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Objectives

@ Slope tomography:
e Introduce geologically meaningful constraints
e Improve velocity model building for depth migration
e Better recover large scale structural features
e Improve convergence of layer and grid-based tomography

@ Full-waveform inversion:

e Decompose sensitivity kernels
e Understand contributions
e Invert only important ones
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Inversion

Problem: invert

Nonlinear relationship between data and parameters

d = F(m)

m = model parameters
d = data parameters
F = nonlinear functional (wave propagation)
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Motivation
Objective
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Frechét derivatives

Solution:

Linear iterations: the Frechét derivative

dd = DF(mp)om

mg = reference model parameters

od = data perturbation

om = model parameters perturbations around mg
DF = Frechét derivative of F
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What is slope tomography?

Data space:
d={(x°x",T%,s°s"),.}

forn=1,... )N

Schleicher Fighting ambiguity in seismic inverse problems
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What is slope tomography?

X . T=t+t f
A\ x X
s

Model space:
m = {p? (Xa Ts, Tr7 985 el’)n}
forn=1,... )N
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What is slope tomography?
Reflector-oriented regularization in slope tomography Smoothness constraints
Numerical Experiments

Discussion

Frechét derivatives computation: dynamic ray tracing

The Hamiltonian (eikonal equation):

1

H(x,s):E(p(x)s-s—U:O

X - position along the ray
s - slowness vector along the ray
p(x) - velocity square field
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Frechét derivatives computation: dynamic ray tracing

Jd | x i VxH
ar | s | | —VsH
g | ] [ VsV]H  VsVIH oX
ar | ss | |V VIH —VVIH | | s
VsV Hp
+
~Vx(Vg Hip)

Reference ray
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What is slope tomography?
Reflector-oriented regularization in slope tomography Smoothness constraints
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Frechét derivatives computation: dynamic ray tracing

R ] [ VixH
ar | s | | —VsH
g | ] [ VsV]H  VsVIH oX
ar | ss | |V VIH —VVIH | | s
VsV Hop
+
—Vx(Vp Hip)

Paraxial rays
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What is slope tomography?

Reflector-oriented regularization in slope tomography Smoothness constraints
Numerical Experiments
Discussion

Initial Conditions

Slowness Direction:

;
ox=0 and 5s:s<l nVsH> dn

=TT Zo5p
VI#Hn) do
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What is slope tomography?
Reflector-oriented regularization in slope tomography Smoothness constraints
Numerical Experiments

Discussion

Initial Conditions

Scattering point position:

_ VsH  VyHX
IVsH| [[VsHl]

0X =0X and s =
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What is slope tomography?

Reflector-oriented regularization in slope tomography Smoothness constraints
Numerical Experiments
Discussion

Initial Conditions

Velocity model parameters:

VsH VgHip
0X=0 and és=—
IVsH]| [[VsH]
p(x) p(x) + 6p(x)
) 8
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What is slope tomography?

Reflector-oriented regularization in slope tomography Smoothness constraints

Numerical Experiments
Discussion

Linear iterations

reference model mg

ray tracing is perfomed to calculate synthetic data (d°),
od = dOBS — d°

compute Frechét derivatives DF(mg)

solve for model perturbations ém

Update reference model mp < mg + édm

If updated model fits the data within a specified tolerance
stop; otherwise, iterate
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Linearized inversion

Estimation of a model consistent with the data:

min [|od — DF(mo)sm|,

Problem:

There is no unique solution!
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What is slope tomography?
Reflector-oriented regularization in slope tomography Smoothness constraints
Numerical Experiments

Discussion

Linearized inversion

Estimation of a model consistent with the data:

min [|od — DF(mo)sm|,

Problem:
There is no unique solution!

Constrain the solution with additional properties.
Regularization: smoothness of the velocity field.
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What is slope tomography?

Reflector-oriented regularization in slope tomography Smoothness constraints
Numerical Experiments
Discussion

Smoothness constraints

@ Minimum curvature constraints

e Minimize Laplacian

e Minimize second derivatives independently
@ Minimum inhomogeneity constraints

e Minimize first derivatives independently
e Minimize directional derivatives along potential reflectors
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What is slope tomography?
Reflector-oriented regularization in slope tomography Smoothness constraints

Numerical Experiments
Discussion

Slope tomography objective function

o(m;N) = Hd F(m)||5 + A§//m — mg|[3
AfID1p|5 + A3/IDsp3
251ID3pll3 + A3ID3p|3

+)\5H(D$ +D3)pll3
\3|ID.p|i3

Do not get too far from a prior (previous or initial) model
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Slope tomography objective function

o(m;\) = Hd F(m)||3 + A3|lm — mg||3
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Gradient smoothness
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What is slope tomography?
Reflector-oriented regularization in slope tomography Smoothness constraints
Numerical Experiments

Discussion

Slope tomography objective function

®(m;\) = Hd F(m)[[5 + A5[m — mg||3
X§ID1pll3 + A3]/D3p|3
A51D3p|3 + A5 [D3p|3
+>\5||(D$ +D3)p|3
\3|ID.p|i3

Laplacian isotropic smoothness
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What is slope tomography?
Reflector-oriented regularization in slope tomography Smoothness constraints
Numerical Experiments

Discussion

Slope tomography objective function

o(m;\) = Hd F(m)||3 + A3|lm — mg||3
AfID1p|5 + A3/IDsp3
A51D3p|3 + A5 [D3p|3
5”(D1 +D3)pll3
A51Dpll3

Smoothness along reflectors
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What is slope tomography?
Reflector-oriented regularization in slope tomography Smoothness constraints
Numerical Experiments

Discussion

Regularization along the reflectors

source receiver

D,p operator
Os + 0r
o= ——-

n(a; X) x Vp(X) =0

potential reflector scattering point
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What is slope tomography?
Reflector-oriented regularization in slope tomography Smoothness constraints
Numerical Experiments

Discussion

Slope tomography linear iterations

[ DF(mg) 1] [
ol
A1Dq
A2D3
A3D?
A4D3

As(D? + D3)
AeD,

og)
[}
1

om =

OO0 O0O0O0O0o0oOo
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Reflector-oriented regularization in slope tomography

Numerical Experiments

Pre-Stack depth migration
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Numerical Experiments
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Reflector-oriented regularization in slope tomography

Numerical Experiments

Pre-Stack depth migration
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Reflector-oriented regularization in slope tomography
Numerical Experiments

Angle domain image gathers: x=4.0 km

Distance (m)
6000 9000

Depth (m)

Schleicher ighting ambiguity in seismic inverse proble



Reflector-oriented regularization in slope tomography
Numerical Experiments

Angle domain image gathers: x=4.0 km
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(g
-

£ £ £ B B
=< = = = <
£15 £1 £1. =1 =
2 a a o8 =8
b3y b33 2 3 3
[=} a [=} o o

Reflec Reflec-Grad

Jorg Schleicher Fighting ambiguity in seismic inverse problems



Reflector-oriented regularization in slope tomography
Numerical Experiments

Angle domain image gathers: x=6.5 km
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Reflector-oriented regularization in slope tomography
Numerical Experiments

Angle domain image gathers: x=6.5 km
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Reflector-oriented regularization in slope tomography
Numerical Experiments

Angle domain image gathers: x=7.5 km
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Reflector-oriented regularization in slope tomography
Numerical Experiments

Angle domain image gathers: x=7.5 km
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What is slope tomography?

Reflector-oriented regularization in slope tomography Smoothness constraints
Numerical Experiments
Discussion

Discussion

@ Inverted velocity models depend strongly on regularization
e Pure curvature constraints produced worst results
e Migrations results are less sensitive to regularization than
velocity models
@ Regularization along the dip of possible reflectors
e Implements in a natural way in slope tomography
e Reduces the differences between layer based and grid
based velocity model parameterizations
e Highlights structural features in the velocity model
e Improves the velocity model in areas of poor ray coverage
in a geologically plausible way
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Forward problem

Non-linear problem,
p = F(m).
Small pertubations in the model parameters allow linearization,

op=ddm.

Frechét derivatives for the acoustic wave equation

nverse problems



What is full-waveform inversion?

Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Inverse problem

Adjoint Frechét derivatives — back-project pertubations in the
wavefield (data residual) onto model domain.

k

omk = [ oK }

5Pk :|:Vf*:|5p:¢6p-

What a back-projection is needed for?

My 1 = My + a P opy
——

am¥
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Secondary or adjoint sources

Want to know the Frechét derivatives?

Look for the secondary sources.

Secondary sources

Sources that will give rise to data residuals due to pertubations
in the model parameters.

Secondary sources are derived from the wave equation.
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Sensitivity kernels from secondary sources

For the acoustic impulse response
Llp(x,t;xs)] = d(x —xs)S(1),
the secondary sources are (Tarantola, 1984, Geophysics, 48)

L[op(x,t; xs)] = —0L[p(x,t; Xs)]

secondary sources

Wavefield perturbation

Sp(x, t; Xg) = /d3xGxtx)*5£[p(x t; Xs)] .
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Kernel decomposition

Numerical experiment

Sensitivity kernel for the scattered field

Decomposition of sensitivity kernels in full-waveform inversion

K

o

2 4 6 8 10 12 14
Position (km)

Zhu et al, 2009, Geophysics, 74
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Kernel decomposition

Numerical experiment

Decomposition of sensitivity kernel

Decomposition of sensitivity kernels in full-waveform inversion
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What is full-waveform inversion?

Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Decomposition of the model

Smooth part singular part (sharp contrasts)
Velocity model from velocity analysis Migrated image
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Decomposition of the wavefield

{ L8 [po(x, )] = 6(x — x5)S(1) TEENg
LIps(X, 1)] = =V [po(X, 1)] WJ,_

V = L — LB: Scattering potential

Lp(x;1)] = o(x — x5)5(1)

Conventionally: ps = ép is perturbation of py = p,
VY = 4L is perturbation of £
Here: Both contributions are perturbed —s pg, ps, SLE, 6V
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What is full-waveform inversion?

Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Reparametrization

Conventionally:

o] 5]
m= = om=
dp
Here:
Kg 0Kp
_ | pB _ | opB
m= Ks — Mh-é&
Ps dps
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What is full-waveform inversion?
Secondary sources and sensitivity kernels

Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition
Numerical experiment

Reparametrization

Conventionally:
0K ]

56— [ Uy Vf][ap

Here:
0Kp

[UVOO}&pB

UB VB Us Vs 5KS

[ 5E° ]
0Ps
dps
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Reference wavefield residual and sensitivity kernel

Residual evaluated from reference secondary sources

5Po(X; Xs) = / d®x’ Go(x; X')6.LB [Po(X'; X5)] -

Explicit bulk modulus contribution

2
5P (Xg; :/d3 "= Go(X; Xg)Po(X; dKg(x').
Po (Xgi Xs) Y X K2(x') 0o(X; Xg)Po(X'; Xs) B(X')

g ambiguity in sei: nverse problems



What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Scattered wavefield residual

The residual evaluated from scattered secondary sources is
given by

IPs(X; Xs) =
d°x" Gs(x'; %)V [6po(x'; x5)] —

](d3x’ Gs(x': %) 6L [Po(x; x:)] —
o®x' Gg(x'; x) 6L [Ps(x'; x5)] —

ox’ Go(x'; X) V [6Po(x; x5)]
d3x’ Go(x'; X) 0L [Po(x'; x5)]

dsx/G (x'; %) 6L [ps(x'; x5)]

\<
\\é\

+ | &®x Gs(x'; x) 58 [Po(x'; x5)] /d3x/ Go(x'; x) 65 [Po(x'; x5)]

<
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Scattered wavefield residual

The residual evaluated from scattered secondary sources is
given by

5,68()(;)(5):
o°x' Gs(x';x) V [6P0(X; X5

](d?’x’ Gs(x': %) 6L [Po(x; xs)
Bx' Gg(x'; X) 6L [Ps(x'; x5)] —
)] +

)] = [ &X' Go(x';x) V [0po(x'; xo)]
)=, % Go(x': ) 8.2 [Po(x": x:)]

dsx/G(X x) 0L [ps(x'; x5)]

\<
\\é\

+ | &®x Gs(x'; x) 65 [Po(x; xs dsx/ Go(x'; x) 6.8 [Po(x'; x5)]

—

Smooth partof m=

<
\
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Scattered wavefield residual

The residual evaluated from scattered secondary sources is
given by

IPs(X; Xs) =
dsx’G X' x)V [6po(x; xs5)] = | d°x Go(X': x)V [6P0(X"; X5)]
d*x' Gs(x'; X) 6L [Po(x'; Xs)] —

%d?’x’G X) 0L [ps(X'; x5)] —
/

o*x' Gs(x'; x) 6L8 [Po(x'; x5)] d3x’ Go(x'; x) 6.8 [Po(x'; x5)]

o®x' Go(x'; x) 6L [Po(X'; X5)]

X' Go(x'; X) 6L [Ps(x; xs)]

<\<\<\

_|_

Singular part of ém
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What is full-waveform inversion?

Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Kernel decomposition
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Different levels of non-linearity

558_()(?)‘5): ,
_/ d®x’ Gs(xX'; x) V [6Po(X'; Xs)] — / a®x’ Go(X'; X) V [6Po(X'; Xs)]
d®x’' Gs(x'; x) (x'; xs) —/d?’x’ Go(x'; X) 6L [Bo(X"; Xs)]

v

- / d®x’ Gg(x': X) 8L [Ps(x'; xs)] — / d*x’ Go(X'; X) 6L [Ps(X'; Xs)]
. Vy Jv

+/ d®x’ Gs(x'; x) 5L8 [Po(X'; Xs)] + / a®x’ Go(X'; X) 55 [Po(X'; Xs)].

Scattering: single, , Strong mutiple
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Different levels of non-linearity

Strong multiple scattering: —/ d®x' Gg(x'; X) 6L [Ps(X; Xs)]
v
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Forward and adjoint decomposition

Bulk modulus contribution:

EAR =i
5l3s 27::18 UB,/ 27::36 Us,i 0Ks

The backprojection based on the above decomposition is

[ SKg® } _| U S U [ dPo ]
oKs™ 0 Y73 Usi | | 9P
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Numerical experiment

Residual-wavefield backprojection

Perturbation of the singular part
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Numerical experiment
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Numerical experiment

Unperturbed model:
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What is full-waveform inversion?
Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Perturbations on the singular part of the model

No background perturbation means §Kg = 0. Then

n=6

Spo=0 and  éps= (> Us;|dKs
i=3

Backprojection of the scattered-wavefield residual yields

K oSt = Z US N opPs
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Decomposition of sensitivity kernels in full-waveform inversion

Numerical experiment

Perturbations on the singular part of the model

direct wavefield background
cross-correlation extrapolator
est(,/ w2 C\_/H ’,\—;— N
3Ksa™' (X)) = — [ dw W g (Xi,wi xs)  Gg (X[, w; Xg) 0Ps(Xg, w; Xs)
i . o~
back-propagation of dpg
x (m)
0 0 500 1000 1500 2000
200
~ 400
E
N 600
800
1000

dKestS—S4—cr680
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Decomposition of sensitivity kernels in full-waveform inversion

Numerical experiment

Perturbations on the singular part of the model

direct wavefield scattered wave

cross-correlation extrapolator
est( / w2 —_——
0Ks 3 (Xi) =— [ dw W P5(X{,wixs) GE(X/,w; Xg) 6Ps(Xg,w; Xs)
back-propagation of 5ps
x (m)

0 500 1000 1500 2000

dKestS—S3—cr680
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Decomposition of sensitivity kernels in full-waveform inversion

Numerical experiment

Perturbations on the singular part of the model

scattered wavefield background
cross-correlation extrapolator
est(\,/ w2 C\_ﬁ ’,\_;— N
9Ks,6 (Xi ) =— [ dw —K2(X’) PSs(x{,wixs) Gy (X[, w; Xg) 0Ps(Xg, w; Xs)
i . o~
back-propagation of dpg
x (m)
0 0 500 1000 1500 2000
200
~ 400
E
N 600
800
1000

dKestS—S6—cr680
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Decomposition of sensitivity kernels in full-waveform inversion

Numerical experiment

Perturbations on the singular part of the model

scattered wavefield scattered wave

cross-correlation extrapolator
eSt d [ T —~
6Ks 5 I W —5—< /) ps(x,wixs)  Gg(xi,w; Xg) 0Ps(Xg,w; Xs)
back-propagation of 5pg
x (m)
0 0 500 1000 1500 2000
200
—~ 400
E

N 600
800
1000

dKestS—S5—cr680
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e Based on model building and migration-type imaging

6rg Schleicher Fighting ambiguity in seismic inverse problems



What is full-waveform inversion?

Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Discussion

@ Successful kernel decomposition
e Perturbation of background medium and singular part
e Based on model building and migration-type imaging
@ Potential for better control over FWI optimization:

e Contributions show different levels of non-linearity
e Multiple scattering carries important information

g ambiguity in seismic inverse problems



What is full-waveform inversion?

Secondary sources and sensitivity kernels
Decomposition of sensitivity kernels in full-waveform inversion Kernel decomposition

Numerical experiment

Discussion

@ Successful kernel decomposition

e Perturbation of background medium and singular part
e Based on model building and migration-type imaging

@ Potential for better control over FWI optimization:
e Contributions show different levels of non-linearity
e Multiple scattering carries important information
@ Pratical challenges on separation of the model/data
components

@ Potential use in 4D-inversion problems
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Conclusions

Conclusions

@ Seismic Inverse problems are (partly) underdetermined
@ Something has to be done about ambiguity
@ Slope tomography

e Model-geometry-based regularization
o Led to more realistic velocity model

@ Full-waveform inversion

e Sensitivity kernel decomposition
o Led to better understanding of contributions
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