}(\lambda^{*}, S^{*}) \leq \varepsilon,$$
$$\|\lambda^{\varepsilon} \chi_{S^{\varepsilon}} - \lambda^{*} \chi_{S^{*}}\|_{L^{1}} \leq \varepsilon,$$
$$\|J_{\alpha}'(\lambda^{\varepsilon}, S^{\varepsilon})\|_{\mathbb{R} \times C^{2} \to \mathbb{R}} \leq \varepsilon.$$

Proof: Key ingredient is

To any bounded measurable $\Gamma \subset \mathbb{R}^d$ with finite perimeter exists a sequence $\{\Gamma^n\}_n$ of C^∞ -domains such that

$$\int_{\mathbb{R}^d} |\chi_{\Gamma^n} - \chi_{\Gamma}| \mathrm{d}x \to 0 \quad \textit{and} \quad \mathrm{Per}(\Gamma^n) \to \mathrm{Per}(\Gamma) \quad \textit{as } n \to \infty.$$

Mathematical model

Inverse problem: formulation & uniqueness

Inverse problem: reformulation & stabilization

Gradient of the minimization functional

Numerical experiments in

D 2D

Star-shaped domains

Algorithm: Projected Gradient Method

The model

 H^3 -Reconstructions

 L^2 -Reconstructions

Summary

Numerical experiments in 2D

Star-shaped domains

For the numerical experiments we consider a star-shaped domain only:

$$S = \{ x \in \mathbb{R}^2 : x = m + t \,\theta(\vartheta) r(\vartheta), \ 0 \le t \le 1, \ 0 \le \vartheta \le 2\pi \}$$

where m is the center (assumed to be known) and $r \colon [0, 2\pi] \to [0, \infty[$ parameterizes the boundary of S.

- All previous results hold in this setting as well if we work in a space of smooth parameterizations, say, $r \in H_p^3(0, 2\pi) \subset C_p^2(0, 2\pi)$.
- $(\lambda, S) \rightsquigarrow (\lambda, r) \in \Lambda \times \mathcal{R}_{ad}$ where $\mathcal{R}_{ad} = \{r \in H^3_p(0, 2\pi) : r \geq 0\}.$
- Gradient equation: $\langle \operatorname{grad} J_{\alpha}(\lambda, r), (k, h) \rangle_{\mathbb{R} \times H^3} = J'_{\alpha}(\lambda, r)(k, h).$
- We have implemented star-shaped domains using trigonometric polynomials.

Algorithm: Projected Gradient Method

- (S0) Choose $(\lambda^0, r^0) \in \mathfrak{C} := \Lambda \times \mathfrak{R}_{ad}$, k := 0
- (S1) Iterate (S2)-(S4) until 🙂
- (S2) Set $\nabla_k := -\mathrm{grad}J_{\alpha}(\lambda^k, r^k)$.
- (S3) Choose σ_k by a projected step size rule such that

$$J_{\alpha}\Big(P_{\mathcal{C}}\big((\lambda^k, r^k) + \sigma_k \nabla_k\big)\Big) < J_{\alpha}(\lambda^k, r^k).$$

(S4) Set
$$(\lambda^{k+1}, r^{k+1}) := P_{\mathfrak{C}}((\lambda^k, r^k) + \sigma_k \nabla_k)$$
.

The model

H^3 -Reconstructions

Reconstructions (blue) and source (red). Left: 69 iterations, right: k = 17 iterations

L^2 -Reconstructions

Reconstructions (blue) and source (red).

Left: 37 iterations, right: noisy data (rel. 3%), 24 iterations

L^2 -Reconstruction with variable center

Mathematical model

Inverse problem: formulation & uniqueness

Inverse problem: reformulation & stabilization

Gradient of the minimization functional

Numerical experiments in 2D

What to remember from this talk

Summary

What to remember from this talk

- Bioluminescence tomography images cells in vivo. From a mathematical point of view it is an inverse source problem which suffers from nonuniqueness (diffusion approximation) and ill-posedness.
- To overcome these difficulties the sources are modeled as "hot spots" leading to a nonlinear problem which is stabilized by a Tikhonov-like regularization penalizing the perimeter of the hot spots.
- The approximate variational principle justifies the restriction to hot spots with smooth boundaries.
- For star-shaped domains in 2D a projected steepest decent solver has been implemented and tested.