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The practical expression of linear elliptic partial differential
equations found in most of the engineering application is
represented by the following system, in which the fields may be a
vector and coefficients can be represented by matrices and vectors
according: To find u(x) such that

∇.(−c∇u − αu + γ) + β.∇u + au = f if x ∈ Ω;
hu = g if x ∈ ∂ΩD ;
ν.(c∇u + αu − γ) + qu = gν − h∗µ if x ∈ ∂ΩN ;

(1)

where ν is the outward unit normal vector on
∂Ω := ∂ΩD ∪ Π ∪ ∂ΩN ,



I Boundary integral formulation for the inverse problem: Let Gξ
be the fundamental solution for the strongly elliptic system
(1).

I Then the Calderón projector gap is:[
γu(ξ)
Bνu(ξ)

]
=

[ ∫
Ω γξ[Gξ](y)f (y , u)dy∫
Ω Bνξ [Gξ](y)f (y)dy

]
+[

1
2 (Ix→ξ − Tx→ξ) Sx→ξ

Rx→ξ
1
2 (Ix→ξ + Tx→ξ)

] [
γu(ξ)
Bνu(ξ)

]
, (x , ξ) ∈ Γ×Γ



I Boundary integral formulation for the inverse problem: Let v
be the regular fundamental solution for the strongly elliptic
system (1).

I Variational : for all v ∈ (HL∗(Ω)m)∗.∫
Ω
v(x)f (x)dx = −

∫
Γ
(

d∑
j=1

νj

d∑
k=1

Ajk∂kv(x)+Ajv(x))u(x)dσx

+

∫
Γ
v(x)

d∑
j=1

νj

d∑
k=1

Ajk∂ku(x)dσx



I Direct problem (Closed operators): Variational formulation
and stabilization via Babuska-Brezzi-Necas-Banach condition.

I Inverse problem (Compact operators): Variational or strong
formulation and stabilization thorough
Picard-Tikhonov-Landweber-Morozov-Banach regularization.

I Functional Analysis Framework: Closed Range Banach
Theorem and Fredholm Operator Theory.

I Solution of Direct problems with minimization of Least square
discrepancy between calculated and measured Neumann data.

I Many solutions of two equivalent direct problems and
minimization of the discrepancy between these two
solutions.(This work !)



I Given The Dirichlet to Newmann map

Λc : H
1
2 (∂Ω)→ H−

1
2 (∂Ω)

I To find u ∈ H1(Ω), c(x) ∈ L∞(Ω) such that{
∇.(−c∇u) = 0 in Ω;
gν = Λc [g ] on ∂Ω;

(2)

I Qc =
∫

Ω c(x)||∇u(x)||2dx =
∫
∂Ω g(x)Λc [g ](x)dσ(x)



I In 1980, (Seminar on Numerical Analysis and its Applications
to Continuum Physics, SBM, Rio de Janeiro), Calderón posed
the following problem:

I Decide whether c is uniquely determined by Qc , and, if so,
calculate c in terms of Qc .

I the uniqueness problem, for conductivity or any other
coefficients, is an open problem that has been only partially
solved.

I ”Intrinsic non uniqueness in the inverse source problem”;

I The Calderon Projector Gap is the same for all Cauchy datum
used to estimate it.



I Some uniqueness class
I The regular affine class ”If the sources are restricted to the

affine class of functions C(D;F ) = {f ∈ H2(Ω) : Df = F}
then we have uniqueness of the associated inverse source
problem (Alves, Martins, Roberty, Colaço, Olander, 2007 );

I The characteristic class f = Fχω( P. Novikov, 1938, Isakov,
1990);

I The mono and dipolar source class
A = {f :=

∑m1
j=1 λjδxj +

∑m1
j=1 pj · ∇δxj (El Badia e Ha Duong,

2000).



Lemma
Let V ,W Banach spaces and V ′,W ′ its respective dual. Let
A ∈ L(V ,W ) and AT ∈ L(W ′,V ′) its transposed. Let ker(A),
ker(AT ), im(A) and im(AT ) denotes its respective kernel and
range. For M ⊂ V and N ⊂W ′, let
M⊥ := {v ′ ∈ V ′|∀m ∈ M, 〈v ′,m〉V ′×V = 0} and
N⊥ := {v ∈ V |∀n ∈ N, 〈n, v〉V ′×V = 0} . Then, the following
properties hold:

I ker(A) = (im(AT ))⊥ and ker(AT ) = (im(A))⊥;

I im(A) = (ker(AT ))⊥ and im(AT ) = (ker(A))⊥



We first apply this Fundamental Lemma to the operator

L0 : (H2
0 (Ω))m → (L2(Ω))m

where (H2
0 (Ω))m := {v ∈ (H2(Ω))m|v |∂Ω = 0;Bνv |∂Ω = 0} has

transpose
L∗0 : (L2(Ω))m → (H−2(Ω))m

Note that in this case, by (ii),
(HL∗0 (Ω))m = ker(L∗0) = (im(L0))⊥ = (L0((H2

0 (Ω))m))⊥ and, by
(iii)

(L2(Ω))m = (HL∗0 (Ω))m ⊕ L0((H2
0 (Ω)m))

L2(Ω)
(3)



Now we define the following space

(H2
D,N(Ω))m := {v ∈ (H2(Ω))m|v |ΓD

= 0;B|ΓN
v = 0}

where ΓD ⊂ ∂Ω and ΓN ⊂ ∂Ω are arbitrary. Note that
H2

0 (Ω))m ⊂ (H2
D,N(Ω))m

The operator L0,D,N : (H2
D,N(Ω))m → (L2(Ω))m has transpose

L∗0,Dc ,Nc : (L2(Ω))m → ((H2
D,N(Ω))m)∗ = (H−2

Dc ,Nc (Ω))m ⊂
(H−2(Ω))m where (H−2

Dc ,Nc (Ω))m is a set of distribution with trace
support in ∂Ω\ΓD and conormal trace with support in ∂Ω\ΓN and
whose kernel is

(HL∗
0,Dc ,Nc

(Ω))m = {v ∈ (L2(Ω))m|L∗0,Dc ,Ncv = 0}



Note that in this case, by (ii), (HL∗
0,Dc ,Nc (Ω))m = ker(L∗0,Dc ,Nc ) =

(im(L0,D,N))⊥ = (L0((H2
D,N(Ω)))m)⊥ and, by (iii)

(L2(Ω))m = (HL∗
0,Dc ,Nc

(Ω))m ⊕ L0,D,N((H2
D,N(Ω))m)

L2(Ω)
(4)

Note that for ΓD = ΓN = Γ, decomposition (4) reduces to (3).
Also that when ΓD and ΓN are a Lipschitz dissection of ∂Ω, the
fact that the unique solution vχ of

Pc∗
χ,0,0


L∗0,Dc ,Ncv = χ if x ∈ Ω;

γ[v ] = 0 if x ∈ ∂ΩN = ∂Ω\ΓD ;

B̃νv = 0 if x ∈ ∂ΩD = ∂Ω\ΓD ;

(5)

is the trivial when χ(x) = 0,and (HL∗
0,Dc ,Nc

(Ω))m = ({0})m



I Characterizes materials parameters and source is a central
question in the engineering project;

I it is important adequate existing engineering and multiphysics
software to handle uncertainties in these parameters;

I be used as a tool for process experimental data;

I but respecting the actual engineering project project status of
art.

I Applications when we have incomplete information about
these coefficient and sources.



I This work is addressed to investigate the class of problems in
which we want determine unknown parameters in the
functions that characterize these coefficients and sources.

I To compensate this incomplete information that ill-posed the
problem, we suppose that both, Neumann and Dirichlet data,
are prescribed for many boundary value problems.

I These problems are formulated for the same physical
coefficients and source which depend on the same set of
unknown parameters.



I Lu = −
∑d

j=1(
∑d

k=1 ∂j(Ajk∂k)u + Aj∂ju) + Au

I (Ajk ,Aj ,A) : Ω→ Rm×m.

I u is a column vector with m scalar fields and Lu : Ω→ Rm

I strongly elliptic system.

L0u = −
d∑

j=1

∂jBju where Bj =
d∑

k=1

Ajk∂k (6)

I Ω is a Lipschitz domain and γ is the trace operator

I the conormal derivative is

Bνu =
d∑

j=1

νjγ[Bju] (7)



Let Ω a domain with Lipschitz dissection boundary
∂Ω = ∂ΩN ∪ Π ∪ ∂ΩN . The mixed boundary value problem for the
physical model given by (1) is given by the well posed problem
Pf ,gD ,gN : To find u ∈ H1(Ω)m such that

Pf ,gD ,gN


Lu = f if x ∈ Ω;
γ[u] = gD if x ∈ ∂ΩD ;
Bνu = gN if x ∈ ∂ΩN ;

(8)

we can show that (8) has the following weak formulation Wf ,gD ,gN
(Lu, v)Ω + (Bνu, γ[v ])∂Ω = Φ(u, v) =
= (f , v)Ω + (gN , γ[v ])∂ΩN

if v ∈ H1
D(Ω)m;

γ[u] = gD if x ∈ ∂ΩD ;
(9)



Definition
When u = u+ + u− ∈ L2(Rd)m, with u± ∈ H1(Ω±)m, has
compact support in Rd and f = f + + f − ∈ H−1(Rd)m, we can
enunciate the Third Green Identity

u = Gf + DL[u]Γ − SL[Bνu]Γ on Rd . (10)



Definition
When the mixed boundary value problem is posed with a non null
source, Pf ,gD ,gN

ν
, we have a gap in the Calderón projector:

[
γu(ξ)
Bνu(ξ)

]
=
[ ∫

Ω γξ[Gξ](y)f (y)dy
∫

Ω Bνξ [Gξ](y)f (y)dy
]

+

[
1
2 (Ix→ξ − Tx→ξ) Sx→ξ

Rx→ξ
1
2 (Ix→ξ + Tx→ξ)

] [
γu(ξ)
Bνu(ξ)

]
, (x , ξ) ∈ Γ×Γ



Matrix equation for Calderón Projector Gap Lipschtiz Boundary
Dissection:

γu(ξ)|ΓD

γu(ξ)|ΓN

Bνu(ξ)|ΓD

Bνu(ξ)|ΓN

 =


∫

Ω γξGξ|ΓD
(y)f (y)dy∫

Ω γx iGξ|ΓN
(y)f (y)dy∫

Ω BνξGξ|ΓD
(y)f (y)dy∫

Ω BνξGξ|ΓN
(y)f (y)dy

+


1
2 (IDD

x→ξ − TDD
x→ξ) −TND

x→ξ SDD
x→ξ SND

x→ξ
−TDN

x→ξ
1
2 (INNx→ξ − TNxN

x→ξ ) SDN
x→ξ SNN

x→ξ
RDD
x→ξ RND

x→ξ
1
2 (IDD

x→ξ + T̃ ∗DD
x→ξ ) T̃ ∗NDx→ξ

RDN
x→ξ RNN

x→ξ T̃ ∗DN
x→ξ

1
2 (INNx→ξ + T̃ ∗NNx→ξ )




γu(x)|ΓD

γu(x)|ΓN

Bνu(x)|ΓD

Bνu(x)|ΓN





Lemma
For a given association of a Lipschitz domain with a source
distribution, the Calderón projector gap is as a restriction which
the Cauchy data must satisfy in order to be a consistent data with
boundary value problems.



Definition
Let us consider two mixed boundary value problems PfI ,g I ,g I

ν
and

PfII ,g II ,g II
ν

defined on the same Lipschitz domain Ω. We say that

these problems are complementary if fI = fII , ΓI
D = ΓII

N , ΓII
D = ΓI

N

and there exist a Cauchy data (g , gν) such that

g I = gχΓI
D

and g II = gχΓII
D
.

g I
ν = gνχΓI

D
and g II

ν = gνχΓII
D
.



Theorem
Suppose that two mixed boundary value problems PfI ,g I ,g I

ν
and

PfII ,g II ,g II
ν

has solutions uI and uII , respectively. If they are
complementary, then

uI = uII .

Proof:

g(x) = g I (x)χΓI
D

(x) +g II (x)χΓI
N

(x) = g I (x)χΓII
N

(x) +g II (x)χΓII
D

(x)

and

gν(x) = g I
ν(x)χΓI

D
(x)+g II

ν (x)χΓI
N

(x) = g I
ν(x)χΓII

N
(x)+g II

ν (x)χΓII
D

(x).



I Denoting f = fI = fII ,

I the solution will be, via boundary integral equation method,

u(x) =

∫
Ω
Gξ(x)f (x)dx − DL[g ](x) + SL[gν ](x).

I By taking the trace and the conormal trace, we see that it
satisfies the Calderón gap projection dissection equation.

I So, Cauchy data obtained by the extension formulates a
unique problem with integral representation.



I Unknowns parameters related with the support of inclusions
inside Ω where the coefficient has some different functional
description, or even with the functional description itself.

I We consider these parameters collected in a parameter vector
α = [α1, α2, ..., αNA]T and that the coefficients and source are
represented as

{Ajk := [ajkpq(α, x) , Aj := ajpq(α, x) , A := [a(α, x)] , f (α, x)},

I which for p, q = 1, ...,m are functions from Ω× [β1, β2] into
Rm×m.



I α ∈ [β1, β2] ∈ RNA.

I the strongly elliptic operator model with parameter
dependence are formally written as:

Lαu = fα , x ∈ Ω and α ∈ [α1, α2].

I The indeterminacy of α is compensate with the over
prescription of boundary conditions: For p = 1, ...,NP,

γu(p) = g (p) and Bνu(p) = g (p)
ν .



I Steklov-Poincaré operator, which is an extended definition of
the Dirichlet to Neumann map for this kind of system, at
some points in the trace space

(γu(p),Bνu(p)) = (g (p), g (p)
ν ).

I This set of (NP) Cauchy data fully prescribed at the boundary
can be used to formulated a non unique set with 2(NP) well
posed direct problems by using some Lipschitz of the
Boundary Γ.



I Choose some Lipschitz dissection of Γ associated with
problem (p) and given by

Γ = Γ
(p)
I ∪ Π(p) ∪ Γ

(p)
II ,

I Γ
(p)
I and Γ

(p)
II are disjoint, eventually-empty or non connected,

relatively open subsets of Γ, having Π(p) as their common
boundary.

I Consider also the restriction for Cauchy data for problem (p)
associated with this partition:{

(g I (p), g
I (p)
ν ) = (γu(p),Bνu(p))|ΓI

= (g (p)|ΓI
, g

(p)
ν |ΓI

)

(g II (p), g
II (p)
ν ) = (γu(p),Bνu(p))|ΓII

= (g (p)|ΓII
, g

(p)
ν |ΓII

).



I For each one of these Cauchy data of the Lipschitz dissection,

I we can formulate two complementaries well posed sets of
mixed boundary values problems, respectively,

Pα
fα,g

(p)
I ,g

(p)
IIν

and Pα
fα,g

(p)
II ,g

(p)
Iν

I Given a guess set of parameter α, for problems p = 1, ...,NP,

to find complementary solutions u
(p)
I and u

(p)
II such that u

(p)
I solution of Pα

fα,g
(p)
I ,g

(p)
IIν

u
(p)
II solution of Pα

fα,g
(p)
II ,g

(p)
Iν

.
(11)



I The partition done with the Lipschitz dissection is arbitrary.

I It can also be different for different problems in the many
boundary values problems set.

I If necessary, we can do two or more dissection for the same
problem.

I The correctness of this procedure will depends on the
information about the parameters that it produces.

I One basic rule of thumb is that partitions must be chosen in a
way to avoid the guess direct problems to be non well posed.



Lemma
Suppose that in the model given by operator Lα and source fα,
characterized by the parameter set α, the associated Cauchy
boundary data are given by

γu(p) = g (p) and Bνu(p) = g (p)
ν , forp = 1, ...,NP.

If for some p and for some Lipschitz dissection we have u
(p)
I and

u
(p)
II solutions of problem Pα

fα,g
(p)
I ,g

(p)
IIν

and Pα
fα,g

(p)
II ,g

(p)
Iν

, then

u
(p)
I = u

(p)
II .



I The idea now is explore the fact that these two set of
solutions indexed by I and II must be, under ideal conditions,
equal for each problem (p), as has been stated in Theorem of
Complementary solutions and Lemma on Solution with
consistent Cauchy data

I and create some discrepancy function that measures observed
differences for guess value of the parameters.

I The sup norm in the solution space for the direct problems
can be adopted as measures

d(α, uI , uII ) =
NP

max
p=1

sup
x∈Ω)
|u(p)

I (α, x)− u
(p)
II (α, x)|,



I Optimization problem: In the guess set of parameters
α ∈ {[α1, α2] ⊂ RNA}, to find α that minimizes the
discrepancy between Lipschitz dissected solutions.

I Use of solvers based on finite elements method,...etc.

I Of course, the boundary integral methodology or the Green’s
function methodologies can also be used, but this is not the
more conventional procedure.

I From computational point of view, minimization of the
discrepancy functional can be easily implemented if the
algorithm does not require the computations of gradients of
the solution with respect to the parameters.

I Nelder-Mead Simplex method in low dimensions.



Lemma
Suppose a model given by Lα, fα and (γ[u],Bν [u]) = (g , gν)
dissected according the Lipschitz dissection. Then, if for α = α(0)

presents a discrepancy ( uI
α(0) 6= uII

α(0)), then for any α near α(0),∫
χ(x)(uIIα (x)− uIα(x))dx = H+

∫
Ω

(v II0 (x)− v I0(x))f0(x , α(0))dx+

NA∑
i=1

(αi−α
(0)
i )

∫
Ω

(v II0 (x)Lα
∂uII0
∂αi
−v I0(x)Lα

∂uI0
∂αi

)dx+O(‖αi−α
(0)
i ‖

2)

where v I0, v II0 are solutions of boundary complementary adjoint
homogeneous auxiliary problems in th sence of Lipschtz disection
with mass one source χ ∈ L2(Ω) and H depends on Cauchy data.



I The numerical experiment that illustrate this work is a model
in which the square (−1,+1)× (−1,+1)

I has in its interior a small rectangle with has unknown center,
unknown edges a and b,

I which supports unknown parameters related with the
conductivity, c , the potential, a, and the source intensity, f .

I Cauchy data are synthetically generated with a problem in
which parameters value are known equal to 1 in the exterior of
the small rectangle, and all equal 2 in the interior.

I Also the unknown information about the rectangle used are
center at the origin and side a = b = .2.



The parameters in operator L are:

m = 1 ;

Ajk = 1 + (c − 1)χ(x0 −
1

2
x1, x0 +

1

2
x1)χ(y0 −

1

2
y1, y0 +

1

2
y1)δjk ;

Aj = 0 ;

A = 1 + (a− 1)χ(x0 −
1

2
x1, x0 +

1

2
x1)χ(y0 −

1

2
y1, y0 +

1

2
y1)δjk ;

f (x) = 1 + (f − 1)χ(x0−
1

2
x1, x0 +

1

2
x1)χ(y0−

1

2
y1, y0 +

1

2
y1)δjk ;

and the set of parameters are α = (x0, y0, x1, y1, c, a, f ) ∈ R7.



I

Γ = Γy=−1∪Π(−1,+1)∪Γx=+1∪Π(+1,+1)∪Γy=+1∪Π(−1,+1)∪Γx=−1∪Π(−1,−1)

and is counterclockwise oriented.

I Cauchy data are synthetically produced by solving a set of 5
Dirichlet direct problems

I with parameters α = (0, 0, 1, 1, 2, 2, 2) ∈ R7 with quadratic
Lagrange finite elements method.



(0) g |Γy=−1 = 0 ; g |Γx=+1 = 0 ; g |Γy=+1 = 0 ; g |Γx=−1 = 0;

(1) g |Γy=−1 = (1− x)(1 + x) ; g |Γx=+1 = 0 ; g |Γy=+1 =
0 ; g |Γx=−1 = 0;

(2) g |Γy=−1 = 0 ; g |Γx=+1 = (1− y)(1 + y) ; g |Γy=+1 =
0 ; g |Γx=−1 = 0;

(3) g |Γy=−1 = 0 ; g |Γx=+1 = 0 ; g |Γy=+1 =
(1− x)(1 + x) ; g |Γx=−1 = 0;

(4) g |Γy=−1 = 0 ; g |Γx=+1 = 0 ; g |Γy=+1 = 0 ; g |Γx=−1 =
(1− y)(1 + y) .

generating Neumann data

{g (p)
ν |Γy=−1 ; g

(p)
ν |Γx=+1 ; g

(p)
ν |Γy=+1 ; g

(p)
ν |Γx=−1 ; p = 0, 1, 2, 3, 4}.



Figure : Cauchy Data Dirichelet problems (0)



Figure : Cauchy Data Dirichelet problems (1),(2),(3),(4)

They has been interpolated with piecewise cubic splines and used
in the inverse algorithm. The Boundary of the square has been
dissected in two non connected parts composed by

ΓI = Γy=−1 ∪ Γy=+1 and ΓII = Γx=−1 ∪ Γx=+1.



I Ten problems formulated with the dissection of these Cauchy
data can now be used to evaluate

I the discrepancy functional based on the following sup norm:

d(α,UI ,UII ) = maxNPp=1(sup
x∈Ω
|u(p)

I (α, x)− u
(p)
II (α, x)|).

I The search starts with random generated initial data in the
intervals [0, 2]7 for the 7 unknown parameters



Figure : Iterative simultaneous reconstruction of rectangle shape,
conductivity, absorption and source



Figure : Iterative simultaneous reconstruction of rectangle shape,
conductivity, absorption and source



I We proposed a methodology for reconstruction of unknown
parameters associated with coefficients and source in strongly
elliptic system.

I To make it clear, we also introduce the most important
mathematical concepts involved in the solution of the strongly
elliptic problem with integral equations at the boundary of a
Lipschitz domain.

I In the inverse problem, the existence of the unknown
parameters is compensate with the prescription of many
Cauchy data related experimentally with the same set of
parameters.



I We demonstrate that a discrepancy functional depending on
the the parameters must be minimized in order to be
consistent with the given Cauchy data.

I The main ideas used to develop this formulation are Lipschitz
Dissection and Calderón Projector Gap.

I In this first work, the optimization methodology is numerically
investigate with non differentiable Nelder-Mead search
algorithm.

I Numerical results are presented to illustrate the ideas. Further
research involving differentiability and the use of differentiable
algorithms are currently been investigated.



I square (−1,+1)× (−1,+1) has in its interior sources with
intensity equal 1

I and supported on two circles with unknown center and radius
(xc1, yc1,Rc1) and (xc2, yc2,Rc2), respectively.

I Laplace. Even for this very simple problem there is no
mathematical proof of uniqueness of reconstruction from
boundary data.

I finite elements method can avoid Green’s function.

I Nelder-Mead Simplex Method with random generated initial
data



The Finite elements solution used for produce Cauchy data

Figure : Two circle inside an square model



xc1 yc1 Rc1 xc2 yc2 Rc2 AREA

exact -.5 0 .2 0.5 0 .2 .253
initial -.4 0 .3 .4 0 .3 —
final -.5127 -.0006 .1982 .5384 -.0000 .2103 .2644

Table : Two Circles Inside a square reconstructed as it is.



Reconstructed values after 140 iter info existence two sources

Figure : Convergence results for the two circles inside a square model.



xc yc Rc AREA

initial .00005 .0005 .3 .2513
final 0.0001 .0005 .2840 .2534

initial .5 .5 .3 .2513
final -.2847 .0065 .2517 .1991

initial -.1 .1 .3 .3
final -.2774 -..0019 .2517 .1991

initial -.05 .05 .3 .3
final -..3109 .00500 .2457 .1897

Table : Two circle inside a square reconstructed as one circle inside a
square.



Two squares inside a square

The Fourier series has been truncated with 100 and the number of
collocations points is 40.

Table : Characteristic source dimensions

Type of source a1 b1 a2 b2

Exact source -0.5000 +0.5000 -0.5000 +0.5000
Random source -0.4074 +0.0635 -0.4529 +0.4576
Recosntructed 80 iter -0.4975 +0.0962 -0.7446 +0.9357
Reconstructed 286 iter -0.4970 +0.4970 -0.4968 +0.4968



I The solution of the Dirichelet problem and its Neumann data.

I The discrepancy functional with exact source parameters, is
4.2047e − 006. Convergence is quite satisfactory when the
Discrepancy become close to this value for 286 iterations.

Figure : Homogeneous Dirichlet model solution with boundary data.
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Figure : Exact and Random generate source support.
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Figure : Reconstructed source for 80 and 286 iterations.
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Figure : Exact and Random generate source biconnected support.
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Figure : Reconstructed biconnected source for 82 and 675 iterations.



I The non injective behaviour of the inverse problem of source
reconstruction by using only boundary data is given by the
non one to one behaviour of the normal trace induced by the
elliptic operator L on the domain boundary;

I In the moment, the uniqueness can be proved for some special
class, such as, the regular affine, the characteristic and the
distributional monopole or dipole sources;

I One experiment shown that at least for one kind of source
with non connected support the reconstruction can be done
successfully;

I If the support are not supposed has at least two connected
components, the reconstruction fails;

I The introduced method of split solutions seen to be very
promising.

We recognize that more mathematical analysis and computational
experiments can be done. Also, some discussion about the
statistical meaning of the concepts here introduced are not
presented. These topics will postpone to be presented in future
works.
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